
Note for Quantum Optics:
Squeezed states

Ray-Kuang Lee1
Institute of Photonics Technologies, National Tsing-Hua University, Hsinchu, 300, Taiwan

(Dated: Spring, 2021)

Reference:
Ch. 2, 4, 16, in "Quantum Optics," by M. Scully and M. Zubairy.
Ch. 3, 4, in "Mesoscopic Quantum Optics," by Y. Yamamoto and A. Imamoglu.
Ch. 6, in "The Quantum Theory of Light," by R. Loudon.
Ch. 5, 7, in "Introductory Quantum Optics," by C. Gerry fand P. Knight.
Ch. 5, 8, in "Quantum Optics," by D. Wall and G. Milburn.

I. COHERENT AND SQUEEZED STATES

From the uncertainty Principle:

∆X̂1∆X̂2 ≥ 1,

then we have

1. Coherent states: ∆X̂1 = ∆X̂2 = 1,

2. Amplitude squeezed states: ∆X̂1 < 1,

3. Phase squeezed states: ∆X̂2 < 1,

4. Quadrature squeezed states.

FIG. 1: Noise fluctuations in the phase space.

II. SQUEEZED STATES AND SHO

Suppose we can apply a dc field to the simple harmonic oscillator (SHO), but with a wall which limits the SHO to
a finite region. In such a case, it would be expected that the wave packet would be deformed or squeezed when it is
pushed against the barrier. Similarly the quadratic displacement potential would be expected to produce a squeezed
wave packet:

Ĥ =
p2

2m
+

1

2
kx2 − eE0(ax− bx2), (1)
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where the ax term will displace the oscillator and the bx2 is added in order to give us a barrier. Then the corresponding
Hamiltonian becomes

Ĥ =
p2

2m
+

1

2
(k + 2ebE0)x2 − eaE0x. (2)

We again have a displaced ground state, but with the larger effective spring constant k′ = k + 2ebE0.
To generate squeezed state, we need quadratic terms in x, i.e., terms of the form

(â+ â†)2. (3)

For the degenerate parametric process, i.e., two-photon process, its Hamiltonian is

Ĥ = i~(gâ†2 − g∗â2), (4)

where g is a coupling constant. The state of fields generated by this Hamiltonian is

|Ψ(t)〉 = exp[(gâ†2 − g∗â2)t]|0〉. (5)

Then, one can define the unitary squeeze operator

Ŝ(ξ) = exp[
1

2
ξ∗â2 − 1

2
ξâ†2], (6)

where ξ = rexp(iθ) is an arbitrary complex number.

III. PROPERTIES OF SQUEEZED OPERATOR

With the squeezed operator, we can define the squeezed state as,

|Ψs〉 = Ŝ(ξ)|Ψ〉. (7)

For the unitary squeeze operator Ŝ(ξ) = exp[ 12ξ
∗â2 − 1

2ξâ
†2], it has following properties:

• Squeeze operator is unitary,

Ŝ†(ξ) = Ŝ−1(ξ) = Ŝ(−ξ), (8)

and the corresponding unitary transformation of the squeeze operator,

Ŝ†(ξ)âŜ(ξ) = â cosh r − â†eiθ sinh r, (9)

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh r − âe−iθ sinh r, (10)

with the formula eÂB̂e−Â = B̂ + [Â, B̂] + 1
2! [Â, [Â, B̂]], . . .

• A squeezed coherent state |α, ξ〉 is obtained by first acting with the displacement operator D̂(α) on the vacuum
followed by the squeezed operator Ŝ(ξ), i.e.,

|α, ξ〉 = Ŝ(ξ)D̂(α)|0〉, (11)

with α = |α|exp(iψ).

• If |Ψ〉 is the vacuum state |0〉, then |Ψs〉 state is the squeezed vacuum,

|ξ〉 = Ŝ(ξ)|0〉. (12)

• The variances for squeezed vacuum are

∆â21 =
1

4
[cosh2 r + sinh2 r − 2 sinh r cosh r cos θ], (13)

∆â22 =
1

4
[cosh2 r + sinh2 r + 2 sinh r cosh r cos θ], (14)

• For θ = 0, we have

∆â21 =
1

4
e−2r, and ∆â22 =

1

4
e+2r, (15)

and squeezing exists in the â1 quadrature.

• For θ = π, the squeezing will appear in the â2 quadrature.
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A. Quadrature Operators

One can define a rotated complex amplitude at an angle θ/2

Ŷ1 + iŶ2 = (â1 + iâ2)e−iθ/2 = âe−iθ/2, (16)

where (
Ŷ1
Ŷ2

)
=

(
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

)(
â1
â2

)
, (17)

then

Ŝ†(ξ)(Ŷ1 + iŶ2)Ŝ(ξ) = Ŷ1e
−r + iŶ2e

r. (18)

The corresponding quadrature variance are

∆Ŷ 2
1 =

1

4
e−2r, ∆Ŷ 2

2 =
1

4
e+2r, and ∆Ŷ1∆Ŷ2 =

1

4
. (19)

In the complex amplitude plane the coherent state error circle is squeezed into an error ellipse of the same area. The
degree of squeezing is determined by r = |ξ| which is called the squeezed parameter.

B. Squeezed Coherent State

A squeezed coherent state |α, ξ〉 is obtained by first acting with the displacement operator D̂(α) on the vacuum
followed by the squeezed operator Ŝ(ξ), i.e.

|α, ξ〉 = D̂(α)Ŝ(ξ)|0〉, (20)

where Ŝ(ξ) = exp[ 12ξ
∗â2 − 1

2ξâ
†2]. For ξ = 0, we obtain just a coherent state. The corresponding expectation value

for a squeezed coherent state is,

〈α, ξ|â|α, ξ〉 = α, (21)
〈â2〉 = α2 − eiθ sinh r cosh r, (22)
〈â†â〉 = |α|2 + sinh2 r, (23)

with helps of

D̂†(α)âD̂(α) = â+ α, (24)

D̂†(α)â†D̂(α) = â† + α∗. (25)

Again, when r → 0 we have coherent state, and α → 0 we have squeezed vacuum. Furthermore, the variance for a
squeezed coherent state are

〈α, ξ|Ŷ1 + iŶ2|α, ξ〉 = αe−iθ/2, (26)

〈∆Ŷ 2
1 〉 =

1

4
e−2r, (27)

〈∆Ŷ 2
2 〉 =

1

4
e+2r. (28)
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IV. SQUEEZED STATE AS A EIGEN-STATE

Since the vacuum state â|0〉 = 0, we have

Ŝ(ξ)âŜ†(ξ)Ŝ(ξ)|0〉 = 0, or Ŝ(ξ)âŜ†(ξ)|ξ〉 = 0. (29)

From the transformation,

Ŝ(ξ)âŜ†(ξ) = â cosh r + â†eiθ sinh r ≡ µâ+ νâ†, (30)

we have,

(µâ+ νâ†)|ξ〉 = 0, (31)

the squeezed vacuum state is an eigenstate of the operator µâ+ νâ† with eigenvalue zero. Similarly,

D̂(α)Ŝ(ξ)âŜ†(ξ)D̂†(α)D̂(α)|ξ〉 = 0, (32)

with the relation D̂(α)âD̂†(α) = â− α, we have

(µâ+ νâ†)|α, ξ〉 = (α cosh r + α∗ sinh r)|α, ξ〉 ≡ γ|α, ξ〉. (33)

A. Squeezed State and Minimum Uncertainty State

With the eigenvalue problem for the squeezed state

(µâ+ νâ†)|α, ξ〉 = (α cosh r + α∗ sinh r)|α, ξ〉 ≡ γ|α, ξ〉, (34)

in terms of in terms of â = (Ŷ1 + iŶ2)eiθ/2, we have

(Ŷ1 + ie−2rŶ2)|α, ξ〉 = β1|α, ξ〉, (35)

where

β1 = γe−re−iθ/2 = 〈Ŷ1〉+ i〈Ŷ2〉e−2r. (36)

In the other way, in terms of â1 and â2, we have

(â1 + iλâ†2)|α, ξ〉 = β2|α, ξ〉, (37)

where

λ =
µ− ν
µ+ ν

, and β2 =
γ

µ+ ν
. (38)
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FIG. 2: Photon number distribution for squeezed coherent states. Left: |α|2 = 50, θ = 0, r = 0.5; Right: |α|2 = 50, θ = 0, r =
4.0.

V. SQUEEZED STATE IN THE BASIS OF NUMBER STATES

Consider squeezed vacuum state first,

|ξ〉 =

∞∑
n=0

Cn|n〉, (39)

with the operator of (µâ+ νâ†)|ξ〉 = 0, we have

Cn+1 = −ν
µ

(
n

n+ 1
)1/2Cn−1. (40)

It can be seen clearly that only the even photon states have the solutions,

C2m = (−1)m(eiθ tanh r)m[
(2m− 1)!!

(2m)!!
]1/2C0, (41)

where C0 can be determined from the normalization, i.e., C0 =
√

cosh r. In the basis of number state, the squeezed
vacuum state is

|ξ〉 =
1√

cosh r

∞∑
m=0

(−1)m
√

(2m)!

2mm!
eimθ tanhm r|2m〉. (42)

The probability of detecting 2m photons in the field is

P2m = |〈2m|ξ〉|2 =
(2m)!

22m(m!)2
tanh2m r

cosh r
. (43)

Nevertheless, for detecting 2m + 1 states, the probability is zero, P2m+1 = 0. Moreover, the photon probability
distribution for a squeezed vacuum state is oscillatory, vanishing for all odd photon numbers. The shape of the
squeezed vacuum state resembles that of thermal radiation.
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FIG. 3: Left: Photon number distributions for thermal state, coherent state, and single-photon state (from top to down).
Right: Photon number distribution for a squeezed state.

VI. GENERATIONS OF SQUEEZED STATES

Generation of quadrature squeezed light are based on some sort of parametric process utilizing various types of
nonlinear optical devices. For degenerate parametric down-conversion, the nonlinear medium is pumped by a field of
frequency ωp and that field are converted into pairs of identical photons, of frequency ω = ωp/2 each,

Ĥ = ~ωâ†â+ ~ωpb̂†b̂+ i~χ(2)(â2b̂† − â†2b̂), (44)

where b is the pump mode and a is the signal mode. Assume that the field is in a coherent state |βe−iωpt〉 and
approximate the operators b̂ and b̂† by classical amplitude βe−iωpt and β∗eiωpt, respectively, we have the interaction
Hamiltonian for degenerate parametric down-conversion,

ĤI = i~(η∗â2 − ηâ†2), (45)

where η = χ(2)β. The associated evolution operator is,

ÛI(t) = exp[−iĤIt/̄] = exp[(η∗â2 − ηâ†2)t] ≡ Ŝ(ξ), (46)

with ξ = 2ηt. Similarly , for degenerate four-wave mixing, in which two pump photons are converted into two signal
photons of the same frequency,

Ĥ = ~ωâ†â+ ~ωb̂†b̂+ i~χ(3)(â2b̂†2 − â†2b̂2), (47)

the associated evolution operator is,

ÛI(t) = exp[(η∗â2 − ηâ†2)t] ≡ Ŝ(ξ), (48)

with ξ = 2χ(3)β2t.
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VII. DETECTION OF SQUEEZED STATES

In the homodyne detection scheme, the detectors measure the intensities Ic = 〈ĉ†ĉ〉 and Id = 〈d̂†d̂〉, and the
difference in these intensities is,

Ic − Id = 〈n̂cd〉 = 〈ĉ†ĉ− d̂†d̂〉 = i〈â†b̂− âb̂†〉. (49)

Assume that the b mode to be in the coherent state |βe−iωt〉, where β = |β|e−iψ, we have

〈n̂cd〉 = |β|{âeiωte−iθ + â†e−iωteiθ}, (50)

where θ = ψ+ π/2. Assume that a mode light is also of frequency ω (in practice both the a and b modes derive from
the same laser), i.e., â = â0e

−iωt, we have

〈n̂cd〉 = 2|β|〈X̂(θ)〉, (51)

where X̂(θ) = 1
2 (â0e

−iθ + â†0e
iθ) is the field quadrature operator at the angle θ. By changing the phase ψ of the local

oscillator, we can measure an arbitrary quadrature of the signal field.
In other words, for homodyne detection, mode a contains the single field that is possibly squeezed; while mode b

contains a strong coherent classical field, local oscillator, which may be taken as coherent state of amplitude β. For a
balanced homodyne detection, through a 50 : 50 beam splitter, the relation between input (â, b̂) and output (ĉ, d̂) is,

ĉ =
1√
2

(â+ ib̂), d̂ =
1√
2

(b̂+ iâ). (52)

The detectors measure the intensities Ic = 〈ĉ†ĉ〉 and Id = 〈d̂†d̂〉, and the difference in these intensities is,

Ic − Id = 〈n̂cd〉 = 〈ĉ†ĉ− d̂†d̂〉 = i〈â†b̂− âb̂†〉. (53)


