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Amplitude-squeezed fiber-Bragg-grating solitons
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Quantum fluctuations of optical fiber-Bragg-grating solitons are investigated numerically by the back-
propagation method. It is found that the band-gap effects of the grating act as a nonlinear filter and cause the
soliton to be amplitude squeezed. The squeezing ratio saturates after a certain grating length and the optimal
squeezing ratio occurs when the pulse energy is slightly above the fundamental soliton energy.
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In the literature, various types of optical soliton pheno
ena have been studied extensively in the area of nonlin
optical physics. These include the nonlinear Schro¨dinger
solitons in dispersive optical fibers, spatial and vortex s
tons in photorefractive materials or waveguides, and ca
solitons in resonators@1#. It has also been well known tha
fiber Bragg gratings~FBGs! with Kerr nonlinearity can ex-
hibit optical-soliton-like phenomena known as the fibe
Bragg-grating solitons@2,3#. The FBGs are one-dimension
photonic band-gap crystals with weak index modulation.
utilizing the high dispersion of the FBGs near the ba
edges, one can produce optical solitons in the anoma
dispersion side if the input pulse has suitable pulse width
peak intensity. From the theoretical point of view, solita
waves in one-dimensional periodic structures can travel w
different group velocities and have been verified in so
experiments@3#. Even for two- or three-dimensional nonlin
ear photonic band-gap crystals, solitary waves can also e
@4# and have been observed recently@5#.

Most of the previous studies on fiber-Bragg-grating so
tons have been on the classical effects and there is almo
result on their quantum properties. The quantum theory
traveling-wave optical solitons has been intensively dev
oped during the past 15 years and several approaches
been successfully carried out to calculate the quantum p
erties of different traveling-wave optical solitons includin
the family of nonlinear Schro¨dinger solitons@6,7# as well as
the self-induced-transparency solitons@8#. Fiber-Bragg-
grating solitons belong to the class of bidirectional pu
propagation problems where the quantum theory is still l
of enough consideration. It is the aim of this study to brid
this gap by developing a general quantum theory for bidir
tional pulse propagation problems and particularly apply
the theory to the case of fiber-Bragg-grating solitons. It w
be shown that the output fiber-Bragg-grating soliton pul
will quantum mechanically get amplitude squeezed and
squeezing ratio can be calculated theoretically. In our m
eling, we use the nonlinear coupled mode equati
~NCMEs! to describe the two bidirectional waves propag
ing in a uniform FBG. We use the linearization approach
study the quantum effects of optical solitons in FBGs
extending the back-propagation method we previously de
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oped@9# to the cases of nonlinear bidirectional propagati
problems. By following the same spirit of the back propag
tion method, we will first derive a set of linear adjoint equ
tions from the linearized NCMEs in such a way that a
inner product between the solutions of the two equation s
is conserved during the time evolution. Under the lineari
tion approximation, the measurements performed after
time evolution can also be expressed in terms of the in
product between the perturbed quantum field operator an
measurement characteristic function which depends on
measurement to be performed. By back-propagating
measurement characteristic function tot50 through the so-
lution of the adjoint equations, we can express the measu
operator in terms of the input field operators which ha
known quantum characteristics. In this way, the variance
the measured operator as well as its squeezing ratio ca
calculated readily for a given measurement characteri
function. To be more explicit, let us consider the wave pro
gation problem in a one-dimensional fiber grating struct
with the nonlinearity coming from the third-order nonlinea
ity of the optical fiber. With the self-phase modulation a
cross-phase modulation effects, we model Bragg solitons
using the following NCMEs that describe the coupling b
tween the forward and the backward propagating waves
uniform FBG:

1

vg

]

]t
Ua~z,t !1

]

]z
Ua5 idUa1 ikUb1 iGuUau2Ua

12iGuUbu2Ua , ~1!

1

vg

]

]t
Ub~z,t !2

]

]z
Ub5 idUb1 ikUa1 iGuUbu2Ub

12iGuUau2Ub . ~2!

Here Ua(z,t) and Ub(z,t) represent the forward and back
ward propagation pulses, respectively. They are in the u
of GW1/2/cm. Moreover,vg is the group velocity of the
pulse,k is the coupling coefficient,lB is the Bragg wave-
length,d is the wavelength detuning parameter, andG rep-
resents the self-phase modulation coefficient. This set
NCMEs has analytical soliton solutions for the case of in
nite grating length, as is shown by Aceves and Wabnitz w
the introduction of the massive Thirring model@2#. However,
©2004 The American Physical Society01-1
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for gratings of finite length, no analytic solution can b
found. So in our studies we directly use the finite differen
numerical simulation method with the parameters based
the first experiment reported in the literature@3#. We consider
a 60 ps full width at half maximum~FWHM! sech-shaped
pulse incidents into a uniform grating with 15.0 cm21 wave-
number detuning from the center of the band gap. The c
pling strength of the fiber grating is 10 cm21, the nonlinear
coefficientG is 0.018 cm/GW, and the group velocityvg is
chosen to bec/n with n51.5 andc being the speed of ligh
in free space. When the input peak intensity is below
required value for forming a solitary pulse in the FBG
~about 4.5 GW/cm2 in this case!, the peak intensity of the
pulse will decrease along the propagation. On the other h
as shown in Fig. 1, when the input peak intensity is abo
4.5 GW/cm2, the peak intensity of the pulse oscillates duri
the propagation within the grating. Only when the nonline
ity can exactly compensate the dispersion induced by
FBGs, one can have a stable solitary pulse inside the gra

After obtaining these classical solutions, we now turn
the calculation of their quantum properties. In quantu
theory the NCMEs become the quantum nonlinear coup
mode equations~QNCMEs!:

1

vg

]

]t
Ûa~z,t !1

]

]z
Ûa5 idÛa1 ikÛb1 iGÛa

†ÛaÛa

12iGÛb
†ÛbÛa , ~3!

1

vg

]

]t
Ûb~z,t !2

]

]z
Ûb5 idÛb1 ikÛa1 iGÛb

†ÛbÛb

12iGÛa
†ÛaÛb , ~4!

whereÛa and Ûb represent the forward and backward no
malized fields which satisfy the usual equal time boso
commutation relations:

@Ûa~z1 ,t !,Ûa
†~z2 ,t !#5d~z12z2!,
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@Ûb~z1 ,t !,Ûb
†~z2 ,t !#5d~z12z2!,

@Ûa~z1 ,t !,Ûa~z2 ,t !#5@Ûa
†~z1 ,t !,Ûa

†~z2 ,t !#50,

@Ûb~z1 ,t !,Ûb~z2 ,t !#5@Ûb
†~z1 ,t !,Ûb

†~z2 ,t !#50,

@Ûa~z1 ,t !,Ûb~z2 ,t !#5@Ûa~z1 ,t !,Ûb
†~z2 ,t !#50.

This is a set of coupled operator equations in the Heisenb
picture and can be derived from the following Hamiltonia
under the effective-mass approximation@10#:

H52vgH dE dz~Ûa
†Ûa1Ûb

†Ûb!1 i E dzS Ûa
† ]

]z
Ûa

2Ûb
† ]

]z
ÛbD1kE dz~Ûa

†Ûb1Ûb
†Ûa!

1
G

2E dz~Ûa
†Ûa

†ÛaÛa1Ûb
†Ûb

†ÛbÛb!

1GE dz~Ûa
†Ûb

†ÛbÛa1Ûb
†Ûa

†ÛaÛb!J . ~5!

This derivation automatically proves that the QNCMEs p
serve the commutation brackets.

Since for optical solitons the average photon numbe
usually very large, we can safely use the linearizat
approximation to study their quantum effects. By setti
Ûa(z,t)5Ua0(z,t)1ûa(z,t), Ûb(z,t)5Ub0(z,t)1ûb(z,t),
and substituting them into Eqs.~3! and ~4! for linearization,
we obtain the linear quantum operator equations in Eq.~6!
that describe the evolution of the quantum fluctuations as
ciated with the fiber-Bragg-grating solitons. The quantu
perturbation fieldsûa(z,t) andûb(z,t) in Eq. ~6! also have to
satisfy the same equal time commutation relations as
original field operatorsÛa(z,t) and Ûb(z,t):
1

vg

]

]t S ûa

ûb
D 5S 2

]

]z
1 id12iGuUa0u212iGuUb0u2 ik12iGUa0Ub0*

ik12iGUa0* Ub0
]

]z
1 id12iGuUa0u212iGuUb0u2

D S ûa

ûb
D

1S iGUa0
2 2iGUa0Ub0

2iGUa0Ub0 iGUb0
2 D S ûa

†

ûb
†D , ~6!

1

vg

]

]t S ua
A

ub
AD 5S 2

]

]z
1 id12iGuUa0u212iGuUb0u2 ik12iGUa0Ub0*

ik12iGUa0* Ub0
]

]z
1 id12iGuUa0u212iGuUb0u2

D S ua
A

ub
AD

1S 2 iGUa0
2 22iGUa0Ub0

22iGUa0Ub0 2 iGUb0
2 D S ua

A*

ub
A* D . ~7!
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If we define the inner product operation according to

^ fW uĝW &5
1

2E dz@ f a* ĝa1 f aĝa
†1 f b* ĝb1 f bĝb

†# ~8!

then Eq.~7! is the corresponding set of adjoint equations
the perturbed QNCMEs, which have the following desir
property:

~d/d t! ^uW AuûW &50, ~9!

whereuW A5(ua
A ,ub

A)T is the solution of the adjoint equatio
defined in Eq.~7!. The important thing is that the inner prod
uct between the solutions of the two equation sets is p
served along the time axis.

By taking advantage of the preservation of the inner pr
uct, we can express the inner product of the output quan
perturbation operator with a projection function in terms
the input quantum field operators by theback-propagation
method. This will allow us to calculate the quantum unce
tainty for the inner product of the output quantum opera
with any given projection function. Under the linearizatio
approximation, any measurement of a physical quantity
be expressed as an inner product between a measure
characteristic function and the perturbed quantum field
erator@9#. The squeezing ratio of the measured quantity th
can be calculated according to

R~T!5
var@^ fW uûW ~ t5T!&#

var@^ fW uûW ~ t50!&#
5

var@^FW TuûW ~ t50!&#

var@^ fW uûW ~ t50!&#
. ~10!

Here var@•# means the variance,fW is the original projection
function, andFW T is the back-propagated projection functio
The choice of the characteristic functionfW will depend on the
measurement to be performed. For the photon number m
surement,fW is simply the normalized output classical pul
from the grating@11#. For the homodyne detection, it will b
the local oscillator pulse. In the following we consider

FIG. 1. Evolution of the fiber-Bragg-grating soliton with th
input peak intensityI 59.0 GW/cm2.
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solitary pulse incident into a uniform FBG, and calculate t
quantum fluctuation of its first transmitted pulse based on
formulation given above.

The transmittance of the FBGs with different input inte
sities of solitons for a constant FBG length~50 cm! is shown
in the top curve of Fig. 2. The calculated photon numb
squeezing ratio is shown in the bottom for the same par
eters. When the input peak intensity is smaller than tha
the fundamental soliton, the output squeezing ratio mo
tonically decreases when the input peak intensity is
creased. The output squeezing ratio will begin to oscill
strongly with respect to the changing input intensity wh
the input intensity is much larger than that of the fundam
tal soliton. The oscillation behaviors of the FBG transm
tance and the squeezing ratio match very well. That is,
squeezing ratio has a local minimum when the transmiss
has a local maximum. Intuitively the periodic grating stru
ture acts like a spectral filter which can filter out the nois
high-frequency components in the soliton spectrum and p
duce a net amplitude squeezing effect just as in the prev
soliton amplitude squeezing experiments where a spec
filter is cascaded after a nonlinear fiber@12,13#. And the
minimum squeezing ratio occurs when the pulse energy
soliton is slightly larger than that of the fundamental solito

FIG. 2. Transmittance~top! and photon number squeezing rat
~bottom! for fiber-Bragg-grating solitons with different input inten
sities.
1-3
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It is also intuitively clear that larger amplitude squeezi
should occur when the transmittance curve is saturated.
ure 3 shows the dependence of the optimal squeezing r
for different FBG lengths with a constant input intensityI
54.5 GW/cm2). If we only consider the gratings with th
length longer than 1 cm, we find that the squeezing ra
monotonically decreases with the FBG length and satur
at the length around 60 cm. Intuitively this is because
filtering effect of the grating will unavoidably introduce ad
ditional noises on the light fields and eventually cause
squeezing ratio to become saturated.

So far we have shown that the FBG solitons will get a
plitude squeezed during propagation. Under the lineariza
approximation, the amplitude squeezing corresponds to
squeezing of the in-phase quadrature field component
further determine the maximum squeezing phase angle o
quadrature field components of the FBG soltions, we p
form another calculation to simulate the squeezing ra
when the homodyne detection scheme is used and when
local oscillator pulse is exactly the classical output puls
With the homodyne detection scheme, one has the additi
degree of freedom to adjust the relative phase between
local oscillator and the signal for detecting different quad
ture field components. Figure 4 plots the squeezing ratio
different FBG lengths and for different local oscillato
phases with a constant input intensity (I 54.5 GW/cm2).

FIG. 3. Optimal squeezing ratio for Bragg solitons propagat
through different length of FBGs.
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One can see that for short FBG lengths the quadra
squeezing direction is close to but not exactly in the in-ph
~or amplitude! quadrature,u50. However, when the FBG
length is long enough, the squeezing direction will approa
the in-phase quadrature. This proves that the FBG solit
will indeed be squeezed in the amplitude direction when
FBG length is long enough.

To summarize, we have developed a general quan
theory for bidirectional nonlinear optical pulse propagati
problems and have used it to calculate the squeezing rat
fiber-Bragg-grating solitons in one-dimensional photon
band-gap crystals. We find that the output pulses can
amplitude squeezed and the squeezing ratio exhibits inte
ing relations with the fiber grating length as well as with t
intensity of the input pulse. To measure the quantum fluct
tions of fiber-Bragg-grating soliton experimentally, on
needs to apply the direct measurement for the first trans
ted pulse from the grating by gating out other smaller m
tiple reflected pulses. It will be very interesting to see if o
can actually observe these effects experimentally in the
ture.
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FIG. 4. Squeezing ratio for different FBG lengths and differe
local oscillator phases.
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@13# T. Opatrný, N. Korolkova, and G. Leuchs, Phys. Rev. A66,

053813~2002!.
1-4


