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A. Classical picture for the polarization response

FIG. 1: Spring as the polarization response.

Consider the bound electron cloud, which is displaced by ∆x when the electric field incidents. The corresponding
atomic dipole is

p = q∆x. (1)

For many atomic dipoles in a medium, one can sum up to a larger dipole, denoted by P, as the dipole moment per
volume,

P = Np, (2)

where N is the atomic number density.



2

I. LORENTZ MODEL

Consider the polarization response of the bound electron cloud as a spring, then, we can introduce a damped
harmonic oscillator,

d2x

dt2
+ σ

dx
dt

+ ω2
0x =

q

m
E(t). (3)

For the harmonic wave, E(t) = E0exp(−iωt) and x(t) = x0exp(−iωt), we have

x(t) =
1

ω2
0 − iωσ − ω2

q

m
E(t). (4)

The corresponding atomic polarization is

P(t) = Nq∆x(t) = ε0χE(t), (5)

where χ is a complex number with the form

χ(ω) =
Nq2

ε0m

1

ω2
0 − iωσ − ω2

. (6)

By redefining Nq2

ε0mω2
0
≡ χ0 and ∆ν ≡ σ, we have

χ(ω) = χ0
ω2

0

ω2
0 − ω2 − iω∆ν

, (7)

which can be written as χ = χ′ + iχ”, with the corresponding real and imaginary parts:

χ′(ω) = χ0
ω2

0(ω2
0 − ω2)

(ω2
0 − ω2)2 + (ω∆ν)2

, (8)

χ”(ω) = χ0
ω2

0ω∆ν

(ω2
0 − ω2)2 + (ω∆ν)2

. (9)

It is known that the spectrum for the imaginary part has a Lorentzian profile.

FIG. 2: Spectra for the real and imaginary parts of the polarization.
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II. MINIMAL-COUPLING HAMILTONIAN

An electron of charge q and mass m interacting with an external EM field is described by the minimal-coupling
Hamiltonian,

Ĥ =
1

2m
[p− eA(r, t)]2 + eU(r, t), (10)

where p = −i~∇ is the canonical momentum operator, A(r, t) and U(r, t) are the vector and scalar potentials of the
external field, respectively. The electron is described by the wave function Ψ(r, t); while the field is described by the
vector and scalar potentials A and U. In this way, the photon has been derived from the Schrödinger equation plus the
local gauge invariance arguments. The gauge field theory leads to the unification of the weak and the electromagnetic
interactions,

It should be noted that A(r, t) and U(r, t) are gauge-dependent potentials; while the gauge-independent quantities
are the electric and magnetic fields:

E = −∇U− ∂A
∂t

, (11)

B = ∇A. (12)

A. Dipole approximation and r ·E Hamiltonian

If the entire atom is immersed in a plane EM wave,

A(r0 + r, t) = A(t)exp[ik · (r0 + r)] ≈ A(t)exp(ik · r0), (13)

where r0 is the location of the electron. In this way, the dipole approximation, A(r, t) ≈ A(r0, t), and the minimal-
coupling Hamiltonian becomes,

Ĥ =
1

2m
[p− eA(r0, t)]

2 + eU(r, t) + V (r), (14)

where V (r) is the atomic binding potential.
With the radiation gauge, we have

U(r, t) = 0, and ∇ ·A(r, t) = 0. (15)

In this scenario, the minimal-coupling Hamiltonian becomes,

Ĥ =
p2

2m
+ V (r) + er · ∂A(r0, t)

∂t
. (16)

In terms of the gauge-independent field E, the Hamiltonian for Ψ(r, t) is

Ĥ =
p2

2m
+ V (r)− er ·E(r0, t), (17)

≡ Ĥ0 + Ĥ1. (18)

Here, the Hamiltonian Ĥ0 corresponds to the system without interaction; while the Hamiltonian Ĥ1 corresponds to
the system under interaction:

Ĥ0 =
p2

2m
+ V (r), (19)

Ĥ1 = −er ·E(r0, t). (20)

This Hamiltonian is our starting point for the atom-field interaction.
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III. INTERACTION OF A SINGLE TWO-LEVEL ATOM WITH A SINGLE-MODE FIELD

Consider the interaction of a single-mode radiation field of frequency ν, and a two-level atom with upper and lower
level states |a〉 and |b〉, the unperturbed part of the Hamiltonian Ĥ0 has the eigenvalues ~ωa and ~ωb for the atom.
The wave function of a two-level atom can be written in the form,

|Ψt〉 = Ca(t)|a〉+ Cb(t)|b〉, (21)

with the corresponding Schrödinger equation

i~
∂Ψ(t)

∂t
= (Ĥ0 + Ĥ1)Ψ(t), (22)

where

Ĥ0 = |a〉〈a|+ |b〉〈b|)Ĥ0|a〉〈a|+ |b〉〈b|) = ~ωa|a〉〈a|+ ~ωb|b〉〈b|, (23)

Ĥ1 = −er ·E(t) = −e(|a〉〈a|+ |b〉〈b|)r(|a〉〈a|+ |b〉〈b|)E, (24)
= −[pab|a〉〈b|+ pba|b〉〈a|]E(t), (25)

with pab = p∗ba = e〈a|r|b〉.

A. Semi-classical approach

Consider a classical single-mode field,

E(t) = E0 cos νt, (26)

the corresponding equation of motion for the probability amplitude are

d
dt
Ca = −iωaCa + iΩR cos(νt)e−iφCb, (27)

d
dt
Cb = −iωbCb + iΩR cos(νt)e+iφCa, (28)

where ΩR = |pab|E0

~ is the Rabi frequency which is proportional to the amplitude of the classical field, and φ is the
phase of the dipole matrix element pab = |pab|exp(iφ).

Define the slowly varying amplitudes,

ca = Cae
iωat, and cb = Cbe

iωbt, (29)

then we have

d
dt
ca = i

ΩR
2
e−iφ[ei(ω−ν)t + ei(ω+ν)t]cb ≈ i

ΩR
2
e−iφei(ω−ν)tcb, (30)

d
dt
cb = i

ΩR
2
eiφ[e−i(ω−ν)t + e−i(ω+ν)t]ca ≈ i

ΩR
2
eiφe−i(ω−ν)tca, (31)

where ω = ωa − ωb is the atomic transition frequency. Here, we also apply the rotating-wave approximation by
neglecting terms with exp[±i(ω + ν)t].

B. Rabi oscillation

The solutions for the coupled probability amplitude are

ca(t) = {[cos(
Ωt

2
)− i∆

Ω
sin(

Ωt

2
)]ca(0) + i

ΩR
Ω

sin(
Ωt

2
)e−iφcb(0)}ei∆t/2, (32)

cb(t) = {[cos(
Ωt

2
) + i

∆

Ω
sin(

Ωt

2
)]cb(0) + i

ΩR
Ω

sin(
Ωt

2
)eiφcb(0)}e−i∆t/2, (33)
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where

∆ = ω − ν, frequency detuning, (34)

Ω =
√

Ω2
R + ∆2. (35)

It is easy to verify that

|ca(t)|2 + |cb(t)|2 = 1. (36)

Moreover, assume that the atom is initially in the excited state |a〉, i.e ca(0) = 1 and cb(0) = 0, then the population
inversion is

W (t) = |ca(t)|2 − |cb(t)|2 =
∆2 − ΩR2

Ω2
sin2(

Ω

2
t) + cos2(

Ω

2
t). (37)

The population oscillates with the frequency Ω =
√

Ω2
R + ∆2. When the atom is at resonance with the incident field

∆ = 0, we get Ω = ΩR, and

W (t) = cos(ΩRt), (38)

which gives the inversion oscillates between −1 and +1 at a frequency ΩR.
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FIG. 3: Rabi oscillation for (Left) ΩR = 1.0, ∆ = 0.0; and (Right) ΩR = 3.0, ∆ = 0.0.
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FIG. 4: Rabi oscillation for (Left) ΩR = 1.0, ∆ = 1.0; and (Right) ΩR = 3.0, ∆ = 5.0.

C. Interaction picture

Consider a system described by |Ψ(t)〉 evolving under the action of a Hamiltonian Ĥ(t) decomposable as,

Ĥ(t) = Ĥ0 + Ĥ1(t),

where Ĥ0 is time-independent. If we define

|ΨI(t)〉 = exp(iĤ0t/~)|Ψ(t)〉, (39)
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then |ΨI(t)〉 evolves accords to

i~
d
dt
|ΨI(t)〉 = ĤI(t)|ΨI(t)〉, (40)

where

ĤI(t) = exp(iĤ0t/~)Ĥ1(t)exp(−iĤ0t/~). (41)

The evolution is in the interaction picture generated by Ĥ0.

D. Dipole interaction with the interaction picture

For the dipolar interaction Hamiltonian,

Ĥ0 = ~ωa|a〉〈a|+ ~ωb|b〉〈b|, (42)

Ĥ1 = −[pab|a〉〈b|+ pba|b〉〈a|]E(t) = −~ΩR[e−iφ|a〉〈b|+ eiφ|b〉〈a|] cos νt, (43)

where pab = p∗ba = e〈a|r|b〉 and ΩR = |pab|E0

~ , the corresponding interaction picture Hamiltonian is

ĤI(t) = exp(iĤ0t/~)Ĥ1(t)exp(−iĤ0t/~), (44)

= −~
2

ΩR[e−iφ|a〉〈b|ei(ω−ν)t + eiφ|b〉〈a|e−i(ω−ν)t (45)

+ e−iφ|a〉〈b|ei(ω+ν)t + eiφ|b〉〈a|e−i(ω+ν)t]. (46)

Furthermore, in the rotating-wave approximation, we have

ĤI(t) = −~
2

ΩR[e−iφ|a〉〈b|ei(ω−ν)t + eiφ|b〉〈a|e−i(ω−ν)t]. (47)

On resonance ω − ν = 0, this interaction Hamiltonian becomes

ĤI(t) = −~
2

ΩR[e−iφ|a〉〈b|+ eiφ|b〉〈a|]. (48)

The time-evolution operator in the interaction picture ÛI(t) is

ÛI(t) =
←−
T exp[− i

~

∫ t

t0

dτĤI(τ)], (49)

= cos(
ΩRt

2
)(|a〉〈a|+ |b〉〈b|) + i sin(

ΩRt

2
)(e−iφ|a〉〈b|+ eiφ|b〉〈a|). (50)

If the atom is initially in the excited state |Ψ(t = 0)〉 = |a〉, then

|Ψ(t)〉 = ÛI(t)|a〉, (51)

= cos(
ΩRt

2
)|a〉+ i sin(

ΩRt

2
)eiφ|b〉. (52)
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IV. DENSITY OPERATOR

For the quantum mechanical description, if we know that the system is in state |ψ〉, then an operator Ô has the
expectation value,

〈Ô〉qm = 〈ψ|Ô|ψ〉. (53)

But, typically, we do not know that we are in state |ψ〉, then an ensemble average must be performed,

〈〈Ô〉qm〉ensemble =
∑
ψ

Pψ〈ψ|Ô|ψ〉, (54)

where the Pψ is the probability of being in the state |ψ〉 and we introduce a density operator,

ρ̂ =
∑
ψ

Pψ|ψ〉〈ψ|. (55)

The expectation value of any operator Ô is given by,

〈Ô〉qm = Tr[ρ̂Ô], (56)

where Tr stands for trace.

A. Equation of motion for the density matrix

In the Schrödiner picture,

i~
∂

∂t
|Ψ〉 = Ĥ|Ψ〉, (57)

then we have

i~
∂

∂t
ρ̂ = Ĥρ̂− ρ̂Ĥ = [Ĥ, ρ̂], (58)

which is called the Liouville or Von Neumann equation of motion for the density matrix. Using density operator
instead of a specific state vector can give statistical as well as quantum mechanical information.

Here, note the Heisenberg equation is, i~ d
dt Â(t) = [Â, Ĥ(t)].

B. Decay processes in the density matrix

The excited atomic levels can also decay due to spontaneous emission or collisions and other phenomena. In this
case, the decay rates can be incorporated by a relaxation matrix Γ,

〈n|Γ|m〉 = γnδnm. (59)

Then the density matrix equation of motion becomes,

∂

∂t
ρ̂ = − i

~
[Ĥ, ρ̂]− 1

2
{Γ, ρ̂}, (60)

where {Γ, ρ̂} = Γρ̂+ ρ̂Γ. And the ijth matrix element is,

∂

∂t
ρij = − i

~
∑
k

(Hikρkj − ρikHkj)−
1

2

∑
k

(Γikρkj + ρikΓkj). (61)

As an example, consider a two-level atom with upper and lower level states |a〉 and |b〉,

|Ψ(t)〉 = Ca(t)|a〉+ Cb(t)|b〉. (62)
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The corresponding density matrix operator is

ρ̂ = |Ψ〉〈Ψ| = |Ca|2|a〉〈a|+ CaC
∗
b |a〉〈b|+ CbC

∗
a |b〉〈a|+ |Cb|2|b〉〈b|, (63)

= ρaa|a〉〈a|+ ρab|a〉〈b|+ ρba|b〉〈a|+ ρbb|b〉〈b|. (64)

Here, the diagonal elements, ρaa and ρbb, are the probabilities in the upper and lower states; while the off-diagonal
elements, ρab and ρba, are the atomic polarizations. From the equation of motion for the two-level atom

∂

∂t
ρ̂ = − i

~
[Ĥ, ρ̂]− 1

2
{Γ, ρ̂},

we have

∂

∂t
ρaa =

i

~
[pabEρba − c.c]− γaρaa, (65)

∂

∂t
ρbb = − i

~
[pabEρba − c.c]− γbρbb, (66)

∂

∂t
ρab = − i

~
pabE(ρaa − ρbb)− (iω +

γa + γb
2

)ρab. (67)

The physical interpretation of the elements of the density matrix allows us to include terms associated wither
certain processes. For example, one can have elastic collision between atoms in a gas, during an atom-atom collision
the energy levels experience random Stark shifts,

∂

∂t
ρab = −[iω + iδω(t) + γab]ρab, (68)

after integration,

ρab = exp[−(iω + γab)t− i
∫ t

0

dt′δω(t′)]ρab(0). (69)

For a zero-mean random process, we have 〈δω(t)〉 = 0, but the variations in δω(t) are usually rapid compared to other
changes which occur in times like γph,

〈δω(t)δω(t′)〉 = 2γphδ(t− t′). (70)

Assume that δω(t) is described by a Gaussian random process, then

〈exp[−i
∫ t

0

dt′δω(t′)]〉 = exp[−γpht], (71)

which gives for the average of ρab,

ρab = exp[−(iω + γab + γph)t]ρab(0). (72)

For the process of atom-atom collisions,

∂

∂t
ρab = −[iω + γ]ρab +

i

~
pabE(ρaa − ρbb), (73)

where γ = γab + γph is the new decay rate.
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C. Maxwell-Schrödinger equations

The equations for the two-level atomic medium coupled to the field E are

∂

∂t
ρaa =

i

~
[pabEρba − c.c]− γaρaa, (74)

∂

∂t
ρbb = − i

~
[pabEρba − c.c]− γbρbb, (75)

∂

∂t
ρab = − i

~
pabE(ρaa − ρbb)− (iω +

γa + γb
2

)ρab. (76)

The condition of self-consistency requires that the equation of motion for the field E is driven by the atomic population
matrix elements. Remember that the field is described by the Maxwell’s equation,

∇ ·D = 0, ∇×E = −∂B
∂t
, (77)

∇ ·B = 0, ∇×H = J +
∂D
∂t

. (78)
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V. JAYNES-CUMMINGS HAMILTONIAN

In the dipole approximation, the semi-classical Hamiltonian is

Ĥ0 = ~ωa|a〉〈a|+ ~ωb|b〉〈b|, (79)

Ĥ1 = −(pab|a〉〈b|+ pba|a〉〈b|)E(t). (80)

By including the quantized field,

Ĥ = ĤA + ĤF − er · E, (81)

=
∑
i

~ωiσ̂ii +
∑
k

~νk(â†kâk +
1

2
)−

∑
i,j

Pij σ̂ij
∑
k

Ek(âk + â†k), (82)

= ~ωiσ̂ii +
∑
k

~νk(â†kâk +
1

2
) + ~

∑
i,j

∑
k

gijk σ̂ij(âk + â†k), (83)

where

gijk = −Pij · Ek
~

(84)

is the coupling constant.
For a two-level atom, Pab = Pba, we have gk = gabk = gbak , then

Ĥ = ~ωaσ̂aa + ~ωbσ̂bb +
∑
k

~νk(â†kâk + ~
1

2
) + ~

∑
k

gk(σ̂ab + σ̂ba)(âk + â†k). (85)

By defining new operators,

σ̂z = σ̂aa − σ̂bb = |a〉〈a| − |b〉〈b|, (86)
σ̂+ = σ̂ab = |a〉〈b|, (87)
σ̂− = σ̂ba = |b〉〈a|, (88)

and the new energy level

~ωaσ̂aa + ~ωbσ̂bb =
1

2
~ωσ̂z +

1

2
(ωa + ωb), (89)

where ω = ωa − ωb, the Hamiltonian for a two-level atom interaction with quantized fields becomes

Ĥ =
1

2
~ωσ̂z +

∑
k

~νk(â†kâk +
1

2
) + ~

∑
k

gk(σ̂+ + σ̂−)(âk + â†k), (90)

where the atomic operators satisfy the spin-1/2 algebra of the Pauli matrices, i.e.,

[σ̂−, σ̂+] = −σ̂z, and [σ̂−, σ̂z] = 2σ̂−. (91)

In the rotating-wave approximation, we drop terms âkσ̂− and â†kσ̂+, then we have Jaynes-Cummings Hamiltonian

Ĥ =
1

2
~ωσ̂z +

∑
k

~νk(â†kâk +
1

2
) + ~

∑
k

gk(σ̂+âk + â†kσ̂−), (92)

A. Interaction of a single two-level atom with a single-mode field

The interaction Hamiltonian for the Jaynes-Cummings model is,

V̂ = exp[iĤ0t/~]Ĥ1exp[−iĤ0t/~], (93)
= ~g(σ̂+âe

i∆t + â†σ̂−e
−i∆t), (94)
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where ∆ = ω − ν. Based this , the the equation of motion for the state |Ψ is

i~
∂

∂t
|Ψ〉 = V̂ |Ψ〉, (95)

where the state |Ψ〉 is the superposition of

|Ψ(t)〉 =
∑
n

[ca,n(t)|a, n〉+ ba,n(t)|b, n〉]. (96)

It can be seen that only transitions between the states |a, n〉 and |b, n+ 1〉 allowed, for which the dynamics follows

d
dt
ca,n = −ig

√
n+ 1ei∆tcb,n+1, (97)

d
dt
cb,n+1 = −ig

√
n+ 1e−i∆tca,n. (98)

Here, we give a comparison with respect to the semi-classical equations,

d
dt
ca = i

ΩR
2
e−iφei(ω−ν)tcb, (99)

d
dt
cb = i

ΩR
2
eiφe−i(ω−ν)tca. (100)

For the initially excited state, ca,n(0) = cn(0) and cb,n+1(0) = 0, and here cn(0) is the probability amplitude for
the field along, the solutions are

ca,n(t) = cn(0)[cos(
Ωnt

2
)− i∆

Ωn
sin(

Ωnt

2
)]ei∆t/2, (101)

cb,n+1(t) = −cn(0)
2ig
√
n+ 1

Ωn
sin(

Ωnt

2
)ei∆t/2. (102)

Here, the Rabi frequency is

Ωn = ∆2 + 4g2(n+ 1), (103)

which is proportional to the photon number of the field. Moreover, the probability p(n) that there are n photons in
the field at time t is,

p(n) = |ca,n(t)|2 + |cb,n(t)|2, (104)

= |cn(0)|2[cos2(
Ωnt

2
) + (

∆

Ωn
)2 sin2(

Ωnt

2
)] + |cn−1(0)|2(

4g2n

Ω2
n−1

) sin2(
Ωn−1t

2
)]. (105)

B. Revival and Collapse of the population inversion

Take n photons in the field at time t = 0 with a coherent state as an example, that is

|cn(0)|2 =
〈n〉ne−〈n〉

n!
. (106)

The corresponding population inversion is,

W (t) =
∑
n

|ca,n(t)|2 − |cb,n(t)|2 =

∞∑
0

|cn(0)|2[
∆2

Ω2
n

+
4g2(n+ 1)

Ω2
n

cos(Ωnt)]. (107)

Each term in the summation represents Rabi oscillation for a definite value of n. At the initial time t = 0, the
atom is prepared in a definite state and therefore all the terms in the summation are correlated. As times increases,
the Rabi oscillations associated with different frequent excitations have different frequencies and there fore become
uncorrelated, leading to a collapse of inversion. As time is further increased, the correlation is restored and revival
occurs.

In the semi-classical theory, the population inversion evolves with sinusoidal Rabi oscillations, and collapses to zero
when on resonance. For the quantized fields, the collapse and revival of inversion is repeated with increasing time,
but the amplitude of Rabi oscillations decreasing and the time duration in which revival takes place increasing,
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FIG. 5: Time evolution for a coherent state interacting under the Janey-Cummings Hamiltonian, with the parameters: ∆ = 0
and 〈n〉 = 25. Here, the time are choose as gt = 0, gt = 3.0, gt = 10, and gt = 100, from Left to Right (Up to Down),
respectively.
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FIG. 6: Temporal dynamics fo the population inversion, W (t), with the parameters ∆ = 0 and 〈n〉 = 25.

C. Vacuum Rabi Oscillation

The revivals occur only because of the quantized photon distribution. However, for a continuous photon distribution,
like a classical random field, there is only a collapse but no revivals. A comparison between the Fourier transform and
Discrete Fourier transform can be illustrated. Nevertheless, even for initial vacuum field, |cn(0)|2 = δn0, the inversion
is

W (t) =
1

∆2 + 4g2
[∆2 + 4g2 cos(

√
∆2 + 4g2t)]. (108)

That means the Rabi oscillation takes place due to the vacuum state. The transition from the upper level to the lower
level in the vacuum becomes possible due to spontaneous emission.
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VI. COLLECTIVE ANGULAR MOMENTUM OPERATORS

For a two-level atom, one can use Pauli spin operator to describe,

ŝ =
1

2
~σ, (109)

where

σ̂z = |a〉〈a| − |b〉〈b|, σ̂+ = |a〉〈b|, σ̂− = |b〉〈a|,
σ̂x = |a〉〈b|+ |b〉〈a|, and σ̂y = −i(|a〉〈b| − |b〉〈a|).

Now, for an assembly of N two-level atoms, the corresponding Hilbert space is spanned by the set of 2N product
states,

|Φ〉 =

N∏
n=1

|Ψn〉. (110)

Then, we can define the collective angular momentum operators,

Ĵµ =
1

2
σ̂nµ, (µ = x, y, z). (111)

A. Analogs between Ĵ and â, â†

The analogies between the free-field quantization, â and â†, and the free atom quantization are,

[Ĵx, Ĵy] = iĴz ↔ [q̂, p̂] = i~, (112)

Ĵ− = Ĵx − iĴy ↔ â =
1√
2~ω

(ωq̂ + ip̂), (113)

Ĵ+ = Ĵx + iĴy ↔ â† =
1√
2~ω

(ωq̂ − ip̂), (114)

Ĵz =
1

2
(Ĵ+Ĵ−Ĵ−Ĵ+) ↔ n̂ = â†â. (115)

The related commutation relations are,

[Ĵ−, Ĵ+] = −2Ĵz ↔ [â, â†] = 1, (116)

[Ĵ−, Ĵz] = Ĵ− ↔ [â, n̂] = â, (117)

[Ĵ+, Ĵz] = −Ĵ+ ↔ [â†, n̂] = −â†. (118)

When all the atoms are in the ground state, the eigenvalue of Ĵz is −J = −N2 , and the commutation relation is
reduced to a bosonlike one, [Ĵ−, Ĵ+] = N ↔ [â, â†] = 1.

B. Angular momentum eigenstates (Dicke states)

The Dicke states are defined as the simultaneous eigenstates of the Hermitian operators Ĵz and Ĵ2, i.e.

Ĵz|M,J〉 = M |M,J〉, and , Ĵ2|M,J〉 = J(J + 1)|M,J〉, (119)

where (M = −J,−J + 1, . . . , J − 1, J) and

Ĵ+|M,J〉 =
√
J(J + 1)−M(M + 1)|M + 1, J〉 ↔ â†|n〉 =

√
n+ 1|n+ 1〉, (120)

Ĵ−|M,J〉 =
√
J(J + 1)−M(M − 1)|M − 1, J〉 ↔ â|n〉 =

√
n|n− 1〉, (121)

Ĵ−| − J, J〉 = 0 ↔ â|0〉 = 0, (122)

|M,J〉 =
1

(M + J)!

(
2J

M + J

)−1/2

Ĵ
(M+J)
+ | − J, J〉 ↔ |n〉 =

1√
n!

(â†)n|0〉. (123)
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The Dicke states is the counterpart of the Fock state, the state |M,J〉 denotes an atomic ensemble where exactly
J + M atoms are in the excited state out of N = 2J atoms. The Dicke states | − J, J〉 corresponds to the case in
which all the atoms are in the ground state, J = N/2; while the Dicke states | − J + 1, J〉 corresponds to the case in
which only one atom is in the excited state; and the Dicke states |J, J〉 corresponds to the case in which all the atom
are in the excited state.

C. Interaction between N two-level atoms and a single-mode field

The total Hamiltonian for N two-level atoms with a single-mode field is,

Ĥ =
1

2
~ωĴz + ~ν(â†â+

1

2
) + ~g(Ĵ+â+ â†Ĵ−). (124)
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VII. SPONTANEOUS EMISSION OF A TWO-LEVEL ATOM

The interaction Hamiltonian, in the rotating-wave approximation, for a two-level atom is,

V̂ = ~
∑
k

(gk(r0)∗σ̂+âke
i(ω−νk)t + gk(r0)â†kσ̂−e

−i(ω−νk)t), (125)

where gk(r0) = gkexp(−ik · r0) is the spatial dependent coupling coefficient. Assume at t = 0 the atom is in the
excited state |a〉 and the field modes are in the vacuum state |0〉,

|Ψ(t)〉 = ca(t)|a, 0〉+
∑
k

cb,k|b, 1k〉, (126)

with ca(0) = 1 and cb,k(0) = 0. In the interaction picture, |Ψ̇(t)〉 = − i
~ |Ψ(t)〉, we have

ċa(t) = −i
∑
k

g∗k(r0)ei(ω−νk)tcb,k(t), (127)

ċb(t) = −igk(r0)e−i(ω−νk)tca(t). (128)

A. Weisskopf-Wigner theory of spontaneous emission

The exact solutions are

cb(t) = −igk(r0)

∫ t

0

dt′e−i(ω−νk)t′ca(t′), (129)

ċa(t) = −
∑
k

|gk(r0)|2
∫ t

0

dt′ei(ω−νk)(t−t′)ca(t′). (130)

Now, we assume that the filed modes are closely spaced in frequency,∑
k

→ 2
V

(2π)3

∫ 2π

0

dφ
∫ π

0

dθ sin θ

∫ ∞
0

dkk2, (131)

where V is the quantization volume. Then the coupling coefficient becomes,

|gk(r0)|2 = |P · Ek
~
|2 =

νk
2~ε0V

P2
ab cos2 θ, (132)

where θ is the angle between the atomic dipole moment Pab and the electric field polarization vector ε̂k, i.e. Êk(r, t) =

ε̂k( ~νk
ε0V

)1/2[âk + â†k].
Under this assumption, the equation for ca(t) becomes

ċa(t) = − 4P2
ab

(2π)26~ε0c3

∫ ∞
0

dνk
∫ t

0

dt′ν3
ke
i(ω−νk)(t−t′)ca(t′), (133)

where we have use k = νk/c.
For most of the optical problems, νk varies little around the atomic transition frequency ω. Then, we can safely

replace ν3
k by ω3 and the lower limit in the νk integration by −∞, that is

ċa(t) = − 4P2
abω

3

(2π)26~ε0c3

∫ ∞
−∞

dνk
∫ t

0

dt′ei(ω−νk)(t−t′)ca(t′), (134)

= − 4P2
abω

3

(2π)26~ε0c3

∫ t

0

dt′2πδ(t− t′)ca(t′), (135)

≡ −Γ

2
ca(t), (136)

where Γ =
4P2

abω
3

12π2~ε0c3 is the decay rate of the excited state.


