9，Quantum theory of Nonlinear Optics

1．Degenerate Parametric Amplification
2．Optical Parametric Oscillator
3．Third－Harmonic Generation
4．Four－Wave Mixing

5．Stimulated Raman effect

Ref：
Ch． 16 in＂Quantum Optics，＂by M．Scully and M．Zubairy．
ch． 8 in＂Quantum Optics，＂by D．Wall and G．Milburn．
Ch． 9 in＂The Quantum Theory of Light＂，by R．Loudon．

Squeezed State

v define the squeezed state as

$$
\left|\Psi_{s}\right\rangle=\hat{S}(\xi)|\Psi\rangle
$$

－where the unitary squeeze operator

$$
\hat{S}(\xi)=\exp \left[\frac{1}{2} \xi^{*} \hat{a}^{2}-\frac{1}{2} \xi \hat{a}^{\dagger 2}\right]
$$

where $\xi=r \exp (i \theta)$ is an arbitrary complex number．
－squeeze operator is unitary，$\hat{S}^{\dagger}(\xi)=\hat{S}^{-1}(\xi)=\hat{S}(-\xi)$ ，and the unitary transformation of the squeeze operator，

$$
\begin{aligned}
\hat{S}^{\dagger}(\xi) \hat{a} \hat{S}(\xi) & =\hat{a} \cosh r-\hat{a}^{\dagger} e^{i \theta} \sinh r \\
\hat{S}^{\dagger}(\xi) \hat{a}^{\dagger} \hat{S}(\xi) & =\hat{a}^{\dagger} \cosh r-\hat{a} e^{-i \theta} \sinh r
\end{aligned}
$$

for $|\Psi\rangle$ is the vacuum state $|0\rangle$ ，the $\left|\Psi_{s}\right\rangle$ state is the squeezed vacuum，

Squeezed Vacuum State

जfor $|\Psi\rangle$ is the vacuum state $|0\rangle$ ，the $\left|\Psi_{s}\right\rangle$ state is the squeezed vacuum，

$$
|\xi\rangle=\hat{S}(\xi)|0\rangle,
$$

כ the variances for squeezed vacuum are

$$
\begin{aligned}
\Delta \hat{a}_{1}^{2} & =\frac{1}{4}\left[\cosh ^{2} r+\sinh ^{2} r-2 \sinh r \cosh r \cos \theta\right], \\
\Delta \hat{a}_{2}^{2} & =\frac{1}{4}\left[\cosh ^{2} r+\sinh ^{2} r+2 \sinh r \cosh r \cos \theta\right],
\end{aligned}
$$

（）for $\theta=0$ ，we have

$$
\Delta \hat{a}_{1}^{2}=\frac{1}{4} e^{-2 r}, \quad \text { and } \quad \Delta \hat{a}_{2}^{2}=\frac{1}{4} e^{+2 r},
$$

and squeezing exists in the \hat{a}_{1} quadrature．
Э for $\theta=\pi$ ，the squeezing will appear in the \hat{a}_{2} quadrature．

Quadrature Operators

v define a rotated complex amplitude at an angle $\theta / 2$

$$
\hat{Y}_{1}+i \hat{Y}_{2}=\left(\hat{a}_{1}+i \hat{a}_{2}\right) e^{-i \theta / 2}=\hat{a} e^{-i \theta / 2},
$$

where

$$
\binom{\hat{Y}_{1}}{\hat{Y}_{2}}=\left(\begin{array}{cc}
\cos \theta / 2 & \sin \theta / 2 \\
-\sin \theta / 2 & \cos \theta / 2
\end{array}\right)\binom{\hat{a}_{1}}{\hat{a}_{2}}
$$

Э then $\hat{S}^{\dagger}(\xi)\left(\hat{Y}_{1}+i \hat{Y}_{2}\right) \hat{S}(\xi)=\hat{Y}_{1} e^{-r}+i \hat{Y}_{2} e^{r}$ ，
－the quadrature variance

$$
\Delta \hat{Y}_{1}^{2}=\frac{1}{4} e^{-2 r}, \quad \Delta \hat{Y}_{2}^{2}=\frac{1}{4} e^{+2 r}, \quad \text { and } \quad \Delta \hat{Y}_{1} \Delta \hat{Y}_{2}=\frac{1}{4},
$$

－in the complex amplitude plane the coherent state error circle is squeezed into an error ellipse of the same area，

国立地帾degree of squeezing is determined by $r=|\xi|$ which is called the squeezed

Generations of Squeezed States

\checkmark
Generation of quadrature squeezed light are based on some sort of parametric process utilizing various types of nonlinear optical devices．

Э for degenerate parametric down－conversion，the nonlinear medium is pumped by a field of frequency ω_{p} and that field are converted into pairs of identical photons，of frequency $\omega=\omega_{p} / 2$ each，

$$
\hat{H}=\hbar \omega \hat{a}^{\dagger} \hat{a}+\hbar \omega_{p} \hat{b}^{\dagger} \hat{b}+i \hbar \chi^{(2)}\left(\hat{a}^{2} \hat{b}^{\dagger}-\hat{a}^{\dagger 2} \hat{b}\right),
$$

where b is the pump mode and a is the signal mode．
－assume that the field is in a coherent state $\left|\beta e^{-i \omega_{p} t}\right\rangle$ and approximate the operators \hat{b} and \hat{b}^{\dagger} by classical amplitude $\beta e^{-i \omega_{p} t}$ and $\beta^{*} e^{i \omega_{p} t}$ ，respectively，
－we have the interaction Hamiltonian for degenerate parametric down－conversion，

$$
\hat{H}_{I}=i \hbar\left(\eta^{*} \hat{a}^{2}-\eta \hat{a}^{\dagger 2}\right),
$$

where $\eta=\chi^{(2)} \beta$ ．

Generations of Squeezed States

-

we have the interaction Hamiltonian for degenerate parametric down-conversion,

$$
\hat{H}_{I}=i \hbar\left(\eta^{*} \hat{a}^{2}-\eta \hat{a}^{\dagger 2}\right)
$$

where $\eta=\chi^{(2)} \beta$, and the associated evolution operator,

$$
\hat{U}_{I}(t)=\exp \left[-i \hat{H}_{I} t / \hbar\right]=\exp \left[\left(\eta^{*} \hat{a}^{2}-\eta \hat{a}^{\dagger 2}\right) t\right] \equiv \hat{S}(\xi),
$$

with $\xi=2 \eta t$.
(for degenerate four-wave mixing, in which two pump photons are converted into two signal photons of the same frequency,

$$
\hat{H}=\hbar \omega \hat{a}^{\dagger} \hat{a}+\hbar \omega \hat{b}^{\dagger} \hat{b}+i \hbar \chi^{(3)}\left(\hat{a}^{2} \hat{b}^{\dagger 2}-\hat{a}^{\dagger 2} \hat{b}^{2}\right)
$$

) the associated evolution operator,

$$
\hat{U}_{I}(t)=\exp \left[\left(\eta^{*} \hat{a}^{2}-\eta \hat{a}^{\dagger 2}\right) t\right] \equiv \hat{S}(\xi)
$$

Generations of Squeezed States

Nonlinear optics:

Squeezing in an Optical Parametric Oscillator

－
when the nonlinear medium is placed within an optical cavity，oscillations build up inside and we have an optical parametric oscillator（OPO）．
？this is a preferred method to generate squeezing，since the interaction is typically very weak and confining the light in a cavity helps to sizable effect by increasing the interaction time，
－loss from the cavity mirrors should be considered now，

$$
\hat{H}_{I}=i \hbar\left(\eta^{*} \hat{a}^{2}-\eta \hat{a}^{\dagger 2}\right),
$$

（the dissipation and fluctuation should be included，

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{a} & =-\eta \hat{a}^{\dagger}-\frac{\Gamma}{2} \hat{a}+\hat{F}(t) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{a}^{\dagger} & =-\eta \hat{a}-\frac{\Gamma}{2} \hat{a}^{\dagger}+\hat{F}^{\dagger}(t)
\end{aligned}
$$

where Γ represents the cavity decay and $\hat{F}(t)$ is the associated noise operator，

Squeezing in an Optical Parametric Oscillator

v for OPO,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{a} & =-\eta \hat{a}^{\dagger}-\frac{\Gamma}{2} \hat{a}+\hat{F}(t) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{a}^{\dagger} & =-\eta \hat{a}-\frac{\Gamma}{2} \hat{a}^{\dagger}+\hat{F}^{\dagger}(t)
\end{aligned}
$$

where Γ represents the cavity decay and $\hat{F}(t)$ is the associated noise operator,
Э again the expectation value of the noise operator is zero, but with non-zero variances,

$$
\begin{aligned}
& \left\langle\hat{F}_{a}(t)\right\rangle_{R}=\left\langle\hat{F}_{a}^{\dagger}(t)\right\rangle_{R}=0 \\
& \left\langle\hat{F}_{a}^{\dagger}(t) \hat{F}_{a}^{\dagger}\left(t^{\prime}\right)\right\rangle_{R}=\left\langle\hat{F}_{a}(t) \hat{F}_{a}\left(t^{\prime}\right)\right\rangle_{R}=0 \\
& \left\langle\hat{F}_{a}^{\dagger}(t) \hat{F}_{a}\left(t^{\prime}\right)\right\rangle_{R}=\Gamma \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

Optical Parametric Oscillator in steady state

v the expectation values $\langle\hat{a}\rangle$ and $\left\langle\hat{a}^{\dagger}\right\rangle$ for OPO，

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\hat{a}\rangle & =-\eta\left\langle\hat{a}^{\dagger}\right\rangle-\frac{\Gamma}{2}\langle\hat{a}\rangle \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\hat{a}^{\dagger}\right\rangle & =-\eta\langle\hat{a}\rangle-\frac{\Gamma}{2}\left\langle\hat{a}^{\dagger}\right\rangle
\end{aligned}
$$

where we have used $\langle\hat{F}(t)\rangle=\left\langle\hat{F}^{\dagger}\right\rangle=0$ ，and the solution of this set of coupled equations is

$$
\begin{aligned}
\langle\hat{a}(t)\rangle & =\left[\langle\hat{a}(0)\rangle \cosh \eta t-\left\langle\hat{a}^{\dagger}(0)\right\rangle \sinh \eta t\right] e^{-\Gamma t / 2}, \\
\left\langle\hat{a}^{\dagger}(t)\right\rangle & =\left[\left\langle\hat{a}^{\dagger}(0)\right\rangle \cosh \eta t-\langle\hat{a}(0)\rangle \sinh \eta t\right] e^{-\Gamma t / 2},
\end{aligned}
$$

－it is clear that for an OPO operating below threshold，$\Gamma / 2>\eta$ ，in the steady state we have

$$
\langle\hat{a}\rangle_{S S}=\left\langle\hat{a}^{\dagger}\right\rangle_{S S}=0,
$$

Optical Parametric Oscillator in steady state

－next we look at the bilinear quantities $\left\langle\hat{a}^{2}\right\rangle,\left\langle\hat{a}^{\dagger}\right\rangle$ ，and $\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle$ ，
Э define

$$
A_{1}=\left\langle\hat{a}^{2}\right\rangle, \quad A_{2}=\left\langle\left(\hat{a} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{a}\right)\right\rangle, \quad A_{3}=\left\langle\hat{a}^{\dagger 2}\right\rangle,
$$

which satisfy the following set of equations，

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} A_{1} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\hat{a}^{2}\right\rangle=-\eta A_{2}-\Gamma A_{1}+\langle(\hat{a} \hat{F}+\hat{F} \hat{a})\rangle, \\
\frac{\mathrm{d}}{\mathrm{~d} t} A_{2} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\left(\hat{a} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{a}\right)\right\rangle=-2 \eta A_{3}-2 \eta A_{1}-\Gamma A_{2}+\left\langle\left(\hat{a} \hat{F}^{\dagger}+\hat{F}^{\dagger} \hat{a}+\hat{a}^{\dagger} \hat{F}+\hat{F} \hat{a}^{\dagger}\right)\right\rangle \\
\frac{\mathrm{d}}{\mathrm{~d} t} A_{3} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\hat{a}^{\dagger 2}\right\rangle=-\eta A_{2}-\Gamma A_{3}+\left\langle\left(\hat{a}^{\dagger} \hat{F}^{\dagger}+\hat{F}^{\dagger} \hat{a}^{\dagger}\right)\right\rangle,
\end{aligned}
$$

Optical Parametric Oscillator in steady state

v for OPO，

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{a} & =-\eta \hat{a}^{\dagger}-\frac{\Gamma}{2} \hat{a}+\hat{F}(t) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{a}^{\dagger} & =-\eta \hat{a}-\frac{\Gamma}{2} \hat{a}^{\dagger}+\hat{F}^{\dagger}(t)
\end{aligned}
$$

V in order to determine the quantities involving the noise operators \hat{F} and \hat{F}^{\dagger} ，we rewrite above equations in the matrix form

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{A}=-\mathbf{M A}+\mathbf{F}
$$

where

$$
\mathbf{A}=\left[\begin{array}{c}
\hat{a} \\
\hat{a}^{\dagger}
\end{array}\right], \quad \mathbf{M}=\left[\begin{array}{cc}
\frac{\Gamma}{2} & \eta \\
\eta & \frac{\Gamma}{2}
\end{array}\right], \quad \mathbf{F}=\left[\begin{array}{c}
\hat{F} \\
\hat{F}^{\dagger}
\end{array}\right],
$$

Optical Parametric Oscillator in steady state

v for OPO，

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{A}=-\mathbf{M A}+\mathbf{F}
$$

which has a formal solution，

$$
\mathbf{A}(t)=e^{-\mathbf{M} t} \mathbf{A}(0)+\int_{0}^{t} \mathrm{~d} t^{\prime} e^{-\mathbf{M}\left(t-t^{\prime}\right)} \mathbf{F}\left(t^{\prime}\right)
$$

－assume at the initial time $t=0$ ，the field operators are statistically independent of the fluctuations，i．e．$\langle\hat{a}(0) \hat{F}(t)\rangle=0$ etc．，we obtain

$$
\left\langle\mathbf{F}^{\dagger}(t) \mathbf{A}(t)\right\rangle=\left(\begin{array}{cc}
\left\langle\hat{F}^{\dagger} \hat{a}\right\rangle & \langle\hat{F} \hat{a}\rangle \\
\left\langle\hat{F}^{\dagger} \hat{a}^{\dagger}\right\rangle & \left\langle\hat{F} \hat{a}^{\dagger}\right\rangle
\end{array}\right)=\frac{\Gamma}{2}\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)
$$

כ in a similar manner，

$$
\left\langle\mathbf{A}^{\dagger}(t) \mathbf{F}(t)\right\rangle=\left(\begin{array}{cc}
\left\langle\hat{a}^{\dagger} \hat{F}\right\rangle & \left\langle\hat{a}^{\dagger} \hat{F}^{\dagger}\right\rangle \\
\langle\hat{a} \hat{F}\rangle & \left\langle\hat{a} \hat{F}^{\dagger}\right\rangle
\end{array}\right)=\frac{\Gamma}{2}\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right),
$$

Optical Parametric Oscillator in steady state

כ in order to determine the quantities involving the noise operators \hat{F} and \hat{F}^{\dagger} ，we rewrite above equations in the matrix form

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} A_{1} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\hat{a}^{2}\right\rangle=-\eta A_{2}-\Gamma A_{1}+\langle(\hat{a} \hat{F}+\hat{F} \hat{a})\rangle \\
\frac{\mathrm{d}}{\mathrm{~d} t} A_{2} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\left(\hat{a} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{a}\right)\right\rangle=-2 \eta A_{3}-2 \eta A_{1}-\Gamma A_{2}+\left\langle\left(\hat{a} \hat{F}^{\dagger}+\hat{F}^{\dagger} \hat{a}+\hat{a}^{\dagger} \hat{F}+\hat{F} \hat{a}^{\dagger}\right)\right\rangle \\
\frac{\mathrm{d}}{\mathrm{~d} t} A_{3} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\hat{a}^{\dagger 2}\right\rangle=-\eta A_{2}-\Gamma A_{3}+\left\langle\left(\hat{a}^{\dagger} \hat{F}^{\dagger}+\hat{F}^{\dagger} \hat{a}^{\dagger}\right)\right\rangle
\end{aligned}
$$

－all the correlation functions involving the noise operators above are zero except $\left\langle\hat{F} \hat{a}^{\dagger}\right\rangle=\left\langle\hat{a} \hat{F}^{\dagger}\right\rangle=\Gamma / 2$ ，then

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} A_{1} & =-\eta A_{2}-\Gamma A_{1} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} A_{2} & =-2 \eta A_{3}-2 \eta A_{1}-\Gamma A_{2}+\Gamma \\
\frac{\mathrm{d}}{\mathrm{~d} t} A_{3} & =-\eta A_{2}-\Gamma A_{3}
\end{aligned}
$$

Optical Parametric Oscillator in steady state

) the steady state solutions for

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} A_{1} & =-\eta A_{2}-\Gamma A_{1} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} A_{2} & =-2 \eta A_{3}-2 \eta A_{1}-\Gamma A_{2}+\Gamma \\
\frac{\mathrm{d}}{\mathrm{~d} t} A_{3} & =-\eta A_{2}-\Gamma A_{3}
\end{aligned}
$$

are

$$
\begin{aligned}
A_{1}=\left\langle\hat{a}^{2}\right\rangle_{S S} & =\frac{-\Gamma \eta}{4\left[(\Gamma / 2)^{2}-\eta^{2}\right]}, \\
A_{2}=\left\langle\left(\hat{a} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{a}\right)\right\rangle_{S S} & =\frac{\Gamma^{2}}{4\left[(\Gamma / 2)^{2}-\eta^{2}\right]}, \\
A_{3}=\left\langle\hat{a}^{\dagger 2}\right\rangle_{S S} & =\frac{-\Gamma \eta}{4\left[(\Gamma / 2)^{2}-\eta^{2}\right]},
\end{aligned}
$$

Optical Parametric Oscillator in steady state

to see the squeezing, define the rotating quadrature operators,

$$
\hat{X}_{1}=\frac{1}{2}\left(\hat{a} e^{-i \theta / 2}+\hat{a}^{\dagger} e^{i \theta / 2}\right), \quad \hat{X}_{2}=\frac{1}{2 i}\left(\hat{a} e^{-i \theta / 2}-\hat{a}^{\dagger} e^{i \theta / 2}\right),
$$

כ the variances of these operators in the steady state are,

$$
\begin{aligned}
\left\langle\Delta \hat{X}_{1}\right\rangle_{S S} & =\frac{1}{4}\left\langle\left(\hat{a} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{a}+\hat{a}^{2} e^{-i \theta}+\hat{a}^{2} e^{i \theta}\right)\right\rangle-\frac{1}{4}\left\langle\left(\hat{a} e^{-i \theta / 2}+\hat{a}^{\dagger} e^{i \theta / 2}\right)\right\rangle^{2} \\
& =\frac{1}{8} \frac{\Gamma}{\frac{\Gamma}{2}+\eta}, \\
\left\langle\Delta \hat{X}_{2}\right\rangle_{S S} & =\frac{1}{8} \frac{\Gamma}{\frac{\Gamma}{2}-\eta},
\end{aligned}
$$

where we have taken $\theta=0$,

Optical Parametric Oscillator in steady state

ω the best squeezing in an OPO is achieved on the oscillation threshold，$\eta=\Gamma / 2$ ， giving

$$
\left\langle\Delta \hat{X}_{1}\right\rangle_{S S}=\frac{1}{8}
$$

－this however represents only 50% squeezing below the vacuum level，
ω in OPO，pairs of correlated（signal and idler）photons are producing，
\rightarrow but the cavity mirror lets some single photon escape form each pair，
ϑ so that some of the quantum correlation（and with it the squeezing）is lost，
ϑ
a theoretical limit of 50% squeezing is unattractive but the situation is different with the field outside the cavity，

Spectrum of squeezing for the parametric oscillator

velow the threshold，the Hamiltonian for a parametric oscillator is

$$
\hat{H}_{S}=\hbar \omega_{0} \hat{a}^{\dagger} \hat{a}+\frac{i \hbar}{2}\left(\epsilon \hat{a}^{\dagger 2}-\epsilon^{*} \hat{a}^{2}\right)
$$

then

$$
\begin{aligned}
& {\left[\mathbf{A}+\left(i \omega-\frac{\gamma}{2}\right) \mathbf{1}\right] \mathbf{a}(\omega)=-\sqrt{\gamma} \mathbf{a}_{I}(\omega)} \\
& {\left[\mathbf{A}+\left(i \omega+\frac{\gamma}{2}\right) \mathbf{1}\right] \mathbf{a}(\omega)=+\sqrt{\gamma} \mathbf{a}_{O}(\omega)}
\end{aligned}
$$

where

$$
\mathbf{A}=\left(\begin{array}{cc}
-i \omega_{0} & \epsilon \\
\epsilon^{*} & i \omega_{0}
\end{array}\right)
$$

－the Fourier components for the output field is

$$
\hat{a}_{O}(\omega)=\frac{1}{\left[\frac{\gamma}{2}-i\left(\omega-\omega_{0}\right)^{2}-|\epsilon|^{2}\right]}\left\{\left[\left(\frac{\gamma}{2}\right)^{2}+\left(\omega-\omega_{0}\right)^{2}+|\epsilon|^{2}\right] \hat{a}_{I}(\omega)+\epsilon \gamma \hat{a}_{I}^{\dagger}(-\omega)\right\},
$$

Spectrum of squeezing for the parametric oscillator

v the Fourier components for the output field is

$$
\hat{a}_{O}(\omega)=\frac{1}{\left[\frac{\gamma}{2}-i\left(\omega-\omega_{0}\right)^{2}-|\epsilon|^{2}\right]}\left\{\left[\left(\frac{\gamma}{2}\right)^{2}+\left(\omega-\omega_{0}\right)^{2}+|\epsilon|^{2}\right] \hat{a}_{I}(\omega)+\epsilon \gamma \hat{a}_{I}^{\dagger}(-\omega)\right\},
$$

－define the quadrature operators，

$$
\hat{X}_{1}=\frac{1}{2}\left(\hat{a}_{O} e^{-i \theta / 2}+\hat{a}_{O}^{\dagger} e^{i \theta / 2}\right), \quad \hat{X}_{2}=\frac{1}{2 i}\left(\hat{a}_{O} e^{-i \theta / 2}-\hat{a}_{O}^{\dagger} e^{i \theta / 2}\right),
$$

where θ is the phase of the pump，
we find the following correlations，

$$
\begin{aligned}
& \left\langle: \hat{X}_{1}(\omega), \hat{X}_{1}\left(\omega^{\prime}\right):\right\rangle=\frac{2 \gamma|\epsilon|}{\left(\frac{\gamma}{2}-|\epsilon|\right)^{2}+\omega^{2}} \delta\left(\omega+\omega^{\prime}\right), \\
& \left\langle: \hat{X}_{2}(\omega), \hat{X}_{2}\left(\omega^{\prime}\right):\right\rangle=\frac{-2 \gamma|\epsilon|}{\left(\frac{\gamma}{2}+|\epsilon|\right)^{2}+\omega^{2}} \delta\left(\omega+\omega^{\prime}\right),
\end{aligned}
$$

国立清華 where $\langle: \hat{U}, \hat{V}:\rangle=\langle\hat{U} \hat{V}\rangle-\langle\hat{U}\rangle\langle\hat{V}\rangle$ ，and the input field \hat{a}_{I} has been taken to be in National tsing Hua ufhe

Spectrum of squeezing for the parametric oscillator

－we find the following correlations，

$$
\begin{aligned}
& \left\langle: \hat{X}_{1}(\omega), \hat{X}_{1}\left(\omega^{\prime}\right):\right\rangle=\frac{2 \gamma|\epsilon|}{\left(\frac{\gamma}{2}-|\epsilon|\right)^{2}+\omega^{2}} \delta\left(\omega+\omega^{\prime}\right), \\
& \left\langle: \hat{X}_{2}(\omega), \hat{X}_{2}\left(\omega^{\prime}\right):\right\rangle=\frac{-2 \gamma|\epsilon|}{\left(\frac{\gamma}{2}+|\epsilon|\right)^{2}+\omega^{2}} \delta\left(\omega+\omega^{\prime}\right),
\end{aligned}
$$

the δ function may be removed by integrating over ω^{\prime} to give the normally ordered spectrum $S_{1}(\omega)$ ，

$$
S_{1}(\omega)=\frac{2 \gamma|\epsilon|}{\left(\frac{\gamma}{2}-|\epsilon|\right)^{2}+\omega^{2}},
$$

כ the maximum squeezing occurs at the threshold for parametric oscillation， $|\epsilon|=\gamma / 2$ ，where

$$
S_{1}(\omega)=\left(\frac{\gamma}{\omega}\right)^{2}
$$

The light generated in parametric oscillation is said to be phase squeezed，

Four－wave mixing

T Four－wave mixing is through the nonlinear susceptibility，$\chi^{(3)}$ ，
－two pump waves and the probe wave couple to produce the fourth wave，which is proportional to the spatial complex conjugate of the probe wave，
v for a probe wave，

$$
E(r, t)=\operatorname{Re}\{\mathbf{E}(r) \exp (i(\mathbf{k} \cdot \mathbf{r}-\omega t)\},
$$

－the fourth wave is a phase conjugate wave，

$$
E_{p c}(r, t)=\operatorname{Re}\left\{\mathbf{E}^{*}(r) \exp (-i(\mathbf{k} \cdot \mathbf{r}+\omega t)\},\right.
$$

－equivalently，the spatial part of $E(r, t)$ remains unchanged and the sign of t is reversed，
（ the phase conjugation is thus equivalent to time reversal，

Classical four－wave mixing

consider two intense pump waves E_{2} and $E_{2^{\prime}}$ traveling in opposite direction，
כ and two weak fields E_{1} and E_{3} as the probe and conjugate waves，

$$
E_{j}(r, t)=\frac{1}{2} \mathbf{E}_{j}(r) e^{i\left(k_{j} \cdot r-\omega t\right)}+\text { c.c. }, \quad \text { for } \quad\left(j=1,2,2^{\prime}, 3\right),
$$

）the wave directions imply，

$$
k_{1}+k_{3}=0, \quad k_{2}+k_{2^{\prime}}=0,
$$

－from the wave equation，

$$
\nabla^{2} E-\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P}{\partial t^{2}},
$$

where $E=E_{1}+E_{2}+E_{2^{\prime}}+E_{3}$ ，and $P=\chi^{(3)} E$,

Classical four-wave mixing

Э with the slowly varying envelope approximation, i.e.

$$
\left|\frac{\mathrm{d}^{2} E_{i}}{\mathrm{~d} z^{2}}\right| \ll\left|k_{i} \frac{\mathrm{~d} E_{i}}{\mathrm{~d} z}\right|
$$

we have the following coupled-amplitude equations,

$$
\begin{aligned}
\frac{\mathrm{d} E_{1}}{\mathrm{~d} z} & =\left(\frac{i \omega}{\epsilon c}\right) P_{1}=i \kappa_{1} E_{1}+i \kappa E_{3}^{*}, \\
\frac{\mathrm{~d} E_{3}}{\mathrm{~d} z} & =-\left(\frac{i \omega}{\epsilon c}\right) P_{3}=-i \kappa_{1} E_{3}-i \kappa E_{1}^{*},
\end{aligned}
$$

where

$$
\begin{aligned}
P_{1} & =\frac{3 \chi^{(3)}}{8}\left(E_{1}^{2} E_{1}^{*}+2 E_{1} E_{3} E_{3}^{*}+2 E_{1} E_{2} E_{2}^{*}+2 E_{1} E_{2^{\prime}} E 2^{\prime *}+2 E_{2} E_{2^{\prime}} E_{3}^{*}\right), \\
P_{3} & =\frac{3 \chi^{(3)}}{8}\left(E_{3}^{2} E_{3}^{*}+2 E_{3} E_{1} E_{1}^{*}+2 E_{3} E_{2} E_{2}^{*}+2 E_{3} E_{2^{\prime}} E 2^{\prime *}+2 E_{2} E_{2^{\prime}} E_{1}^{*}\right), \\
\kappa & =\frac{3 \omega \chi^{(3)}}{4 \epsilon_{0} c} E_{2} E_{2^{\prime}} \quad \kappa_{1}=\frac{3 \omega \chi^{(3)}}{4 \epsilon_{0} c}\left(\left|E_{2}\right|^{2}+\left|E_{2^{\prime}}\right|^{2}\right)
\end{aligned}
$$

Classical four-wave mixing

-

with the slowly varying envelope approximation,

$$
\begin{aligned}
\frac{\mathrm{d} E_{1}}{\mathrm{~d} z} & =\left(\frac{i \omega}{\epsilon c}\right) P_{1}=i \kappa_{1} E_{1}+i \kappa E_{3}^{*} \\
\frac{\mathrm{~d} E_{3}}{\mathrm{~d} z} & =-\left(\frac{i \omega}{\epsilon c}\right) P_{3}=-i \kappa_{1} E_{3}-i \kappa E_{1}^{*}
\end{aligned}
$$

ϑ define $\tilde{E}_{1}=E_{1} e^{-i \kappa_{1} z}$ and $\tilde{E}_{3}=E_{3} e^{i \kappa_{1} z}$, we have

$$
\begin{aligned}
\frac{\mathrm{d} \tilde{E}_{1}}{\mathrm{~d} z} & =i \kappa \tilde{E}_{3}^{*} \\
\frac{\mathrm{~d} \tilde{E}_{3}}{\mathrm{~d} z} & =-i \kappa \tilde{E}_{1}^{*}
\end{aligned}
$$

- for a nonlinear crystal with length L, the solutions are

$$
\begin{aligned}
& \tilde{E}_{1}^{*}(z)=-\frac{i|\kappa| \sin (|\kappa| z)}{\kappa \cos (|\kappa| L)} \tilde{E}_{3}(L)+\frac{\cos [|\kappa|(z-L)]}{\cos (|\kappa| L} \tilde{E}_{1}^{*}(0), \\
& \tilde{E}_{3}(z)=\frac{\cos [|\kappa|(z-L)]}{\cos (|\kappa| L} \tilde{E}_{3}(L)-\frac{i|\kappa| \sin (|\kappa| z)}{\kappa \cos (|\kappa| L)} \tilde{E}_{1}^{*}(0),
\end{aligned}
$$

Squeezing four－wave mixing

V if we replace the field variables \tilde{E}_{1} and \tilde{E}_{3} by the operators \hat{a}_{1} and \hat{a}_{3} ，then

$$
\begin{aligned}
\frac{\mathrm{d} \hat{a}_{1}}{\mathrm{~d} z} & =i \kappa \hat{a}_{3}^{\dagger} \\
\frac{\mathrm{d} \hat{a}_{3}}{\mathrm{~d} z} & =-i \kappa \hat{a}_{1}^{\dagger}
\end{aligned}
$$

（ for a nonlinear crystal with length L ，the solutions for $\kappa=|\kappa|$ are

$$
\begin{aligned}
\hat{a}_{1}(L) & =i \tan (\kappa L) \hat{a}_{3}^{\dagger}(L)+\sec (\kappa L) \hat{a}_{1}(0), \\
\hat{a}_{3}(0) & =\sec (\kappa L) \hat{a}_{3}(L)+i \tan (\kappa L) \hat{a}_{1}^{\dagger}(0),
\end{aligned}
$$

－define the quadrature components for the signal and the conjugate fields，

$$
\hat{a}_{j 1}=\frac{1}{2}\left(\hat{a}_{j}+\hat{a}_{j}^{\dagger}\right), \quad \hat{a}_{j 2}=\frac{1}{2 i}\left(\hat{a}_{j}-\hat{a}_{j}^{\dagger}\right), \quad \text { for } j=1,3,
$$

V assume the input fields $\hat{a}_{1}(0)$ and $\hat{a}_{3}(L)$ to be in the coherent state，then

$$
\Delta \hat{a}_{1 i}^{2}(L)=\Delta \hat{a}_{3 i}^{2}(0)=\frac{1}{4}\left[1+2 \tan ^{2}(\kappa L)\right], \quad \text { for } i=1,2,
$$

Squeezing four－wave mixing

v assume the input fields $\hat{a}_{1}(0)$ and $\hat{a}_{3}(L)$ to be in the coherent state，then

$$
\Delta \hat{a}_{1 i}^{2}(L)=\Delta \hat{a}_{3 i}^{2}(0)=\frac{1}{4}\left[1+2 \tan ^{2}(\kappa L)\right], \quad \text { for } i=1,2,
$$

－the output fields are amplified as well as noisy，
this is another manifold of the dissipation－fluctuation theory，

Squeezing four－wave mixing

－define linear combination of the input modes，

$$
\hat{d}=\frac{1}{\sqrt{2}}\left(\hat{a}_{1}+\hat{a}_{3}\right) e^{i \theta}
$$

and the canonically conjugate Hermitian amplitude operators，

$$
\hat{d}_{1}=\frac{1}{2}\left(\hat{d}+\hat{d}^{\dagger}\right), \quad \hat{d}_{2}=\frac{1}{2 i}\left(\hat{d}-\hat{d}^{\dagger}\right),
$$

－the variance of the operator \hat{d}_{1} and \hat{d}_{2} are，

$$
\begin{aligned}
\Delta \hat{d}_{1}^{2} & =\frac{1}{4}[\sec (\kappa L)-\tan (\kappa L)]^{2}, \\
\Delta \hat{d}_{2}^{2} & =\frac{1}{4}[\sec (\kappa L)+\tan (\kappa L)]^{2},
\end{aligned}
$$

when $\theta=\pi / 4$ ，
－as κL grows，the fluctuations in \hat{d}_{1} are reduced below $1 / 4$ ，and eventually vanish
国立清華笑學 $L \rightarrow \pi / 2$ ，the amplitude \hat{d}_{1} is squeezed，

