
����������
�������

Citation: Abe, H.; Akutsu, T.; Ando,

M.; Araya, A.; Aritomi N.; Asada, H.;

Aso, Y.; Bae, S.; Bajpai R.; Cannon K.;

et. al. The Current Status and Future

Prospects of KAGRA, the Large-Scale

Cryogenic Gravitational Wave

Telescope Built in the Kamioka

Underground. Galaxies 2022, 10, 63.

https://doi.org/10.3390/

galaxies10030063

Academic Editor: Maddalena

Mantovani

Received: 1 February 2022

Accepted: 29 March 2022

Published: 26 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

galaxies

Article

The Current Status and Future Prospects of KAGRA, the
Large-Scale Cryogenic Gravitational Wave Telescope Built in
the Kamioka Underground

Homare Abe 1, Tomotada Akutsu 2, Masaki Ando 3, Akito Araya 4, Naoki Aritomi 3,
Hideki Asada 5, Yoichi Aso 6, Sangwook Bae 7, Rishabh Bajpai 8, Kipp Cannon 9,
Zhoujian Cao 10, Eleonora Capocasa 2, Man Leong Chan 11, Dan Chen 6,
Yi-Ru Chen 12, Marc Eisenmann 2, Raffaele Flaminio 13, Heather K. Fong 9,
Yuta Fujikawa 14, Yuya Fujimoto 15, I. Putu Wira Hadiputrawan 16, Sadakazu Haino 17,
Wenbiao Han 18, Kazuhiro Hayama 11, Yoshiaki Himemoto 19, Naoatsu Hirata 2,
Chiaki Hirose 14, Tsung-Chieh Ho 16, Bin-Hua Hsieh 20, He-Feng Hsieh 21,
Chia-Hsuan Hsiung 22, Hsiang-Yu Huang 17, Panwei Huang 23, Yao-Chin Huang 12,
Yun-Jing Huang 17, David C. Y. Hui 24, Kohei Inayoshi 25, Yuki Inoue 16, Yousuke Itoh 15,
Pil-Jong Jung 26, Takaaki Kajita 20, Masahiro Kamiizumi 20, Nobuyuki Kanda 15,
Takashi Kato 20, Chunglee Kim 27, Jaewan Kim 28, Young-Min Kim 29,
Yuichiro Kobayashi 15, Kazunori Kohri 30, Keiko Kokeyama 31, Albert K. H. Kong 21,
Naoki Koyama 14, Chihiro Kozakai 6, Jun’ya Kume 9, Sachiko Kuroyanagi 32,
Kyujin Kwak 29, Eunsub Lee 20, Hyung Won Lee 33, Ray-Kuang Lee 12, Matteo Leonardi 2,
Kwan-Lok Li 34, Pengbo Li 35, Lupin Chun-Che Lin 29, Chun-Yu Lin 36, En-Tzu Lin 21,
Hong-Lin Lin 16, Guo-Chin Liu 22, Ling-Wei Luo 17, Miftahul Ma’arif 16,
Yuta Michimura 3, Norikatsu Mio 37, Osamu Miyakawa 20, Kouseki Miyo 20,
Shinji Miyoki 20, Nozomi Morisue 15, Kouji Nakamura 2, Hiroyuki Nakano 38,
Masayuki Nakano 39,*,† , Tatsuya Narikawa 20 , Lan Nguyen Quynh 40,
Takumi Nishimoto 20, Atsushi Nishizawa 9, Yoshihisa Obayashi 20, Kwangmin Oh 24,
Masatake Ohashi 20, Tomoya Ohashi 15, Masashi Ohkawa 14, Yoshihiro Okutani 41,
Ken-ichi Oohara 20, Shoichi Oshino 20, Kuo-Chuan Pan 12, Alessandro Parisi 22,
June Gyu Park 42, Fabián E. Peña Arellano 20, Surojit Saha 21, Kazuki Sakai 43,
Takahiro Sawada 15, Yuichiro Sekiguchi 44, Lijing Shao 25, Yutaka Shikano 45,
Hirotaka Shimizu 46, Katsuhiko Shimode 20, Hisaaki Shinkai 47, Ayaka Shoda 2,
Kentaro Somiya 1, Inhyeok Song 21, Ryosuke Sugimoto 48, Jishnu Suresh 20,
Takamasa Suzuki 1, Takanori Suzuki 14, Toshikazu Suzuki 20, Hideyuki Tagoshi 20,
Hirotaka Takahashi 49, Ryutaro Takahashi 2, Hiroki Takeda 3, Mei Takeda 15,
Atsushi Taruya 50, Takayuki Tomaru 2, Tomonobu Tomura 20, Lucia Trozzo 20,
Terrence T. L. Tsang 51, Satoshi Tsuchida 15, Takuya Tsutsui 9,
Darkhan Tuyenbayev 15, Nami Uchikata 20, Takashi Uchiyama 20, Tomoyuki Uehara 52,
Koh Ueno 9, Takafumi Ushiba 20,*,† , Maurice H. P. M. van Putten 53 ,
Tatsuki Washimi 6,*,† , Chien-Ming Wu 12 , Hsun-Chung Wu 12, Tomohiro Yamada 46,
Kazuhiro Yamamoto 54, Takahiro Yamamoto 20, Ryo Yamazaki 41, Shu-Wei Yeh 12,
Jun’ichi Yokoyama 9, Takaaki Yokozawa 20, Hirotaka Yuzurihara 20, Simon Zeidler 55

and Yuhang Zhao 20

1 Graduate School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
2 Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ),

Tokyo 181-8588, Japan
3 Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
4 Earthquake Research Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
5 Department of Mathematics and Physics, Gravitational Wave Science Project, Hirosaki University,

Hirosaki 036-8561, Japan
6 Kamioka Branch, National Astronomical Observatory of Japan (NAOJ),

Kamioka-cho, Gifu 506-1205, Japan
7 Korea Institute of Science and Technology Information (KISTI), Yuseong-gu, Daejeon 34141, Korea
8 School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI),

Ibaraki, Tsukuba 305-0801, Japan

Galaxies 2022, 10, 63. https://doi.org/10.3390/galaxies10030063 https://www.mdpi.com/journal/galaxies

https://doi.org/10.3390/galaxies10030063
https://doi.org/10.3390/galaxies10030063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com
https://orcid.org/0000-0001-7703-0169
https://orcid.org/0000-0001-7703-0169
https://orcid.org/0000-0002-5059-4033
https://orcid.org/0000-0002-5059-4033
https://orcid.org/0000-0001-5792-4907
https://orcid.org/0000-0001-5792-4907
https://doi.org/10.3390/galaxies10030063
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com/article/10.3390/galaxies10030063?type=check_update&version=1


Galaxies 2022, 10, 63 2 of 26

9 Research Center for the Early Universe (RESCEU), The University of Tokyo,
Bunkyo-ku, Tokyo 113-0033, Japan

10 Department of Astronomy, Beijing Normal University, Beijing 100875, China
11 Department of Applied Physics, Fukuoka University, Jonan, Fukuoka 814-0180, Japan
12 Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
13 Laboratoire d’Annecy de Physique des Particules (LAPP), University Grenoble Alpes,

Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France
14 Faculty of Engineering, Niigata University, Nishi-ku, Niigata 950-2181, Japan
15 Department of Physics, Graduate School of Science, Osaka City University, Sumiyoshi-ku,

Osaka 558-8585, Japan
16 Center for High Energy and High Field Physics, Department of Physics, National Central University,

Taoyuan City 32001, Taiwan
17 Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
18 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
19 College of Industrial Technology, Nihon University, Narashino 275-8575, Japan
20 Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo,

Kashiwa 277-8582, Japan
21 Institute of Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan
22 Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
23 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for

Precision Measurement Science and Technology (APM), Chinese Academy of Sciences, Wuhan 430071, China
24 Department of Astronomy & Space Science, Chungnam National University,

Yuseong-gu, Daejeon 34134, Korea
25 Kavli Institute for Astronomy and Astrophysics, Peking University, Haidian District, Beijing 100871, China
26 National Institute for Mathematical Sciences, Yuseong-gu, Daejeon 34047, Korea
27 Department of Physics, Ewha Womans University, Seodaemun-gu, Seoul 03760, Korea
28 Department of Physics, Myongji University, Yongin 17058, Korea
29 Department of Physics, Ulsan National Institute of Science and Technology (UNIST),

Ulju-gun, Ulsan 44919, Korea
30 Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK),

Ibaraki, Tsukuba 305-0801, Japan
31 School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK
32 Instituto de Fisica Teorica, 28049 Madrid, Spain
33 Department of Computer Simulation, Inje University, Gyeongsangnam-do, Gimhae 50834, Korea
34 Department of Physics, National Cheng Kung University, Tainan City 70101, Taiwan
35 School of Physics and Technology, Wuhan University, Wuhan 430072, China
36 National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu Science

Park, Hsinchu 30076, Taiwan
37 Institute for Photon Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
38 Faculty of Law, Ryukoku University, Fushimi-ku, Kyoto 612-8577, Japan
39 California Institute of Technology, Pasadena, CA 91125, USA
40 Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA
41 Department of Physics and Mathematics, Aoyama Gakuin University, Kanagawa, Sagamihara 252-5258, Japan
42 Korea Astronomy and Space Science Institute (KASI), Yuseong-gu, Daejeon 34055, Korea
43 Department of Electronic Control Engineering, National Institute of Technology, Nagaoka College,

Niigata 940-8532, Japan
44 Faculty of Science, Toho University, Funabashi 274-8510, Japan
45 Graduate School of Science and Technology, Gunma University, Maebashi 371-8510, Japan
46 Accelerator Laboratory, High Energy Accelerator Research Organization (KEK),

Ibaraki, Tsukuba 305-0801, Japan
47 Faculty of Information Science and Technology, Osaka Institute of Technology, Hirakata 573-0196, Japan
48 Department of Space and Astronautical Science, The Graduate University for Advanced Studies

(SOKENDAI), Kanagawa, Sagamihara 252-5210, Japan
49 Research Center for Space Science, Advanced Research Laboratories, Tokyo City University,

Setagaya, Tokyo 158-0082, Japan
50 Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Sakyou-ku, Kyoto 606-8502, Japan
51 Faculty of Science, Department of Physics, The Chinese University of Hong Kong, Hong Kong 518172, China
52 Department of Communications Engineering, National Defense Academy of Japan,

Kanagawa, Yokosuka 239-8686, Japan
53 Department of Physics and Astronomy, Sejong University, Gwangjin-gu, Seoul 143-747, Korea
54 Faculty of Science, University of Toyama, Toyama 930-8555, Japan
55 Department of Physics, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan



Galaxies 2022, 10, 63 3 of 26

* Correspondence: masayuki@caltech.edu (M.N.); ushiba@icrr.u-tokyo.ac.jp (T.U.);
tatsuki.washimi@nao.ac.jp (T.W.)

† These authors contributed equally to this work.

Abstract: KAGRA is a gravitational-wave (GW) detector constructed in Japan with two unique
key features: It was constructed underground, and the test-mass mirrors are cooled to cryogenic
temperatures. These features are not included in other kilometer-scale detectors but will be adopted
in future detectors such as the Einstein Telescope. KAGRA performed its first joint observation run
with GEO600 in 2020. In this observation, the sensitivity of KAGRA to GWs was inferior to that of
other kilometer-scale detectors such as LIGO and Virgo. However, further upgrades to the detector
are ongoing to reach the sensitivity for detecting GWs in the next observation run, which is scheduled
for 2022. In this article, the current situation, sensitivity, and future perspectives are reviewed.

Keywords: gravitational wave detector; laser interferometer; cryogenics; underground

1. Introduction

A gravitational wave (GW) is a physical phenomenon predicted by Einstein in his
general theory of relativity in 1916. A GW is a wave of spacetime distortion caused by the
motion of mass. It travels at the speed of light. The amplitude and waveform of a GW
depend on the acceleration and mass of the source. A heavier mass that changes its motion
at a faster rate generates stronger GWs. For instance, astronomically massive phenomena,
such as a merger of binary neutron stars or black holes, are powerful sources and represent
the main targets of GW detectors that are currently in operation. Because GWs have a
different emission process than other measures used in astronomy, such as visible light,
X-rays, infrared rays, radio waves, cosmic rays, and neutrinos, unique information can be
obtained by observing GWs. In addition, because the interaction between GWs and objects
is relatively weak, GWs can propagate through space without being scattered or absorbed
by objects. Therefore, even GWs generated just after the birth of the universe can reach
Earth, and they are therefore expected to act as probes for the history of the universe using
future space GW detectors.

GWs distort spacetime and result in a fluctuation of the distance between two points;
therefore, the detection of GWs is possible by precisely measuring this distance fluctuation.
However, as mentioned above, the amplitude of the distance variation can be as small
as 10−18 m for current GW detectors, which makes GW detection challenging. Thus far,
an optical interferometer is the only instrument that allows for direct GW detection. An
interferometer is an L-shaped optical instrument that can convert the arm length fluctuation
caused by GWs into a laser intensity fluctuation. A GW interaction can also be described
as the tidal force, and the L-shaped interferometer can detect the tidal force efficiently as
a differential component of the arm length fluctuation. Because the distance fluctuation
is proportional to the distance between two points, a longer-arm interferometer is more
sensitive to GW interactions. Thus, GW detectors have continued to increase in size over the
last few decades, and current GW detectors have a large kilometer-scale arm. Nevertheless,
typical GWs from a target source cause arm-length fluctuations of only 10−18 m. Currently,
the GW detection network consists of two Advanced LIGOs in the US [1], an Advanced
Virgo in Italy [2], and the GEO600 in Germany [3].

The Advanced LIGO and Advanced Virgo detectors are interferometric GW detectors
with a kilometer-scale arm length, whereas GEO600 has a 600-m arm length. The Advanced
LIGO detector succeeded in the world’s first detection of GWs in 2015, opening up a new
astronomical field of GW astronomy. The first GW event observed by the two Advanced
LIGO detectors, GW150914 [4], was the merger of binary black holes. Since then, the GW
observation network with Virgo has observed several dozen GW events [5,6], including
GW170817 [7], a GW emitted by the merger of binary neutron stars.
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After the development of three kilometer-scale detectors, the construction of a kilometer-
scale GW observatory began in Japan. This detector, named KAGRA, has been under
construction since 2012, and it achieved its first joint observation run with other obser-
vatories in April 2020 [8]. KAGRA is currently being upgraded for further sensitivity
improvements. KAGRA is built underground and uses cryogenic mirrors to lower its
thermal noise to improve sensitivity. These features differ from those of other GW detectors.
While the Advanced LIGO and Virgo are considered second-generation detectors, these
features make KAGRA a 2.5 generation detector, that is, the intermediate generation before
third-generation detectors, such as the Einstein Telescope (ET) [9] and Cosmic Explorer
(CE) [10]. In this article, the design concept of KAGRA, its performance during the first joint
observation run, an evaluation of new technologies and the underground environment,
and future plans are described.

2. The Design of KAGRA
2.1. Location

The KAGRA experimental site is located under Mount Ikenoyama (elevation of
1369 m), Gifu Prefecture, Japan. Figure 1 presents a schematic of the KAGRA experi-
mental site. It consists of three stations (Corner, X-end, and Y-end), two arm tunnels (X-arm
and Y-arm) 3 km in length, and several access tunnels. Under the same mountain, there are
many neutrino experiments (Super-Kamiokande [11], KamLAND [12], and CANDLES [13]),
dark matter experiments (NEWAGE [14], PICOLON [15], and XMASS (closed) [16]), and
other R&D experiments, including those of CLIO [17], which is the prototype of KAGRA.

Japan is famous for its frequent earthquakes, especially on the side facing the Pacific
Ocean, where two tectonic plates converge. However, earthquake waves are weakened
when they propagate across the Tateyama mountain range, standing northeast of the
KAGRA site. This is because the low-density ground (1.4–2.2 g/cm3; for example, the
normal area is 2.6 g/cm3) is distributed at an altitude of approximately −5 km acts as a
cushion [18,19], minimizing the site’s propensity for earthquakes.
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Figure 1. Location and schematic view of the KAGRA experimental site [20].

2.2. Interferometer Configuration

The simplest configuration of an interferometer is called a Michelson interferometer
(MICH, shown in Figure 2a). A Michelson interferometer consists of a laser source, beam
splitter (BS) that splits the light into two paths, end mirrors (or end test masses—ETMs) to
reflect the split light back to the BS, and photodetector (PD) for measuring the intensity of
the recombined light on the BS. The differential component of the variation in the distance
from the BS to each ETM (called the arm length) changes the relative phase of the reflected
light beams and, consequently, the intensity of the recombined light fluctuates.
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(a) (b)

(c) (d)

Figure 2. Schematic image of the interferometer configuration. A basic Michelson interferometer
(a) consists of a laser source, beam splitter (BS), end test masses (ETMX and ETMY), and photode-
tector (PD). The Fabry–Pérot arm cavities, which are composed of ETMs and input test masses
(ITMX and ITMY), extend the effective arm length (b). The power-recycling mirror (PRM) and
signal-recycling mirror (SRM) improve the sensitivity using the power-recycling technique and
resonant sideband extraction technique, respectively (c,d). (a) Michelson interferometer (MICH).
(b) Fabry–Pérot Michelson interferometer (FPMI). (c) Power-recycling FPMI (PRFPMI). (d) Resonant
sideband extraction (RSE) interferometer.

Because interferometers with a longer arm are more sensitive to GWs, KAGRA has 3
km-long arms, as in the other GW observatories. However, because a Michelson interfer-
ometer with an arm length of the kilometer order is not sufficient to achieve the required
sensitivity for detecting a GW, current GW observatories combine multiple optical cavities
with a Michelson interferometer to improve sensitivity, as shown in Figure 2.

First, two Fabry–Pérot optical cavities are incorporated into the arms, forming a
configuration called the Fabry–Pérot Michelson interferometer (FPMI, shown in Figure 2b).
These arm cavities are composed of input mirrors (or input test masses—ITMs) and ETMs,
and they extend the effective arm length of the interferometer. In the case of KAGRA, the
arm cavities extend the effective arm length by a factor of approximately 1000, resulting in
a 1000-fold increase in the GW sensitivity.

Second, another optical cavity, called the power-recycling cavity, is composed of a
power-recycling mirror (PRM) and ITMs. In this power-recycling FPMI configuration
(PRFPMI, shown in Figure 2c), the PRM reflects the returning laser beam from the FPMI,
and the internal power of the interferometer is amplified [21]. Because the signal-to-noise
ratio (SNR) of the GW signal to the quantum shot noise is proportional to the inverse of the
square root of the laser power circulating in the arm cavities, the power-recycling cavity
further improves sensitivity. In the case of KAGRA, the power-recycling cavity amplifies
the laser power in the interferometer by a factor of ten [22].
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Then, the other optical cavity is added to the signal port, and it configures the resonant
sideband extraction (RSE) interferometer [23] (shown in Figure 2d). The additional optical
cavity, called a signal-recycling cavity, is composed of the PRFPMI and a signal-recycling
mirror (SRM) placed between the BS and PD. The RSE interferometer works to compensate
for the signal cancellation at high frequencies, which is a drawback of the PRFPMI, using
the resonant sideband extraction technique. For GWs with a frequency higher than the
storage time of laser light in the arm cavity, the obtained signal is averaged, resulting in
a weak signal and low sensitivity. The signal-recycling cavity in the RSE interferometer
allows for the extraction of the signal sideband of the GWs before cancellation. Furthermore,
by detuning the length of the signal-recycling cavity microscopically from the resonance
point, the signal-recycling cavity can significantly improve the sensitivity in a specific
frequency band. This technique is called detuned RSE [24].

For GW detection, all of the optical resonators must be held in resonance. To achieve
this, the distance between the mirrors of the interferometer must be precisely controlled
with an accuracy of a few hundred picometers. GW detection is possible only when the
interferometer is maintained in a resonant state, which is referred to as “the interferometer
is locked”.

During the last observation run, the interferometer configuration of KAGRA was
that of the PRFPMI. For future observations, a signal-recycling cavity will be installed,
and KAGRA will be operated as an RSE interferometer. The design sensitivity was also
calculated with the RSE interferometer configuration. The successful operation of the RSE
interferometer is one of the major milestones for KAGRA.

2.3. Design Sensitivity

GWs are detected as arm length fluctuations; however, their magnitude is very small,
that is, the fluctuations are only of the order of 10−18 m. Thus, even a tiny noise can
mask the GW signal. The process for improving the sensitivity of GW detectors can be
summarized as noise reduction. The sensitivity curves of the KAGRA design are shown in
Figure 3 [25], which presents the fundamental noises that limit the sensitivity of KAGRA.
Noise in GW detectors can be roughly divided into two categories based on its effects on the
detectors. One is noise that physically shakes the arm’s length, which is indistinguishable
from arm length fluctuations due to GWs. As shown in Figure 3, seismic, thermal, and
quantum radiation pressure noises are categorized as this type of noise. The others, which
are represented by quantum shot noise in the sensitivity curve, are those that do not actually
shake the test masses but produce a signal resembling an arm length fluctuation, which
again makes it indistinguishable from the actual arm length fluctuation. Because these
noises have different frequency characteristics, the design sensitivity is limited by the
different noises in each frequency band. Roughly speaking, the former noise limits the
sensitivity at lower frequencies, since it needs to shake things up, and it gets smaller at
higher frequencies, whereas the latter noise is dominant at higher frequencies. Although
fundamental noise appears even in a physically ideal detector, a GW detector’s sensitivity
can easily be polluted by noise from non-ideal features of the system. This type of noise is
called technical noise. The technical noise will eventually be reduced to a point lower than
the fundamental noise and will not limit sensitivity.

Seismic noise limits the design sensitivity in the frequency band below 5 Hz. The
Earth’s surface vibrates by approximately 1 µm even in the absence of an earthquake, and
the mirror of an interferometer placed on the ground is not immune. In addition, it is
difficult to reduce seismic vibration itself. Therefore, in a GW detector, the mirrors are
suspended by a pendulum to reduce the transmission of seismic vibrations to the mirrors
because seismic noise is attenuated proportional to f−2N above the resonant frequencies
of the pendulum, where N is the number of pendulum stages. In the case of KAGRA, the
effect of seismic vibration is also minimized by its underground construction, as explained
in the next section. The seismic noise is estimated by considering the seismic vibrations
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of the ground in the mine, the seismic isolation performance of the pendulums, and the
coupling of 1/200 from the vertical seismic vibration, as shown in Figure 3.

Thermal noise, which is caused by the thermal vibration of molecules, is a type of
noise that limits the sensitivity at low frequencies below 140 Hz. The thermal vibration
of molecules causes the motion of mirrors, their surfaces, and their suspensions, thereby
inhibiting GW detection. The thermal noise of a mirror is proportional to the inverse of the
square root of the frequencies and limits the sensitivity between 50 and 140 Hz. The thermal
noise of a mirror suspension has a noise floor proportional to the inverse of the square of
the frequencies and limits the sensitivity below 50 Hz. Several peaks in the thermal noise
of the suspension are due to the mechanical resonance of the suspension. The details are
summarized in [8]. There are several ways to reduce thermal noise. One is to increase
the beam spot size on the mirror to reduce the mirror’s thermal noise, which is caused by
the vibration of the mirror substrates and coatings, because the correlation of the thermal
mirror surfaces between two distant points is small. Another is to use low-mechanical-loss
materials for mirrors and their suspensions because thermal noise is proportional to the
square root of the mechanical losses of the system [26]. A further method is to reduce
the vibration of the molecules by cooling the test-mass mirrors and their suspensions to
cryogenic temperatures, as described in the following section. Because this is the first
kilometer-scale cryogenic interferometer, the demonstration of cryogenic technology is
highly anticipated and is expected to be introduced in future GW detectors.

In the frequency band between 5 and 80 Hz, the sensitivity is limited by quantum
radiation pressure noise, which is included as quantum noise in Figure 3. The reflection of
light is described in quantum mechanics as the collision of photons on a mirror’s surface,
which exerts a force called radiation pressure. Because the number of photons in light
exhibits quantum fluctuations, the radiation pressure also exhibits inevitable fluctuations,
and these fluctuations cause quantum radiation pressure noise.

Quantum shot noise limits the design sensitivity at frequencies above 100 Hz, which
is another noise included as quantum noise in Figure 3. A photodetector detects the
light intensity by counting the number of photons, which causes its output to fluctuate
owing to uncertainty in the number of photons. As described above, an interferometer
is an instrument that converts arm-length fluctuations into laser-intensity fluctuations.
Therefore, quantum shot noise is inevitable and difficult to reduce in GW detectors.

Both shot and radiation pressure noises are caused by quantum fluctuations of light;
however, the relationship between the laser power and SNR is the opposite: the SNR of the
radiation pressure noise is proportional to the square root of the power, whereas the SNR of
the shot noise is inversely proportional. The frequency response is also different in the two
noises: the radiation pressure noise is inversely proportional to the square of the frequency,
whereas the shot noise has no frequency dependence, except for its deterioration at high
frequencies owing to low-pass filtering for the signal of the optical cavity. Therefore, the
optimal laser power is determined by the targeted frequency band. To increase the sensitiv-
ity in the high-frequency band, it is necessary to increase the laser power to reduce the shot
noise. In the case of the current GW detectors, whose target frequencies are approximately
100 Hz, the intracavity power is designed to be of the order of 1 MW.
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Figure 3. Design sensitivity curve of KAGRA [25]. The horizontal axis shows the frequency, and
the vertical axis shows the detectable GW signal amplitude. Several fundamental noises are shown:
seismic noise, mirror and suspension thermal noise, and quantum noise. Quantum noise is shown as
the sum of the quantum radiation pressure noise and shot noise.

Technical noises are caused by imperfections in the interferometer. For example, in an
ideal detector, the wavelength of the laser light is considered to contain no fluctuations,
other than quantum fluctuations. However, actual laser light exhibits classical wavelength
fluctuations, which cause sensing noise. In many cases, the amplitude of these noises,
and sometimes even their presence, is difficult to predict. While the magnitude of the
fundamental noise is determined by the interferometer design, the magnitude of technical
noise is determined by the performance of the interferometer as a whole system; therefore,
the interferometer’s performance must be optimized after being operated to improve the
sensitivity. This sensitivity improvement process is called noise hunting and is the main
task in the sensitivity improvement of GW detectors.

2.4. Key Features of KAGRA

The fundamental noises described above were reduced by designing KAGRA with
two key features. One was the utilization of an underground site to reduce seismic noise.
The other was the utilization of cryogenic mirrors to reduce thermal noise. The details are
summarized in the following subsections.

2.4.1. Underground

Seismic noise is problematic for ground-based GW detectors for two main reasons.
The first is sensitivity degradation, as mentioned in the previous section. This can be
caused not only by longitudinal motion but also by angular motions of the mirrors through
angular-to-longitudinal coupling. The other is the duty-cycle deterioration caused by the
angular motions of the mirrors, which disturbs the locking of the interferometer. Owing to
the 3 km-long arm, which amplifies the tiny angular motions of the mirrors with respect
to the motion of the beam spot, stable operation of the GW detector becomes difficult.
There are several technical approaches to reducing these effects, such as utilizing passive
vibration isolation with multi-stage suspension and active vibration isolation with inertial
sensors; however, further reduction of seismic noise is important for current and future
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GW detectors. Because underground sites have low levels of seismic motion with respect
to the ground surface, building GW detectors at underground sites is highly beneficial.

The site search for KAGRA was conducted in the late 1990s, and Kamioka in Gifu
Prefecture, Japan, was finally selected [27], which is the same location as the two prototype
interferometers, a 20 m-scale interferometer, LISM [28], and a 100-m cryogenic interferome-
ter, CLIO [17]. KAGRA was constructed in a horizontal tunnel excavated from a mountain
and consists of two 3 km arm tunnels with 1/300 slopes, two end stations, and one corner
station. All the stations are located more than 200 m below the surface of the mountain,
where the seismic motion is significantly low based on past experience with CLIO [27].
After construction, the seismic motion of the KAGRA site was measured, as shown in
Figure 4. Because the seismic motion of the KAGRA site at the observation bands was
significantly smaller than that of TAMA300 [29] around the suburbs of Tokyo, the KAGRA
location is highly advantageous in terms of seismic noise.

Figure 4. Seismic noise at the TAMA300 site (TAMA), the entrance of the KAGRA tunnel (Atotsu
entrance), and the KAGRA site (KAGRA). For the seismic noise of the KAGRA site, the 10th and 90th
percentile lines (upper and lower cyan lines, respectively) are shown in the figure. Reprinted with
permission from Ref. [8], ©2021 Oxford University Press.

Another important benefit of lower seismic motion is the stability of the interferometer
lock, because large mirror motions, especially those below 10 Hz, often cause lock loss in
the interferometer. In addition, large motions make it difficult to lock the interferometer.
Because seismic motion below 10 Hz at the underground site is smaller than that on the
ground surface, the KAGRA site has an advantage in terms of stability and sensitivity. In
particular, ground motion of approximately 0.2 Hz, which is called microseismic noise, is
problematic; however, microseismic noise at the KAGRA site is approximately ten times
smaller than that at the TAMA300 site, even in the 90th percentile, as shown in Figure 4.
Therefore, the KAGRA site also has the benefit of seismic motion in microseismic bands
between 0.1 and 0.4 Hz.

An additional advantage of underground sites is the ability to construct a huge
suspension without tall support structures. Because a longer suspension has a better
vibration isolation performance in the observation band, it is beneficial to utilize tall
suspensions to reduce seismic noise. To achieve a long suspension on the ground, it is
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necessary to construct a tall support structure and hang the mirrors from the top, as in the
superattenuator in Virgo [30]. In contrast, it is unnecessary to build a tall support in KAGRA
because KAGRA involves excavation of a two-story tunnel, and the mirrors can be hung
from the second floor. Therefore, although the total height of the test-mass suspension
in KAGRA is approximately 13.5 m, the support structure is less than 1 m. Because a
shorter support structure is more rigid, using this underground site is advantageous for
constructing a tall mirror suspension.

2.4.2. Cryogenics

The thermal noise of mirrors and their suspensions is a fundamental noise source for
laser interferometric GW detectors. A promising way to reduce thermal noise is to use
cooling mirrors and their suspensions at cryogenic temperatures. Therefore, the mirrors
and suspensions of the arm cavities in KAGRA were designed to be cooled to 20 K.

The KAGRA test-mass suspension, which is called a Type-A suspension, consists
of nine stages: the upper five stages are at room temperature and the lower four stages
are at cryogenic temperatures; they are called the Type-A tower and cryogenic payload,
respectively. The cryogenic payload is suspended from the Type-A bottom filter, which
is the bottom stage of the Type-A tower, and is stored in a cryostat. Figure 5 shows
a schematic of the KAGRA cryogenic system. KAGRA’s test masses are located at the
bottom of a cryogenic payload in the bottom four stages of the main mirror suspension (the
platform (PF), marionette (MN), intermediate mass (IM), and test mass (TM)). The MN,
IM, and TM are surrounded by the corresponding recoil masses (marionette recoil mass,
intermediate recoil mass, and recoil mass, respectively) to control the position and angle of
the mirror. The mirror is made of monocrystalline sapphire, which has an extremely low
mechanical loss of 10−8 at cryogenic temperatures [31], thereby reducing thermal noise.
The sapphire mirror has a cylindrical shape with a diameter of 22 cm and a thickness
of 15 cm. It is suspended using four sapphire fibers of 1.6 mm thickness and 350 mm
length, which can extract heat from sapphire mirrors effectively owing to their high thermal
conductivity at low temperatures [32]. In addition, sapphire mirrors have relatively low
absorption at the laser wavelength (1064 nm) [33], resulting in less heat being generated
during operation. The cryogenic payload is cooled through 6N (99.9999%) pure aluminum
heat links [34], which yield high thermal conductivity while maintaining low stiffness, thus
reducing the vibration transfer via heat links. In addition, they are connected to the MN
stage to avoid direct coupling of the vibration via heat links to sapphire mirror motions.

The cryogenic payload is stored in two layers of radiation shields to avoid heating
by thermal radiation. Sufficient cooling performance is obtained by cooling the inner
and outer radiation shields to 8 K and 80 K, respectively. The payload, except for the
sapphire parts and the inner side of the radiation shields, is coated with black plating called
SOLBLACK and diamond-like carbon, thus effectively utilizing thermal radiation to cool
the payload by obtaining a large emissivity. For continuous operation of the cooling system,
KAGRA uses four one-watt cryocoolers to cool the cryogenic payload and radiation shields.
Furthermore, two cryocoolers are used to cool the payload, and the others are used to
cool the radiation shields. However, this generates large vibrations during operation and
contaminates the sensitivity of the detector. Therefore, pulse-tube cryocoolers, which have
very low vibrations [35], are used, and a heat-link vibration isolation system (HLVIS) is
configured to further reduce the vibration transfer to the sapphire mirror via heat links.
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Figure 5. Schematic view of KAGRA’s cryogenic system. A side view of the cryostat from the direction
orthogonal to the arm (top) and another side view at an angle of 45◦ from the direction indicated in
the left panel (bottom). Adapted with permission from Ref. [8], ©2021 Oxford University Press.

3. Recent Status
3.1. Detector Performance during the O3GK Observation Run

In April 2019, the Advanced LIGO detectors and the Virgo detector started their
observation runs, which are called O3 [36]. In late March 2020, KAGRA was accepted to
join O3 as a member of the scientific collaboration with LIGO and Virgo. However, LIGO
and Virgo stopped their operations in March 2020 because of the COVID-19 pandemic. In
this situation, GEO 600, which is the interferometric GW observatory in Germany with an
arm length of 600 m [3], continued the observation, and GEO 600 and KAGRA started a
joint observation run called O3GK. This was the first international observation run and a
significant milestone for KAGRA.

One of the parameters describing the detector performance is the BNS inspiral range.
This is the average distance at which the detector can detect typical binary neutron star
mergers. The average BNS inspiral range of KAGRA in the O3GK was 660 kpc [37],
although the best value was approximately 1 Mpc, which was recorded during the commis-
sioning period. The interferometer configuration was PRFPMI, and the input power before
PRM was 5 W, corresponding to an intracavity power of 50 kW.

The sensitivity with the dominant noise in the O3GK observation run is shown in
Figure 6 [37]. As shown in the figure, most of the noise limiting the sensitivity was re-
vealed. The sensitivity at frequencies lower than 100 Hz was limited by the suspension
control noise. The details of the suspension control noise are described in Section 3.2.2.
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From 100 to 400 Hz, acoustic noise was found to pollute the sensitivity. At the ex-
perimental site, many instruments generate sound, and the vibrations of the vacuum
chamber caused by these sounds deteriorate the sensitivity. At the frequencies between
400 Hz and 2 kHz, the shot noise limits the sensitivity. Laser frequency noise is an-
other noise that limits the sensitivity at high frequencies above 2 kHz. Although a fre-
quency noise stabilization system was implemented, it was not optimized in the obser-
vation run. By optimizing the servo parameter, it will be reduced to lower than the
shot noise.

Another important factor in gravitational wave detectors is the duty factor, which is the
ratio of the time for which the interferometer is kept locked to the time of the observation
period. Because the interferometer can lose its lock owing to external disturbances, such as
earthquakes, a high duty factor is one of the major issues in constructing a GW detector.
The duty factor of KAGRA during O3GK was 53%, whereas that of GEO 600 was 78% [37].
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Figure 6. KAGRA’s sensitivity with dominant noises. Suspension control noise (<100 Hz), acoustic
noise (100 Hz∼400 Hz), shot noise (400 Hz∼2 kHz), and laser frequency noise (>2 kHz) limit the
sensitivity. The average BNS inspiral range was 660 kpc for the O3GK period. Further details are
shown in Ref. [37].

3.2. Toward the O4 Observation Run

The interferometer was sometimes difficult to lock during O3GK, especially on days
with large microseismic motions (the details are explained in Section 4.1.1). KAGRA plans
to upgrade the detector to improve the duty factor. In addition, because the sensitivity
of KAGRA during O3GK was limited by two primary noise sources, quantum shot noise
at high frequencies and suspension control noise at low frequencies, KAGRA also plans
to improve the detector sensitivity for the international joint observation run starting
from mid-December 2022 (O4) [38]. Furthermore, some technical difficulties inhibited the
cooling of the sapphire mirrors during O3; therefore, several studies for achieving cryogenic
operation have been performed for O4. KAGRA will start the O4 observation run with a
sensitivity of over 1 Mpc and will work to improve the sensitivity toward the end of O4
by taking an observation break. In the following sections, the KAGRA upgrade plans and
recent results on cryogenics are briefly reviewed.

3.2.1. Upgrade for Improving the Duty Factor

Seismic noise at low frequencies, especially microseismic noise, needs to be mitigated
to improve the duty factor because it significantly affects the detector’s stability. However,
passive vibration isolation systems for such low frequencies are challenging; thus, active
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vibration isolation using inertial sensors, such as a speed meter or accelerometer, is imple-
mented to control the vibration isolation system for sapphire mirrors. Three accelerometers
were installed on the main mirror suspensions for inertial control of the suspensions after
O3GK. They can detect seismic motion at the level of 10−7 m/

√
Hz at 0.2 Hz, which is

approximately the same as the microseismic motion on a typical day and one order of
magnitude smaller than that on a noisy day.

Another measure for improving detector stability is the installation of stronger actua-
tors on the payload of the main mirror suspensions. Cryogenic payloads have coil–magnet
actuators consisting of a coil and magnet, which move the suspension through electromag-
netic force. However, sometimes the actuator was saturated during lock acquisition and
observation, which triggered a lock loss in the interferometer. Therefore, a stronger actuator
avoids saturation of the actuators and improves the duty factor. However, the electrical
noise of analog circuits and DAC noise are coupled to sensitivity through actuators if the
actuator efficiency is too large. Therefore, it is necessary to make the actuator efficiency as
large as possible while maintaining a sufficiently low noise coupling in the observation
band. Figure 7 shows the actuator efficiencies of the MN and IM stages. The new MN
and IM actuators have efficiencies of 1.1 N/A and 55 mN/A, respectively, while the old
MN and IM actuators had efficiencies of 0.47 N/A and 18 mN/A, respectively [39]. Based
on the measured actuator efficiencies, the noise of analog electronics, and DAC noise,
the noise caused by the MN and IM actuators can be estimated as 8.8× 10−20m/

√
Hz

and 1.6 × 10−19m/
√

Hz at 10 Hz, respectively, which are below the target sensitivity
of KAGRA.

Figure 7. Actuator efficiencies of new coil–magnet actuators of the IM stage (left) and MN stage
(right) as functions of the relative displacement between coils and magnets.

3.2.2. Upgrade for Improving Sensitivity

The sensitivity of KAGRA during O3GK was limited by the quantum shot noise in
the high-frequency region. Thus, the replacement of the laser source with one of a higher
power is planned for O4. Because quantum shot noise is proportional to 1/

√
P, where

P is the intracavity power of an arm cavity, increasing the laser power can improve the
sensitivity at high frequencies. A new laser source can output 60 W, while the maximum
laser power of the current KAGRA laser source is 40 W. The performance of the new laser
is currently under evaluation.

The sensitivity in the low-frequency region is limited by the suspension control
noise. Especially below 50 Hz, it was contaminated by suspension control noise from
the main mirror suspensions. Because the suspension system in a GW detector has a
very complex structure, the suspensions have many resonant modes, which disturb the
interferometer’s operation. Therefore, local controls for damping these suspension res-
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onances are necessary, but can contaminate the sensitivity. Reducing the sensor noise
for damping controls is an effective way to mitigate control noise. The payload of a
main mirror suspension has reflective photosensors for damping controls [39]; however,
it has a large noise above 10 Hz, approximately 6 × 10−9m/

√
Hz for lateral motion

and 4× 10−8rad/
√

Hz for rotation. Therefore, optical levers [40] were installed at the
MN and PF stages, which have approximately 2× 10−9m/

√
Hz for lateral motion and

3× 10−10rad/
√

Hz for rotation.

3.2.3. Recent Results on Cryogenics

Cooling mirrors for reducing thermal noise are a unique feature of KAGRA, adding
certain difficulties related to cryogenics. One of them is molecular adsorption on the
cryogenic mirror surface, which causes variations in the reflectivity of the mirrors and laser
absorption in the molecular layers [41]. Because molecular layers of a few micrometers
cause significant changes in the sensitivity of KAGRA, the mirrors need to be frequently
warmed to desorb the molecules from the mirror surface. For this purpose, new heaters for
the desorption of molecules were newly installed on the IM stage of the cryogenic payload
to mitigate the downtime of observation. Owing to these new heaters, the downtime of the
desorption process is expected to reduce from several weeks to a few days.

Four sapphire mirrors were cooled to cryogenic temperatures in 2019. Figure 8 shows
an example of the cooling curve of the cryogenic system at the Y-end station from April to
May 2019. Because thermal radiation is the dominant cooling path over 100 K, the inner
radiation shield, mirror, marionette recoil mass, and HLVIS are cooled simultaneously. On
the other hand, because conductive cooling is the dominant path of cooling below 100 K,
cooling proceeds from the elements that are closer to the cryocoolers, in the order of HLVIS,
marionette recoil mass, and mirror.

Figure 8. Example of the cooling curves of KAGRA’s cryogenic system. The mirror reached 22 K
at 27 days after the start of cooling. The cooling speed drastically changed below 100 K because
of the increase in the thermal conductivity of the heat links and decrease in the specific heat. Each
component is shown in Figure 5.

During cooling in 2019, KAGRA faced a more serious problem. The molecular adsorp-
tion during the initial cooling was much greater than expected, and visible frost was formed
on the mirror surface. Figure 9 shows photographs of the mirror surface illuminated by a
green laser, with and without frost on the mirror. As shown in Figure 9, a very thick frost
was formed on the cryogenic mirror surface and caused significant scattering of the green
beam. Once the thick frost was formed, the cavity finesse for the 1064 nm laser dropped to
several hundred or less, while the finesse at room temperature was approximately 1500.
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Therefore, a new cooling scheme to prevent frost formation was considered and tested
from November 2020 to February 2021. The scheme involved cooling the mirrors step by
step and trapping molecules not on the mirror surface but on the surface of the radiation
shields. Owing to this new scheme, the KAGRA mirror was successfully cooled without
any thick frost that could be visually inspected.

Figure 9. Images of the mirror illuminated with a green laser. (Left) Image at room temperature. The
mirror surface is clean, and the green beam scattering is smaller than that at cryogenic temperature.
(Right) Image at cryogenic temperature. The mirror surface is covered with thick frost, and the green
beam is scattered on the surface.

4. Evaluations of the Underground Environment

A GW detector is a delicate system that is easily affected by environmental distur-
bances. The underground environment is expected to be quieter than that of the ground
surface, and its actual evaluation is important not only for KAGRA, but also for further GW
observatories, such as the ET. In this section, the current results of environmental studies in
KAGRA are explained in terms of both their benefits and difficulties. An overview of the
physical environmental monitoring system in KAGRA is described in Ref. [42].

4.1. Seismic Motion
4.1.1. Microseismic Motion

As discussed in Section 2.4.1, seismic motion at the frequency of the observational
windows at the experimental site is significantly reduced compared with that on the
ground surface. However, this reduction is inefficient at lower frequencies. Sometimes,
microseismic motions caused by sea waves disrupt the control of suspensions and the
interferometer. Japan is surrounded by two seas, the Pacific Ocean and the Sea of Japan,
which exhibit different seasonal behaviors. Figure 10 (top) shows the wave height of the
Pacific Ocean (Omaesaki in Shizuoka prefecture) and Sea of Japan (Wajima in Ishikawa
prefecture) from July 2019 to June 2020 [43]. Figure 10 (bottom) shows the seismic spectrum
at the KAGRA site on 12 October 2019 (green), December 2019 (cyan), and March 2020
(red). In the winter season, the waves of the Sea of Japan and the seismic motion at the
KAGRA site became relatively larger. In summer and autumn, the level of the sea waves
was usually low; however, sometimes it increased owing to a typhoon (for example, on 12
October 2019).

The relationship between the microseismic level and lock state of KAGRA’s main
interferometer during O3GK was studied [44]. Figure 11 shows the sea waves, seismic level
at the KAGRA site, and lock state of the KAGRA interferometer with a focus on the O3GK
term. The correlation between the sea waves and seismic level could be observed, and the
interferometer could not be locked when the sea was rough (>2 m).
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Figure 10. (Top): One-year data of the significant wave height in the Sea of Japan (Wajima) and
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Figure 11. Comparison of the microseisms and the observation state of KAGRA during O3GK [44].
The blue and orange lines show the significant wave height in the Sea of Japan (Wajima) and Pacific
Ocean (Omaesaki), respectively, opened in NOWPHAS [43]. The black markers are the RMS values
of the seismic velocity in the 0.1–0.3 mHz band for every hour, measured at the X-end of KAGRA.
The bottom bar graph shows the observation status of KAGRA during O3GK [37], with the science
mode (green) and others (red, mainly the unlocked period).

4.1.2. Seismic Newtonian Noise

The motion of the mass around the experimental site induces a fluctuation in Newton’s
gravity and shakes the test-mass mirrors. This is called Newtonian noise (NN) [45]. It
cannot be shielded against and is counted as fundamental noise.
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Seismic motion is known to be the primary source of NN and has been intensively
studied in GW detector research. For example, it is known that seismic Rayleigh waves
propagating on a surface are reduced in underground facilities. Figure 12 shows the
estimation of the NN caused by seismic body waves, seismic Rayleigh waves, and room
acoustic waves for KAGRA [46]. All lines are significantly below the design sensitivity of
KAGRA.
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Figure 12. The estimated Newtonian noise from the seismic body waves (blue), seismic Rayleigh
waves (orange), and acoustic fields in the experimental site (green) for KAGRA [46] compared with
the O3GK sensitivity (black, solid) and design sensitivity (black, dashed) [37] of KAGRA.

4.2. Acoustic Field

The sound at the experimental site is considered environmental noise. Most of the
main optics, such as test-mass mirrors or photodetectors for the GW detection port, are
suspended in vacuum chambers and isolated from the acoustic field in the experimental
room. However, the laser source and other auxiliary optics are not located in vacuum
(this is not specified for the underground environment; however, the acoustic response
of the KAGRA interferometer was carefully studied for the O3GK configuration [47]).
Infrasound, which is a low-frequency sound that the human ear cannot detect, is also
of interest because it causes the expansion and contraction of the arm tunnel [42]. The
spectrum of the acoustic field in KAGRA’s corner station (CS) and X-arm is compared with
those of the Virgo central experimental building (CEB, a ground-surface facility) and Matra
Gravitational and Geophysical Laboratory (MGGL, an underground facility) in Figure 13
under quiet conditions without human activity. The acoustic levels are similar for both
datasets, and the difference between the underground and on-surface environments is not
significant. Notably, however, the underground environment is quieter and more stable
than the on-surface environment with respect to transient external acoustic disturbances,
such as agricultural work or airplanes.

One unique aspect of the acoustic properties of KAGRA is that the reverberation
time at the experimental site is much shorter than those of LIGO and Virgo; therefore, a
transient sound decays quickly in KAGRA. This is because of the difference in the inner
surfaces of the walls rather than the underground location. LIGO and Virgo have painted
hard concrete walls, and they reflect the sound efficiently. On the other hand, the walls of
KAGRA are coated with bubbling urethane and plastic paint, and they work as acoustic
absorbers (Figure 14). A paper on the quantitative evaluation of this topic is in preparation.
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Figure 14. Schematic view of the walls in the experimental sites of KAGRA and LIGO/Virgo.

4.3. Magnetic Field
4.3.1. Magnetic Noise Estimation

A magnetic field can cause displacement noise through the force on the mirrors and/or
sensing noise through the electronics.

The magnetic field in the cryostat was measured at the X-end. The results are presented
in Figure 15 (top, red graph), and the peaks at 1 and 1.7 Hz correspond to the periods of
the motors for the cryocoolers (1 and 0.6 s). The coupling functions in case 1 (measured for
LIGO) and case 2 (measured for Virgo) were used to estimate the contribution of magnetic
noise to the sensitivity of the DARM because it has not yet been measured for KAGRA. The
approximated coupling function between the magnetic field and DARM displacement is
written as

C( f ) = κ ×
(

f
f0

)−β

[m/T], (1)

where κ, β, and f0 (κ = 8× 10−8 m/T, β = 2.67 in LIGO [50], κ = 5.6× 10−8 m/T, β = 3.3
in Virgo [51], and f0 = 10 Hz for both detectors) are the experimental parameters used
to characterize the data. Using these coupling functions, the magnetic noise is projected
onto the DARM sensitivity, as shown in Figure 15 (bottom). According to the estimation,
magnetic noise will not contaminate the design sensitivity.
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Figure 15. (Top) Magnetic field measured in a cryostat for the ETMX with cryocoolers. The gray line
shows the measurement limit, including the sensor and ADC noises. (Bottom) Expected magnetic
noise in the DARM sensitivity of KAGRA, calculated using the magnetic field in the top plot and the
coupling functions evaluated for LIGO (blue) and Virgo (orange).

4.3.2. Schumann Resonance

The Schumann resonance is a global electromagnetic resonance with frequencies of
7.8, 14.1, 20.3 Hz, and so on, and an amplitude of approximately 1 pT/

√
Hz, which is

generated and excited by lightning discharges in the cavity formed by the Earth’s surface
and ionosphere. Its contribution to a single GW detector as noise is expected to be smaller
than that of the local magnetic field (for example, coming from power lines or electrical
apparatuses); however, it has coherence between far-away points on Earth and is a common
noise for the global GW observation network, especially when searching for stochastic
background GWs [52,53].

Short-term Schumann resonance measurements were performed at the KAGRA exper-
imental site during the construction phase [54,55]. Figure 16 shows the recent results of the
measurements outside the tunnel and inside the KAGRA X-arm tunnel. The amplitude of
the Schumann resonance (X-direction) is larger inside the tunnel than outside, a behavior
that was also observed in the previous two measurements. More detailed studies, such as
remeasurements and simulations, are ongoing to understand this behavior.
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Figure 16. Schumann resonance of magnetic fields measured outside the tunnel (dashed) and inside
the X-arm (solid). Red (blue) corresponds to the direction along the X(Y)-arm.

4.3.3. Transient Magnetic Noise from Lightning Strikes

Lightning strikes are well-known high-energy phenomena that emit transient magnetic
noise to the atmosphere. When a lightning strike occurs close to KAGRA, a glitch event
can be detected by both magnetometers and the GW channel of the main interferometer of
KAGRA. Figure 17 shows an example of a lightning event [56]. This is the first evidence
that a GW detector constructed in an underground facility is excited by lightning strikes in
the atmosphere. This means that lightning is a background event of a burst-GW search, but
it can be easily identified using the current system of environmental monitoring.
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Figure 17. Time–series data of the magnetometers inside the KAGRA site (top) and KAGRA’s main
interferometer (whitened strain signal) (bottom) for nearby lightning. The origin of the horizontal
axis (22 March 2022, 02:38:40.38) is the time of a lightning strike. For the magnetometers, the DC
value of geomagnetism (∼50 µT) is subtracted. Reprinted with permission from Ref. [56], ©2021
IOP Publishing.
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4.4. Facility Issues

Although underground facilities provide many benefits, they also present challenges,
as explained in this paper. A limitation in space leads to poor extensibility, making it tough
(and expensive) to build a filter cavity or long signal-recycling cavity in KAGRA.

In general, the temperature of an underground cave is stable throughout the seasons.
However, at the KAGRA experimental site, the room temperature easily changes when the
working status of the apparatus changes. The room-temperature change affects the control
and alignment of the interferometer. For example, it causes a drift in the geometrical anti-
spring filters for vibration isolation in the vertical direction. Typically, room temperature
must be maintained within 0.2 ◦C.

Springwater is another practical issue for underground facilities. Because it can
easily pass through the ground and reach the experimental area, it should be removed
using pumps and waterways to avoid any accidents. These devices generate additional
environmental noise for the GW detector, which must be mitigated. Newtonian noise
coming from fluid in a drainage pipe is one possible noise, and its study in simulations is
ongoing.

5. Future Plan

GW detection has opened up a new window in astronomy and astrophysics, with
further developments expected in the future. Increasing the number of observable events
by expanding the observation range and improving the estimation accuracy of source
parameters with higher SNR signals are essential. A new detector in the same frequency
band with a sensitivity one order of magnitude higher than that of the current GW detectors
is under development. ET, which is proposed to be built in Europe, has an arm length of
10 km, mirrors cooled to cryogenic temperatures [9], and underground construction. In
addition, the LIGO project proposes the construction of a detector named Cosmic Explorer
with an arm length of 40 km, whose sensitivity will be an order of magnitude higher than
that of the Advanced LIGO detectors [10]. Another approach to advancing GW astronomy
is launching GW observatories into space to observe GWs in lower frequency bands, such
as with LISA [57], DECIGO [58], and TianQuin [59].

Although these attempts are being vigorously pursued, construction may take more
than a decade. In the meantime, further improvement in the sensitivity of existing detectors
is essential for the continuous development of GW astronomy. Advanced LIGO plus
(A+) and Advanced Virgo Plus (AdV+) [60], which are upgraded detectors of Advanced
LIGO and Advanced Virgo, are planned, and each is expected to improve the sensitivity
by a factor of two compared to the current design sensitivity. In addition, in KAGRA,
various proposals have been discussed [61]. In this section, some of the proposed plans are
introduced.

One of the proposals involves improvement of the sapphire mirror. By making the
mirror larger and heavier, domination of the thermal noise of the suspension and the
quantum radiation pressure noise over the sensitivity in the low-frequency region will be
reduced. Moreover, by increasing the beam size, the coating’s thermal noise is expected
to be reduced. The currently used sapphire mirror is 22 cm in diameter, 15 cm thick, and
weighs 23 kg, which was the largest size that could be made when it was constructed. On
the other hand, as a result of research and development, it is expected that a 100 kg sapphire
crystal with a diameter of 36 cm and thickness of 25 cm will be created in a few years.

According to the quantum uncertainty principle, the product of the amplitude and
phase fluctuations of light has a finite magnitude, and the two fluctuations cannot be
simultaneously reduced to zero. A quantum squeezing technique is used to reduce only
one of these fluctuations without violating the quantum uncertainty principle by sacrificing
the other fluctuation. In Advanced LIGO and Advanced Virgo, reduction of the quantum
shot noise, which is caused by quantum phase fluctuations, has been successful [62,63].
However, the intensity fluctuation becomes larger under the squeezed condition in the
phase fluctuation, and the radiation pressure noise, which is caused by the quantum
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amplitude fluctuation, becomes larger. Therefore, a new technique, called frequency-
dependent squeezing, is currently under development. This technique uses an optical
resonator called a filter cavity to add frequency dependence to the squeezing process. While
the quantum phase fluctuation is squeezed in the high-frequency region, where quantum
shot noise is dominant, the quantum amplitude fluctuation is squeezed in the low-frequency
region, where quantum radiation pressure noise is dominant. Thus, effective quantum noise
reduction across the entire bandwidth is achieved. The frequency-dependent squeezing
technique was demonstrated by the MIT group in the U.S. [64] and the NAOJ group in
Japan [65–67] and will be installed in Advanced LIGO and Advanced Virgo before O4. It is
anticipated that this technique will be adopted by KAGRA.

The improved sensitivity obtained by combining these techniques is shown in
Figure 18. KAGRA’s sensitivity can be improved to the same level as that of A+ and
AdV+. Because the mirrors of KAGRA are cooled to cryogenic temperatures, it is difficult to
reduce the noise by increasing the laser power, as is planned for A+ and AdV+. Increasing
the laser power makes it difficult to cool the mirror to a cryogenic temperature owing to
the heat caused by the absorption of the mirror. Because the quantum and thermal noise
can be reduced without increasing the laser power, the frequency-dependent squeezing
technique and the use of a larger sapphire mirror are the best strategies for improving the
sensitivity of KAGRA. This is also the case for the next generation of GW detectors, for
some of which cryogenic mirrors are planned, and the improved sensitivity of KAGRA can
serve as a case study for them.

Figure 18. Estimated sensitivity curve after the modifications described in this section. Adapted with
permission from Ref. [61], ©2020 American Physical Society.

6. Conclusions

In this article, the current status and future upgrades of KAGRA were reviewed. The
first joint observation run in 2020 was a major milestone for KAGRA; however, further
upgrades are necessary in order to contribute to gravitational wave astrophysics. KAGRA’s
key features, the suspensions and cryogenic system, are being upgraded, which is signif-
icantly important for the next observation run. Evaluations of the unique underground
environment of KAGRA have also progressed, and some topics are progressing ahead of
LIGO and Virgo. GW detection with KAGRA is vital for promoting GW astronomy and
will also serve as the basis for introducing new technologies in future GW observatories.
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