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I. UNCERTAINTY RELATION

1. Non-commuting observable do not admit common eigenvectors.

2. Non-commuting observables can not have definite values simultaneously.

3. Simultaneous measurement of non-commuting observables to an arbitrary degree of accuracy is thus incompatible.

4. Variance: one can define

∆Â2 = 〈Ψ|(Â− 〈Â〉)2|Ψ〉 = 〈Ψ|Â2|Ψ〉 − 〈Ψ|Â|Ψ〉2. (1)

5. For any two non-commuting observables,

[Â, B̂] = iĈ,

we have the uncertainty relation:

∆A2∆B2 ≥ 1

4
[〈F̂ 〉2 + 〈Ĉ〉2], (2)

where

F̂ = ÂB̂ + B̂Â− 2〈Â〉〈B̂〉, (3)

where the operator F̂ is a measure of correlations between Â andB̂.

For example, take the operators Â = q̂ (position) and B̂ = p̂ (momentum) for a free particle, one have

[q̂, p̂] = i~→ 〈∆q̂2〉〈∆p̂2〉 ≥ ~2

4
. (4)

A. Proof of the Uncertainty Relation

Start from the Schwarz inequality

〈φ|φ〉〈ψ|ψ〉 ≥ 〈φ|ψ〉〈ψ|φ〉, (5)

where the equality holds if and only if the two states are linear dependent, |ψ〉 = λ|φ〉, where λ is a complex number.
Define two states,

|ψ1〉 = [Â− 〈Â〉]|ψ〉, (6)

|ψ2〉 = [B̂ − 〈B̂〉]|ψ〉. (7)

To have a minimum value of the uncertainty product, we have |ψ1〉 = −iλ|ψ2〉, or

[Â+ iλB̂]|ψ〉 = [〈Â〉+ iλ〈B̂〉]|ψ〉 = z|ψ〉, (8)

where z is a complex number. And the state |ψ〉 is called a minimum uncertainty state. There are difference values
for the coefficient λ,
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1. If Re(λ) = 0, then Â+ iλB̂ is a normal operator, which have orthonormal eigenstates, with the

∆Â2 = − iλ
2

[〈F̂ 〉+ i〈Ĉ〉], (9)

∆B̂2 = − i

2λ
[〈F̂ 〉 − i〈Ĉ〉]. (10)

2. If we set λ = λr + iλi, then

∆Â2 =
1

2
[λi〈F̂ 〉+ λr〈Ĉ〉], (11)

∆B̂2 =
1

|λ|2
∆Â2, (12)

along with the condition that

λi〈Ĉ〉 − λr〈F̂ 〉 = 0. (13)

• If |λ| = 1, we have

∆Â2 = ∆B̂2, (14)

which are equal variance minimum uncertainty states.
• If |λ| = 1 along with λi = 0, we have

∆Â2 = ∆B̂2 and 〈F̂ 〉 = 0, (15)

which are uncorrelated equal variance minimum uncertainty states.
• If λr 6= 0, we have

〈F̂ 〉 =
λi
λr
〈Ĉ〉, (16)

∆Â2 =
|λ|2

2λr
〈Ĉ〉, (17)

∆B̂2 =
1

2λr
〈Ĉ〉. (18)

If Ĉ is a positive operator then the minimum uncertainty states exist only if λr > 0.

II. UNCERTAINTY RELATION FOR q̂ AND p̂

Take the operators Â = q̂ (position) and B̂ = p̂ (momentum) for a free particle, then we have

[q̂, p̂] = i~→ 〈∆q̂2〉〈∆p̂2〉 ≥ ~2

4
. (19)

If we define two states,

|ψ1〉 = [Â− 〈Â〉]|ψ〉 ≡ α̂|ψ〉, (20)

|ψ2〉 = [B̂ − 〈B̂〉]|ψ〉 ≡ β̂|ψ〉. (21)

For uncorrelated minimum uncertainty states, one has

α̂|ψ〉 = −iλβ̂|ψ〉, 〈ψ|α̂β̂ + β̂α̂|ψ〉 = 0, (22)

where λ is a real number. If Â = q̂ and B̂ = p̂, we have

(q̂ − 〈q̂〉)|ψ〉 = −iλ(p̂− 〈p̂〉)|ψ〉. (23)
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By defining the complex number

λ = e−2r, (24)

then

(er q̂ + ie−rp̂)|ψ〉 = (er〈q̂〉+ ie−r〈p̂〉)|ψ〉. (25)

To have the minimum uncertainty state, we define it as an eigenstate of a non-Hermitian operator:

er q̂ + ie−rp̂, (26)

with a c-number eigenvalue er〈q̂〉+ ie−r〈p̂〉, and the corresponding variances of q̂ and p̂ are

〈∆q̂2〉 =
~
2
e−2r, (27)

〈∆p̂2〉 =
~
2
e2r, (28)

here r is referred as the squeezing parameter.

III. GAUSSIAN WAVE PACKETS

In the x-space, we have a Gaussian wave packet with the form,

Ψ(x) = 〈x|Ψ〉 = [
1

π1/4
√
d

]exp[ikx− x2

2d2
], (29)

which is a plane wave with wave number k and width d. The expectation value of X̂ is zero due to the symmetry,
i.e.,

〈X̂〉 =

∫ ∞
−∞

dx〈Ψ|x〉X̂〈x|Ψ〉 = 0,

where the variation of X̂ is

〈∆X̂2〉 =
d2

2
. (30)

In the p-space, the expectation value of P̂ is 〈P̂ 〉 = ~k, i.e.,

〈x|P̂ |Ψ〉 = −i~ ∂

∂x
〈x|Ψ〉, (31)

while the variation of P̂ is

〈∆P̂ 2〉 =
~2

2d2
. (32)

The Heisenberg uncertainty product for a Gaussian wave packet is

〈∆X̂2〉〈∆P̂ 2〉 =
~2

4
. (33)

A Gaussian wave packet is called a minimum uncertainty wave packet.
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IV. TIME EVOLUTION OF A MINIMUM UNCERTAINTY STATE

For a free particle, the corresponding Hamiltonian is

Ĥ =
p̂2

2m
, (34)

with the unitary operator

Û = exp(− i
~
p̂2

2m
t). (35)

In the Schrödinger picture, the wave function evolves accordingly

Ψ(q, t) = 〈q|Û |Ψ(0)〉 =

∫ ∞
−∞

dp〈|p〉Ψ(p, 0)exp(− i
~
p2

2m
t), (36)

=
1

(2π)1/4(∆q + i~t/2m∆q)1/2
exp[− q2

4(∆q)2 + 2i~t/m
], (37)

where the variance in x(q)0-space is defined as

∆q = ~/2〈p̂2〉1/2. (38)

It can be shown that even though the momentum uncertainty 〈∆p̂2〉 is preserved, but the position uncertainty increases
as time develops,

〈∆q̂2(t)〉 = (∆q̂)2 +
~2t2

4m2(∆q)2
. (39)

This is known as the free particle expansion.

V. GAUSSIAN OPTICS

In free space, the vector potential, A, is defined as A(r, t) = ~nψ(x, y, z)ejωt, which obeys the vector wave equation,

∇2ψ + k2ψ = 0. (40)

With the paraxial wave approximation, ψ(x, y, z) = u(x, y, z)e−jkz, one obtains

∇2
Tu− 2jk

∂u

∂z
= 0, (41)

where ∇T ≡ x̂ ∂
∂x + ŷ ∂

∂y . The solution of the scalar paraxial wave equation is,

u00(x, y, z) =

√
2√
πw

exp(jφ)exp(−x
2 + y2

w2
)exp[− jk

2R
(x2 + y2], (42)

which is also a Gaussian wave packet.


