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I. INPUT-OUTPUT FORMULATION OF OPTICAL CAVITY

In preceding chapters, we have used a master equation to calculate the photon statistics inside an optical cavity
when the internal field is damped. In this approach, the field external to the cavity is treated as a heat bath, reservoir.
The heat bath is simply a passive system with which the system gradually comes into equilibrium. Now we would
explicitly treat the heat bath as the external field, and determine the effect of the intra-cavity dynamics on the
quantum statistics of the output field.

Consider a single cavity mode interacting with an external field. The interaction Hamiltonian is

ĤI = i~
∫

dωg(ω)[b̂(ω)â† − âb̂†(ω)], (1)

where â is the annihilation operator for the intra-cavity field, with the commutation relations,

[â, â†] = 1, (2)

where b̂(ω) are the annihilation operators for the external field, with

[b̂(ω), b̂†(ω′)] = δ(ω − ω′). (3)

In actual fact the physical frequency limits are (0,∞). However, for high frequency optical systems we may shift the
integration to a frequency ω0, the cavity resonance frequency. The integration limits are (−ω0,∞), as ω0 is large,
then we approximate

∫∞
−∞. The Heisenberg equation of motion for b̂(ω) is

d
dt
b̂(ω) = −iωb̂(ω) + g(ω)â, (4)

with the initial condition at time t0 < t, the input,

b̂(ω) = e−iω(t−t0)b̂0(ω) + g(ω)

∫ t

t0

dt′e−iω(t−t
′)â(t′), (5)

where t0 < t and b̂0(ω) is the value of b̂(ω) at t = t0, or with the final condition at time t1 > t, the output,

b̂(ω) = e−iω(t−t1)b̂1(ω)− g(ω)
∫ t1

t

dt′e−iω(t−t
′)â(t′), (6)

where t < t1 and b̂1(ω) is the value of b̂(ω) at t = t1.
The system operator obeys the equation,

d
dt
â = − i

~
[â, ĤS ]−

∫ ∞
−∞

dωg(ω)b̂(ω). (7)
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In terms of the solutions with initial condition,

b̂(ω) = e−iω(t−t0)b̂0(ω) + g(ω)

∫ t

t0

dt′e−iω(t−t
′)â(t′), (8)

then

d
dt
â = − i

~
[â, ĤS ]−

∫ ∞
−∞

dωg(ω)e−iω(t−t0)b̂0(ω)−
∫ ∞
−∞

dωg2(ω)
∫ t

t0

dt′e−iω(t−t
′)â(t′), (9)

Here we define the input field,

âIN (t) =
−1√
2π

∫ ∞
−∞

dωe−iω(t−t0)b̂0(ω), (10)

which satisfy the commutation relation, [âI(t), â
†
I(t
′)] = δ(t− t′). With the Markovian approximation:∫ ∞

−∞
dωg2(ω)

∫ t

t0

dt′e−iω(t−t
′)â(t′) ≈ g2(ω)

∫ ∞
−∞

dω
∫ t

t0

dt′e−iω(t−t
′)â(t′), (11)

=
γ

2π
2π

∫ t

t0

dt′δ(t− t′)â(t′) = γ

2
a(t), (12)

we have ∫ t

t0

dt′δ(t− t′)f(t′) =
∫ t1

t

dt′δ(t− t′)f(t′)1
2
f(t), (t0 < t < t1). (13)

The the introduction of the Input field, the equation of motion for the system becomes

d
dt
â = − i

~
[â, ĤS ]−

∫ ∞
−∞

dωg(ω)e−iω(t−t0)b̂0(ω)−
∫ ∞
−∞

dωg2(ω)
∫ t

t0

dt′e−iω(t−t
′)â(t′), (14)

= − i
~
[â, ĤS ]−

γ

2
â(t) +

√
γâI(t). (15)

This is a Langevin equation for the damped amplitude â(t), but with the noise term appears explicitly as the input
field. The time reverse Langevin equation is

d
dt
â = − i

~
[â, ĤS ] +

γ

2
â(t)−√γâO(t), (16)

where

âO(t) =
1√
2π

∫ ∞
−∞

dωe−iω(t−t1)b̂1(ω). (17)

By the input-output theorem, the system operator obeys the equation

d
dt
â = − i

~
[â, ĤS ]−

γ

2
â(t) +

√
γâI(t), (18)

= − i
~
[â, ĤS ] +

γ

2
â(t)−√γâO(t). (19)

The relation between the external field and the intra-cavity field may be obtained,

âO(t) + âI(t) =
√
γâ(t), (20)

which is a boundary condition relating each of the far-field amplitudes outside the cavity to the internal cavity field.
It is easy to see that interference between the input and the cavity field may contribute to the observed output field,
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II. LINEAR CAVITY

For a linear system, we have

d
dt

a(t) = Aa− γ

2
â(t) +

√
γaI(t), (21)

where

a(t) =
(
â(t)
â†(t)

)
, and aI(t) =

(
âI(t)

â†I(t)

)
. (22)

If we define the Fourier components of the intra-cavity field,

a(ω) =
(
â(ω)
â†(ω)

)
, where â(t) =

1√
2π

∫
dωe−iω(t−t0)â(ω), (23)

then, the equation of motion in frequency domain becomes

[A + (iω − γ

2
)1]a(ω) = −√γaI(ω) (24)

By the same way, one can find that

[A + (iω +
γ

2
)1]a(ω) = +

√
γaO(ω), (25)

or

aO(ω) = −[A + (iω +
γ

2
)1][A + (iω − γ

2
)1]−1aI(ω). (26)

For example, consider an empty one-sided cavity. In this case, the only source of loss in the cavity is through the
mirror which couples the input and output fields. The system Hamiltonian is ĤS = ~ω0â

†â, and

A =

(
−iω0 0
0 iω0

)
, (27)

then

aO(ω) =
γ/2 + i(ω − ω0)

γ/2− i(ω − ω0)
aI(ω). (28)

There is a frequency dependent phase shift between the output and input. The relationship between the input and
the internal field is,

a(ω) =
√
γ

γ/2− i(ω − ω0)
aI(ω), (29)

which leads to a Lorentzian of width γ/2 for the intensity transmission function.

III. TWO-SIDED CAVITY

A two-sided cavity has two partially transparent mirrors with associated loss coefficients γ1 and γ2. In this case
there are two input ports and two output ports, and the equation of motion for the internal field is

d
dt
â(t) = −iω0â(t)−

1

2
(γ1 + γ2)â(t) +

√
γ1âI(t) +

√
γ2b̂I(t). (30)

The relationship between the internal and input field frequency components for an empty cavity is then

a(ω) =
√
γ1aI(ω) +

√
γ2bI(ω)

γ1+γ2
2 − i(ω − ω0)

. (31)
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IV. TWO-TIME CORRELATION FUNCTION

There are two boundary conditions of the reservoir,

b̂(ω) = e−iω(t−t0)b̂0(ω) + g(ω)

∫ t

t0

dt′e−iω(t−t
′)â(t′), at time t0 < t, the input, (32)

b̂(ω) = e−iω(t−t1)b̂1(ω)− g(ω)
∫ t1

t

dt′e−iω(t−t
′)â(t′), at time t1 > t, the output. (33)

For The input and output fields, we have

âIN (t) =
−1√
2π

∫ ∞
−∞

dωe−iω(t−t0)b̂0(ω), (34)

âOUT (t) =
1√
2π

∫ ∞
−∞

dωe−iω(t−t1)b̂1(ω), (35)

or

âIN (t) =

√
γ

2
â(t)− 1√

2π

∫
dωb̂(ω, t), (36)

âOUT (t) =

√
γ

2
â(t) +

1√
2π

∫
dωb̂(ω, t). (37)

Let ĉ(t) be any system operator, then

[ĉ(t),
√
γâIN (t′)] =

γ

2
[ĉ(t), â(t′)], for t = t′, (38)

[ĉ(t),
√
γâIN (t′)] = 0, for t′ > t, (39)

[ĉ(t),
√
γâOUT (t

′)] = 0, for t′ < t, (40)
[ĉ(t),

√
γâIN (t′)] = γ[ĉ(t), â(t′)], for t′ < t, (41)

with

âO(t) + âI(t) =
√
γâ(t). (42)

The commutator for the output field is

[âO(t), â
†
O(t
′)] = [âI(t), â

†
I(t
′)]. (43)

V. SPECTRUM OF SQUEEZING FOR THE PARAMETRIC OSCILLATOR

Below the threshold, the Hamiltonian for a parametric oscillator is

ĤS = ~ω0â
†â+

i~
2
(εâ†2 − ε∗â2), (44)

then

[A + (iω − γ

2
)1]a(ω) = −√γaI(ω), (45)

[A + (iω +
γ

2
)1]a(ω) = +

√
γaO(ω), (46)

where

A =

(
−iω0 ε
ε∗ iω0

)
. (47)

Take the Fourier components for the output field,

âO(ω) =
1

(γ2 − i(ω − ω0)2 − |ε|2
{[(γ

2
)2 + (ω − ω0)

2 + |ε|2]âI(ω) + εγâ†I(−ω)}. (48)


