1，A brief review about Quantum Mechanics

1．Basic Quantum Theory

2．Time－Dependent Perturbation Theory
3．Simple Harmonic Oscillator
4．Quantization of the field
5．Canonical Quantization

Ref：
Ch． 2 in＂Introductory Quantum Optics，＂by C．Gerry and P．Knight．
Ch． 2 in＂Mesoscopic Quantum Optics，＂by Y．Yamamoto and A．Imamoglu．
Ch． 1 in＂Quantum Optics，＂by D．Wall and G．Milburn．
Ch． 4 in＂The Quantum Theory of Light，＂by R．Loudon．
Ch．1，2，3， 6 in＂Mathematical Methods of Quantum Optics，＂by R．Puri
Ch． 3 in＂Elements of Quantum Optics，＂by P．Meystre and M．Sargent III．
今國立清 9 率大＂M學
National Tsing Hua University

Field Quantization

1．Simple Harmonic Oscillator
2．Quantization of a single－mode field
3．Basic Quantum Theory
4．Time－Dependent Perturbation Theory
5．Canonical Quantization
6．Quantum fluctuations of a single－mode field
7．Quadrature operators for a single－mode field
8．Multimode fields
9．Thermal fields
10．Vacuum fluctuations and the zero－point energy
11．Casimir force

Role of Quantum Optics

- photons occupy an electromagnetic mode, we will always refer to modes in quantum optics, typically a plane wave;
- the energy in a mode is not continuous but discrete in quanta of $\hbar \omega$;
- the observables are just represented by probabilities as usual in quantum mechanics;
- there is a zero point energy inherent to each mode which is equivalent with fluctuations of the electromagnetic field in vacuum, due to uncertainty principle.
quantized fields and quantum fluctuations (zero-point energy)

Vacuum

vacuum is not just nothing, it is full of energy.

Vacuum

－
spontaneous emission is actually stimulated by the vacuum fluctuation of the electromagnetic field，
\rightarrow one can modify vacuum fluctuations by resonators and photonic crystals，
\rightarrow atomic stability：the electron does not crash into the core due to vacuum fluctuation of the electromagnetic field，
gravity is not a fundamental force but a side effect matter modifies the vacuum fluctuations，by Sakharov，
\rightarrow Casimir effect：two charged metal plates repel each other until Casimir effect overcomes the repulsion，
\rightarrow Lamb shift：the energy level difference between $2 S_{1 / 2}$ and $2 P_{1 / 2}$ in hydrogen．
\geqslant ．．．

Simple Harmonic Oscillator

The simple harmonic oscillator has no driving force，and no friction（damping），so the net force is just：

$$
F=-k x=m a=m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}},
$$

（if define $\omega_{0}^{2}=k / m$ ，then

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\omega_{0}^{2} x=0
$$

（the general solution $x=A \operatorname{Cos}\left(\omega_{0} t+\phi\right)$ ，

The kinetic energy is $T=\frac{1}{2} m\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}=\frac{1}{2} k A^{2} \sin ^{2}\left(\omega_{0} t+\phi\right)$ ，
the potential energy is $U=\frac{1}{2} k x^{2}=\frac{1}{2} k A^{2} \cos ^{2}\left(\omega_{0} t+\phi\right)$
（the total energy of the system has the constant value $E=\frac{1}{2} k A^{2}$ ．

Quantum Harmonic Oscillator：1D

（ In the one－dimensional harmonic oscillator problem，a particle of mass m is subject to a potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$ ．
（In classical mechanics，$m \omega^{2}=k$ is called the spring stiffness coefficient or force constant，and ω the circular frequency．
（The Hamiltonian of the particle is：$H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}$ where x is the position operator，and p is the momentum operator $\left(p=-i \hbar \frac{d}{d x}\right)$ ．The first term represents the kinetic energy of the particle，and the second term represents the potential energy in which it resides．

Maxwell's equations in Free space

- Faraday's law:

$$
\nabla \times \mathbf{E}=-\frac{\partial}{\partial t} \mathbf{B}
$$

- Ampére's law:

$$
\nabla \times \mathbf{H}=\frac{\partial}{\partial t} \mathbf{D}
$$

- Gauss's law for the electric field:

$$
\nabla \cdot \mathbf{D}=0,
$$

- Gauss's law for the magnetic field:

$$
\nabla \cdot \mathbf{B}=0,
$$

nome the constitutive relation: $\mathbf{B}=\mu_{0} \mathbf{H}$ and $\mathbf{D}=\epsilon_{0} \mathbf{E}$.

Plane electromagnetic waves

\rightharpoonup
Maxwell＇s equations in free space，there is vacuum，no free charges，no currents， $\mathbf{J}=\rho=0$,
both \mathbf{E} and \mathbf{B} satisfy wave equation，$\nabla^{2} \mathbf{E}=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$ ，
D we can use the solutions of wave optics，

$$
\begin{aligned}
\mathbf{E}(\mathbf{r}, t) & =E_{0} \exp (i \omega t) \exp (-i \mathbf{k} \cdot \mathbf{r}), \\
\mathbf{B}(\mathbf{r}, t) & =B_{0} \exp (i \omega t) \exp (-i \mathbf{k} \cdot \mathbf{r}),
\end{aligned}
$$

Mode Expansion of the Field

A single－mode field，polarized along the x－direction，in the cavity：

$$
\mathbf{E}(r, t)=\hat{x} E_{x}(z, t)=\sum_{j}\left(\frac{2 m_{j} \omega_{j}^{2}}{V \epsilon_{0}}\right)^{1 / 2} q_{j}(t) \operatorname{Sin}\left(k_{j} z\right)
$$

where $k=\omega / c, \omega_{j}=c(j \pi / L), j=1,2, \ldots, V$ is the effective volume of the cavity，and $q(t)$ is the normal mode amplitude with the dimension of a length（acts as a canonical position，and $p_{j}=m_{j} \dot{q}_{j}$ is the canonical momentum）．
（ the magnetic field in the cavity：
$\mathbf{H}(r, t)=\hat{y} H_{y}(z, t)=\left(m_{j} \frac{2 \omega_{j}^{2}}{V \epsilon_{0}}\right)^{1 / 2}\left(\frac{\dot{q}_{j}(t) \epsilon_{0}}{k_{j}}\right) \operatorname{Cos}\left(k_{j} z\right)$,
－
the classical Hamiltonian for the field：

$$
\begin{aligned}
H & =\frac{1}{2} \int_{V} \mathrm{~d} V\left[\epsilon_{0} E_{x}^{2}+\mu_{0} H_{y}^{2}\right] \\
& =\frac{1}{2} \sum_{j}\left[m_{j} \omega_{m}^{2} q_{j}^{2}+m_{j} \dot{q}_{j}^{2}\right]=\frac{1}{2} \sum_{j}\left[m_{j} \omega_{m}^{2} q_{j}^{2}+\frac{p_{j}^{2}}{m_{j}}\right] .
\end{aligned}
$$

Quantization of the Electromagnetic Field

（Like simple harmonic oscillator，$\hat{H}=\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2}$ ，where $[\hat{x}, \hat{p}]=i \hbar$ ，
ค For EM field，$\hat{H}=\frac{1}{2} \sum_{j}\left[m_{j} \omega_{m}^{2} q_{j}^{2}+\frac{p_{j}^{2}}{m_{j}}\right]$ ，where $\left[\hat{q}_{i}, \hat{p}_{j}\right]=i \hbar \delta_{i j}$ ，
－annihilation and creation operators：

$$
\begin{aligned}
\hat{a}_{j} e^{-i \omega_{j} t} & =\frac{1}{\sqrt{2 m_{j} \hbar \omega_{j}}}\left(m_{j} \omega_{j} \hat{q}_{j}+i \hat{p}_{j}\right) \\
\hat{a}_{j}^{\dagger} e^{i \omega_{j} t} & =\frac{1}{\sqrt{2 m_{j} \hbar \omega_{j}}}\left(m_{j} \omega_{j} \hat{q}_{j}-i \hat{p}_{j}\right)
\end{aligned}
$$

（the Hamiltonian for EM fields becomes：$\hat{H}=\sum_{j} \hbar \omega_{j}\left(\hat{a}_{j}^{\dagger} \hat{a}_{j}+\frac{1}{2}\right)$ ，
（the electric and magnetic fields become，

$$
\begin{aligned}
& \hat{E}_{x}(z, t)=\sum_{j}\left(\frac{\hbar \omega_{j}}{\epsilon_{0} V}\right)^{1 / 2}\left[\hat{a}_{j} e^{-i \omega_{j} t}+\hat{a}_{j}^{\dagger} e^{i \omega_{j} t}\right] \operatorname{Sin}\left(k_{j} z\right), \\
& \hat{H}_{y}(z, t)=-i \epsilon_{0} c \sum_{j}\left(\frac{\hbar \omega_{j}}{\epsilon_{0} V}\right)^{1 / 2}\left[\hat{a}_{j} e^{-i \omega_{j} t}-\hat{a}_{j}^{\dagger} e^{i \omega_{j} t}\right] \operatorname{Cos}\left(k_{j} z\right),
\end{aligned}
$$

Quantization of EM fields

\Rightarrow the Hamiltonian for EM fields becomes：$\hat{H}=\sum_{j} \hbar \omega_{j}\left(\hat{a}_{j}^{\dagger} \hat{a}_{j}+\frac{1}{2}\right)$ ，
D the electric and magnetic fields become，

$$
\begin{aligned}
\hat{E}_{x}(z, t) & =\sum_{j}\left(\frac{\hbar \omega_{j}}{\epsilon_{0} V}\right)^{1 / 2}\left[\hat{a}_{j} e^{-i \omega_{j} t}+\hat{a}_{j}^{\dagger} e^{i \omega_{j} t}\right] \sin \left(k_{j} z\right), \\
& =\sum_{j} c_{j}\left[\hat{a}_{1 j} \cos \omega_{j} t+\hat{a}_{2 j} \sin \omega_{j} t\right] u_{j}(r),
\end{aligned}
$$

mode I

國立清䔞大㲰
National Tsing Hua University

Simple Harmonic Oscillator in Schrödinger picture

one－dimensional harmonic oscillator，$\hat{H}=\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2}$ ，
D Schrödinger equation，

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \psi(x)+\frac{2 m}{\hbar^{2}}\left[E-\frac{1}{2} k x^{2}\right] \psi(x)=0,
$$

with dimensionless coordinates $\xi=\sqrt{m \omega / \hbar} x$ and dimensionless quantity $\epsilon=2 E / \hbar \omega$ ，we have

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} \xi^{2}} \psi(x)+\left[\epsilon-\xi^{2}\right] \psi(x)=0
$$

which has Hermite－Gaussian solutions，

$$
\psi(\xi)=\mathrm{H}_{n}(\xi) e^{-\xi^{2} / 2}, \quad E=\frac{1}{2} \hbar \omega \epsilon=\hbar \omega\left(n+\frac{1}{2}\right),
$$

where $n=0,1,2, \ldots$
Ch． 7 in＂Quantum Mechanics，＂by A．Goswami．
Ch． 2 in＂Modern Quantum Mechanics，＂by J．Sakurai．

Quantum Harmonic Oscillator

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} \xi^{2}} \psi(x)+\left[\epsilon-\xi^{2}\right] \psi(x)=0
$$

which has Hermite－Gaussian solutions，

$$
\psi(\xi)=\mathrm{H}_{n}(\xi) e^{-\xi^{2} / 2}, \quad E=\frac{1}{2} \hbar \omega \epsilon=\hbar \omega\left(n+\frac{1}{2}\right)
$$

where $n=0,1,2, \ldots$

Simple Harmonic Oscillator: operator method

(one-dimensional harmonic oscillator, $\hat{H}=\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2}$, where $[\hat{x}, \hat{p}]=i \hbar$
D define annihilation operator (destruction, lowering, or step-down operators):

$$
\hat{a}=\sqrt{m \omega / 2 \hbar} \hat{x}+i \hat{p} / \sqrt{2 m \hbar \omega} .
$$

D define creation operator (raising, or step-up operators):

$$
\hat{a}^{\dagger}=\sqrt{m \omega / 2 \hbar} \hat{x}-i \hat{p} / \sqrt{2 m \hbar \omega} .
$$

D note that \hat{a} and \hat{a}^{\dagger} are not hermitian operators, but $\left(\hat{a}^{\dagger}\right)^{\dagger}=\hat{a}$.
(the commutation relation for \hat{a} and \hat{a}^{\dagger} is $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$.
\rightarrow
the oscillator Hamiltonian can be written as,

$$
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)=\hbar \omega\left(\hat{N}+\frac{1}{2}\right)
$$

where \hat{N} is called the number operator, which is hermitian.

Simple Harmonic Oscillator：operator method

D the number operator，$\hat{N}=\hat{a}^{\dagger} \hat{a}$ ，
－$[\hat{H}, \hat{a}]=-\hbar \omega \hat{a}$ ，and $\left[\hat{H}, \hat{a}^{\dagger}\right]=\hbar \omega \hat{a}^{\dagger}$ ．
（the eigen－energy of the system，$\hat{H}|\Psi\rangle=E|\Psi\rangle$ ，then

$$
\hat{H} \hat{a}|\Psi\rangle=(E-\hbar \omega) \hat{a}|\Psi\rangle, \quad \hat{H} \hat{a}^{\dagger}|\Psi\rangle=(E+\hbar \omega) \hat{a}^{\dagger}|\Psi\rangle .
$$

for any hermitian operator，$\langle\Psi| \hat{Q}^{2}|\Psi\rangle=\langle\hat{Q} \Psi \mid \hat{Q} \Psi\rangle \geq 0$ ．
\Rightarrow
thus $\langle\Psi| \hat{H}|\Psi\rangle \geq 0$ ．
D
ground state（lowest energy state），$\hat{a}\left|\Psi_{0}\right\rangle=0$ ．
\rightharpoonup
energy of the ground state，$\hat{H}\left|\Psi_{0}\right\rangle=\frac{1}{2} \hbar \omega\left|\Psi_{0}\right\rangle$ ．
D
excited state，$\hat{H}\left|\Psi_{n}\right\rangle=\hat{H}\left(\hat{a}^{\dagger}\right)^{n}\left|\Psi_{0}\right\rangle=\hbar \omega\left(n+\frac{1}{2}\right)\left(\hat{a}^{\dagger}\right)^{n}\left|\Psi_{0}\right\rangle$ ．
－eigen－energy for excited state，$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$ ．

Simple Harmonic Oscillator：operator method

D normalization of the eigenstates，$\left(\hat{a}^{\dagger}\right)^{n}\left|\Psi_{0}\right\rangle=c_{n}\left|\Psi_{n}\right\rangle$ ，where $c_{n}=\sqrt{n}$ ．
？$\hat{a}\left|\Psi_{n}\right\rangle=\sqrt{n}\left|\Psi_{n-1}\right\rangle$ ，
（ $\hat{a}^{\dagger}\left|\Psi_{n}\right\rangle=\sqrt{n+1}\left|\Psi_{n+1}\right\rangle$ ，
（ x－representation，$\Psi_{n}(x)=\left\langle x \mid \Psi_{n}\right\rangle$ ．
\Rightarrow ground state，$\langle x| \hat{a}\left|\Psi_{0}\right\rangle=0$ ，i．e．

$$
\left[\sqrt{\frac{m \omega}{2 \hbar}} x+\hbar \frac{1}{\sqrt{2 m \hbar \omega}} \frac{\mathrm{~d}}{\mathrm{~d} x}\right] \Psi_{0}(x)=0
$$

d define a dimensionless variable $\xi=\sqrt{m \omega / \hbar} x$ ，we obtain

$$
\left(\xi+\frac{\mathrm{d}}{\mathrm{~d} \xi}\right) \Psi_{0}=0
$$

with the solution $\Psi_{0}(\xi)=c_{0} \exp \left(-\xi^{2} / 2\right)$.

brain-storms

Damped harmonic oscillator: $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\frac{b}{m} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\omega_{0}^{2} x=0$, where b is an experimentally determined damping constant satisfying the relationship $F=-b v$. An example of a system obeying this equation would be a weighted spring underwater if the damping force exerted by the water is assumed to be linearly proportional to v.

Mode expansion of the field in other bases, e.x. spherical wave:

$$
E(r)=\frac{A}{\left|r-r_{0}\right|} \exp \left(-i k\left|r-r_{0}\right|\right)
$$

Wave fronts
(constant phase surfaces)

A perfect plane wave
(a)

Wave fronts

A perfect spherical wave
(b)

A divergent beam
(c)

How to quantize fields?

Postulates of Quantum Mechanics

Postulate 1: An isolated quantum system is described by a vector in a Hilbert space. Two vectors differing only by a multiplying constant represent the same physical state.

- quantum state: $|\Psi\rangle=\sum_{i} \alpha_{i}\left|\psi_{i}\right\rangle$,
(completeness: $\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=I$,
\rightarrow probability interpretation (projection): $\Psi(x)=\langle x \mid \Psi\rangle$,
) operator: $\hat{A}|\Psi\rangle=|\Phi\rangle$,
() representation: $\langle\phi| \hat{A}|\psi\rangle$,
(adjoint of $\hat{A}:\langle\phi| \hat{A}|\psi\rangle=\langle\psi| \hat{A}^{\dagger}|\phi\rangle^{*}$,
() hermitian operator: $\hat{H}=\hat{H}^{\dagger}$,
) unitary operator: $\hat{U} \hat{U}^{\dagger}=\hat{U}^{\dagger} \hat{U}=I$.

Ch. 1-5 in "The Principles of Quantum Mechanics," by P. Dirac.
Ch. 1 in "Mathematical Methods of Quantum Optics," by R. Puri.

Operators

－For a unitary operator，$\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\left\langle\psi_{i} \mid \hat{U}^{\dagger} \hat{U} \psi_{j}\right\rangle$ ，the set of states $\hat{U}|\psi\rangle$ preserves the scalar product．
－\hat{U} can be represented as $\hat{U}=\exp (i \hat{H})$ if \hat{H} is hermitian．
D normal operator：$\left[\hat{A}, \hat{A}^{\dagger}\right]=0$ ，the eigenstates of only a normal operator are orthonormal．
i．e．hermitian and unitary operators are normal operators．
－The sum of the diagonal elements $\langle\phi| \hat{A}|\psi\rangle$ is call the trace of \hat{A} ，

$$
\operatorname{Tr}(\hat{A})=\sum_{i}\left\langle\phi_{i}\right| \hat{A}\left|\phi_{i}\right\rangle
$$

The value of the trace of an operator is independent of the basis．
D The eigenvalues of a hermitian operator are real，$\hat{H}|\Psi\rangle=\lambda|\Psi\rangle$ ，where λ is real．
－If \hat{A} and \hat{B} do not commute then they do not admit a common set of eigenvectors．

Postulates of Quantum Mechanics

Postulate 2：To each dynamical variable there corresponds a unique hermitian operator． Postulate 3：If \hat{A} and \hat{B} are hermitian operators corresponding to classical dynamical variables a and b ，then the commutator of \hat{A} and \hat{B} is given by

$$
[\hat{A}, \hat{B}] \equiv \hat{A} \hat{B}-\hat{B} \hat{A}=i \hbar\{a, b\}
$$

where $\{a, b\}$ is the classical Poisson bracket．
Postulate 4：Each act of measurement of an observable \hat{A} of a system in state $|\Psi\rangle$ collapses the system to an eigenstate $\left|\psi_{i}\right\rangle$ of \hat{A} with probability $\left|\left\langle\phi_{i} \mid \Psi\right\rangle\right|^{2}$ ．
The average or the expectation value of \hat{A} is given by

$$
\langle\hat{A}\rangle=\sum_{i} \lambda_{i}\left|\left\langle\phi_{i} \mid \Psi\right\rangle\right|^{2}=\langle\Psi| \hat{A}|\Psi\rangle,
$$

where λ_{i} is the eigenvalue of \hat{A} corresponding to the eigenstate $\left|\psi_{i}\right\rangle$ ．

Uncertainty relation

Don－commuting observable do not admit common eigenvectors．
（ Non－commuting observables can not have definite values simultaneously．
－Simultaneous measurement of non－commuting observables to an arbitrary degree of accuracy is thus incompatible．
v variance：$\Delta \hat{A}^{2}=\langle\Psi|(\hat{A}-\langle\hat{A}\rangle)^{2}|\Psi\rangle=\langle\Psi| \hat{A}^{2}|\Psi\rangle-\langle\Psi| \hat{A}|\Psi\rangle^{2}$ ．

$$
\Delta A^{2} \Delta B^{2} \geq \frac{1}{4}\left[\langle\hat{F}\rangle^{2}+\langle\hat{C}\rangle^{2}\right],
$$

where

$$
[\hat{A}, \hat{B}]=i \hat{C}, \quad \text { and } \quad \hat{F}=\hat{A} \hat{B}+\hat{B} \hat{A}-2\langle\hat{A}\rangle\langle\hat{B}\rangle
$$

D Take the operators $\hat{A}=\hat{q}$（position）and $\hat{B}=\hat{p}$（momentum）for a free particle，

$$
[\hat{q}, \hat{p}]=i \hbar \rightarrow\left\langle\Delta \hat{q}^{2}\right\rangle\left\langle\Delta \hat{p}^{2}\right\rangle \geq \frac{\hbar^{2}}{4} .
$$

Uncertainty relation

（）Schwarz inequality：$\langle\phi \mid \phi\rangle\langle\psi \mid \psi\rangle \geq\langle\phi \mid \psi\rangle\langle\psi \mid \phi\rangle$ ．
Equality holds if and only if the two states are linear dependent，$|\psi\rangle=\lambda|\phi\rangle$ ，where λ is a complex number．
（）uncertainty relation，

$$
\Delta A^{2} \Delta B^{2} \geq \frac{1}{4}\left[\langle\hat{F}\rangle^{2}+\langle\hat{C}\rangle^{2}\right],
$$

where

$$
[\hat{A}, \hat{B}]=i \hat{C}, \quad \text { and } \quad \hat{F}=\hat{A} \hat{B}+\hat{B} \hat{A}-2\langle\hat{A}\rangle\langle\hat{B}\rangle .
$$

（the operator \hat{F} is a measure of correlations between \hat{A} and \hat{B} ．
－define two states，

$$
\left|\psi_{1}\right\rangle=[\hat{A}-\langle\hat{A}\rangle]|\psi\rangle, \quad\left|\psi_{2}\right\rangle=[\hat{B}-\langle\hat{B}\rangle]|\psi\rangle,
$$

the uncertainty product is minimum，i．e．$\left|\psi_{1}\right\rangle=-i \lambda\left|\psi_{2}\right\rangle$ ，

$$
[\hat{A}+i \lambda \hat{B}]|\psi\rangle=[\langle\hat{A}\rangle+i \lambda\langle\hat{B}\rangle]|\psi\rangle=z|\psi\rangle .
$$

Uncertainty relation

D if $\operatorname{Re}(\lambda)=0, \hat{A}+i \lambda \hat{B}$ is a normal operator，which have orthonormal eigenstates．
－the variances，

$$
\Delta \hat{A}^{2}=-\frac{i \lambda}{2}[\langle\hat{F}\rangle+i\langle\hat{C}\rangle], \quad \Delta \hat{B}^{2}=-\frac{i}{2 \lambda}[\langle\hat{F}\rangle-i\langle\hat{C}\rangle],
$$

D

$$
\text { set } \lambda=\lambda_{r}+i \lambda_{i} \text {, }
$$

$$
\Delta \hat{A}^{2}=\frac{1}{2}\left[\lambda_{i}\langle\hat{F}\rangle+\lambda_{r}\langle\hat{C}\rangle\right], \quad \Delta \hat{B}^{2}=\frac{1}{|\lambda|^{2}} \Delta \hat{A}^{2}, \quad \lambda_{i}\langle\hat{C}\rangle-\lambda_{r}\langle\hat{F}\rangle=0 .
$$

I）if $|\lambda|=1$ ，then $\Delta \hat{A}^{2}=\Delta \hat{B}^{2}$ ，equal variance minimum uncertainty states．
（if $|\lambda|=1$ along with $\lambda_{i}=0$ ，then $\Delta \hat{A}^{2}=\Delta \hat{B}^{2}$ and $\langle\hat{F}\rangle=0$ ，uncorrelated equal variance minimum uncertainty states．
－
if $\lambda_{r} \neq 0$ ，then $\langle\hat{F}\rangle=\frac{\lambda_{i}}{\lambda_{r}}\langle\hat{C}\rangle, \quad \Delta \hat{A}^{2}=\frac{|\lambda|^{2}}{2 \lambda_{r}}\langle\hat{C}\rangle, \quad \Delta \hat{B}^{2}=\frac{1}{2 \lambda_{r}}\langle\hat{C}\rangle$ ．
If \hat{C} is a positive operator then the minimum uncertainty states exist only if $\lambda_{r}>0$ ．

Momentum as a generator of Translation

For an infinitesimal translation by $d x$ ，and the operator that does the job by $\mathcal{T}(d x)$ ，

$$
\mathcal{T}(d x)|x\rangle=|x+d x\rangle,
$$

（the infinitesimal translation should be unitary， $\mathcal{T}^{\dagger}(d x) \mathcal{T}(d x)=1$ ， two successive infinitesimal translations， $\mathcal{T}\left(d x_{1}\right) \mathcal{T}\left(d x_{2}\right)=\mathcal{T}\left(d x_{1}+d x_{2}\right)$ ， a translation in the opposite direction， $\mathcal{T}\left(d x_{1}\right)=\mathcal{T}^{-1}(d x)$ ，
identity operation，$d x \rightarrow 0$ ，then $\lim _{d x \rightarrow 0} \mathcal{T}(d x)=1$ ，
\rightarrow define a Hermitian operator，

$$
\mathcal{T}(d x)=\exp (-i \hat{K} \cdot d x) \approx 1-i \hat{K} \cdot d x
$$

Ch． 2 in＂Modern Quantum Mechanics，＂by J．Sakurai．

Momentum as a generator of Translation

－define a Hermitian operator，

$$
\mathcal{T}(d x)=\exp (-i \hat{K} \cdot d x) \approx 1-i \hat{K} \cdot d x
$$

－we have the communication relation，

$$
\left[\hat{x},\lceil\S]=d x, \quad \text { or } \quad\left[\hat{x}_{i}, \hat{K}_{j}\right]=i \delta_{i j},\right.
$$

\rightarrow
L．De Brogie＇s relation，

$$
\frac{2 \pi}{\lambda}=\frac{p}{\hbar}
$$

（ define $\hat{K}=\hat{p} / \hbar$ ，then

$$
\left[\hat{x}_{i}, \hat{p}_{j}\right]=i \hbar \delta_{i j},
$$

Ch． 2 in＂Modern Quantum Mechanics，＂by J．Sakurai．

Momentum Operator in the Position basis

the definition of momentum as the generator of infinitesimal translations，

$$
\begin{aligned}
\left(1-\frac{i \hat{p} \Delta x}{\hbar}\right)|\alpha\rangle & =\int d x \mathcal{T}(\Delta x)|x\rangle\langle x \mid \alpha\rangle \\
& =\int d x|x+\Delta x\rangle\langle x \mid \alpha\rangle \\
& =\int d x|x\rangle\langle x-\Delta x \mid \alpha\rangle \\
& =\int d x|x\rangle\left(\langle x \mid \alpha\rangle-\Delta x \frac{\partial}{\partial x}\langle x \mid \alpha\rangle\right)
\end{aligned}
$$

comparison of both sides，

$$
\hat{p}|\alpha\rangle=\int d x|x\rangle\left(-i \hbar \frac{\partial}{\partial x}\langle x \mid \alpha\rangle\right),
$$

D or

$$
\langle x| \hat{p}|\alpha\rangle=-i \hbar \frac{\partial}{\partial x}\langle x \mid \alpha\rangle
$$

Uncertainty relation for \hat{q} and \hat{p}

take the operators $\hat{A}=\hat{q}$ (position) and $\hat{B}=\hat{p}$ (momentum) for a free particle,

$$
[\hat{q}, \hat{p}]=i \hbar \rightarrow\left\langle\Delta \hat{q}^{2}\right\rangle\left\langle\Delta \hat{p}^{2}\right\rangle \geq \frac{\hbar^{2}}{4} .
$$

define two states, $\left|\psi_{1}\right\rangle=[\hat{A}-\langle\hat{A}\rangle]|\psi\rangle \equiv \hat{\alpha}|\psi\rangle, \quad\left|\psi_{2}\right\rangle=[\hat{B}-\langle\hat{B}\rangle]|\psi\rangle \equiv \hat{\beta}|\psi\rangle$.

- for uncorrelated minimum uncertainty states,

$$
\hat{\alpha}|\psi\rangle=-i \lambda \hat{\beta}|\psi\rangle, \quad\langle\psi| \hat{\alpha} \hat{\beta}+\hat{\beta} \hat{\alpha}|\psi\rangle=0
$$

where λ is a real number.
(f) $\hat{A}=\hat{q}$ and $\hat{B}=\hat{p}$, we have $(\hat{q}-\langle\hat{q}\rangle)|\psi\rangle=-i \lambda(\hat{p}-\langle\hat{p}\rangle)|\psi\rangle$.

D the wavefunction in the q-basis is, i.e. $\hat{p}=-i \hbar \partial / \partial q$,

$$
\psi(q)=\langle q \mid \psi\rangle=\frac{1}{\left(2 \pi\left\langle\Delta \hat{q}^{2}\right\rangle\right)^{1 / 4}} \exp \left[\frac{i\langle\hat{p}\rangle q}{\hbar}-\frac{(q-\langle\hat{q}\rangle)^{2}}{4\left\langle\Delta \hat{q}^{2}\right\rangle}\right],
$$

Minimum Uncertainty State

つ $(\hat{q}-\langle\hat{q}\rangle)|\psi\rangle=-i \lambda(\hat{p}-\langle\hat{p}\rangle)|\psi\rangle$
D if we define $\lambda=e^{-2 r}$ ，then

$$
\left(e^{r} \hat{q}+i e^{-r} \hat{p}\right)|\psi\rangle=\left(e^{r}\langle\hat{q}\rangle+i e^{-r}\langle\hat{p}\rangle\right)|\psi\rangle,
$$

（the minimum uncertainty state is defined as an eigenstate of a non－Hermitian operator $e^{r} \hat{q}+i e^{-r} \hat{p}$ with a c－number eigenvalue $e^{r}\langle\hat{q}\rangle+i e^{-r}\langle\hat{p}\rangle$ ．
－the variances of \hat{q} and \hat{p} are

$$
\left\langle\Delta \hat{q}^{2}\right\rangle=\frac{\hbar}{2} e^{-2 r}, \quad\left\langle\Delta \hat{p}^{2}\right\rangle=\frac{\hbar}{2} e^{2 r} .
$$

\rightarrow
here r is referred as the squeezing parameter．

Gaussian Wave Packets

（ in the x－space，

$$
\Psi(x)=\langle x \mid \Psi\rangle=\left[\frac{1}{\pi^{1 / 4} \sqrt{d}}\right] \exp \left[i k x-\frac{x^{2}}{2 d^{2}}\right]
$$

，which is a plane wave with wave number k and width d ．
D the expectation value of \hat{X} is zero for symmetry，

$$
\langle\hat{X}\rangle=\int_{-\infty}^{\infty} \mathrm{d} x\langle\Psi \mid x\rangle \hat{X}\langle x \mid \Psi\rangle=0
$$

variation of $\hat{X},\left\langle\Delta \hat{X}^{2}\right\rangle=\frac{d^{2}}{2}$ ．
the expectation value of $\hat{P},\langle\hat{P}\rangle=\hbar k$ ，i．e．$\langle x| \hat{P}|\Psi\rangle=-i \hbar \frac{\partial}{\partial x}\langle x \mid \Psi\rangle$ ．
variation of $\hat{P},\left\langle\Delta \hat{P}^{2}\right\rangle=\frac{\hbar^{2}}{2 d^{2}}$ ．
（the Heisenberg uncertainty product is，$\left\langle\Delta \hat{X}^{2}\right\rangle\left\langle\Delta \hat{P}^{2}\right\rangle=\frac{\hbar^{2}}{4}$ ．
D a Gaussian wave packet is called a minimum uncertainty wave packet．

Phase diagram for EM waves

Electromagnetic waves can be represented by

$$
\hat{E}(t)=E_{0}\left[\hat{X}_{1} \sin (\omega t)-\hat{X}_{2} \cos (\omega t)\right]
$$

where

$$
\begin{aligned}
& \hat{X}_{1}=\text { amplitude quadrature } \\
& \hat{X}_{2}=\text { phase quadrature }
\end{aligned}
$$

Quadrature operators

（ the electric and magnetic fields become，

$$
\begin{aligned}
\hat{E}_{x}(z, t) & =\sum_{j}\left(\frac{\hbar \omega_{j}}{\epsilon_{0} V}\right)^{1 / 2}\left[\hat{a}_{j} e^{-i \omega_{j} t}+\hat{a}_{j}^{\dagger} e^{i \omega_{j} t}\right] \sin \left(k_{j} z\right) \\
& =\sum_{j} c_{j}\left[\hat{a}_{1 j} \cos \omega_{j} t+\hat{a}_{2 j} \sin \omega_{j} t\right] u_{j}(r)
\end{aligned}
$$

D note that \hat{a} and \hat{a}^{\dagger} are not hermitian operators，but $\left(\hat{a}^{\dagger}\right)^{\dagger}=\hat{a}$ ．
（）$\hat{a}_{1}=\frac{1}{2}\left(\hat{a}+\hat{a}^{\dagger}\right)$ and $\hat{a}_{2}=\frac{1}{2 i}\left(\hat{a}-\hat{a}^{\dagger}\right)$ are two Hermitian（quadrature）operators．
（ the commutation relation for \hat{a} and \hat{a}^{\dagger} is $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$ ，
（the commutation relation for \hat{a} and \hat{a}^{\dagger} is $\left[\hat{a}_{1}, \hat{a}_{2}\right]=\frac{i}{2}$ ，
and $\left\langle\Delta \hat{a}_{1}^{2}\right\rangle\left\langle\Delta \hat{a}_{2}^{2}\right\rangle \geq \frac{1}{16}$ ．

Phase diagram for coherent states

mean number of photons

$$
<\hat{N}>=<\alpha|\hat{N}| \alpha>=<\alpha\left|\hat{a}^{\dagger} \hat{a}\right| \alpha>=|\alpha|^{2}
$$

$\xlongequal{\substack{\text { 國立立 }}} \quad \alpha=|\alpha| \exp (i \theta)$

Coherent and Squeezed States

Uncertainty Principle: $\Delta \hat{X}_{1} \Delta \hat{X}_{2} \geq 1$.

1. Coherent states: $\Delta \hat{X}_{1}=\Delta \hat{X}_{2}=1$,
2. Amplitude squeezed states: $\Delta \hat{X}_{1}<1$,
3. Phase squeezed states: $\Delta \hat{X}_{2}<1$,
4. Quadrature squeezed states.

Vacuum, Coherent, and Squeezed states

vacuum

National Tsing Hua University
coherent

phase-squeezed
squeezed-vacuum

quad-squeezed

Generations of Squeezed States

Nonlinear optics:

Generation and Detection of Squeezed Vacuum

1．Balanced Sagnac Loop（to cancel the mean field），

2．Homodyne Detection．

M．Rosenbluh and R．M．Shelby，Phys．Rev．Lett．66，153（1991）．

Schrödinger equation

Postulate 5: The time evolution of a state $|\Psi\rangle$ is governed by the Schrödinger equation,

$$
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\Psi(t)\rangle=\hat{H}(t)|\Psi(t)\rangle
$$

where $\hat{H}(t)$ is the Hamiltonian which is a hermitian operator associated with the total energy of the system.
The solution of the Schrödinger equation is,

$$
\left.|\Psi(t)\rangle=\overleftarrow{T} \exp \left[-\frac{i}{\hbar} \int_{t_{0}}^{t} \mathrm{~d} \tau \hat{H}(\tau)\right]|\Psi(0)\rangle \equiv \hat{U}_{S}\left(t, t_{0}\right) \right\rvert\, \Psi\left(t_{0}\right)
$$

where $\overleftarrow{(T)}$ is the time-ordering operator.
Schrödinger picture:

$$
|\Psi(r, t)\rangle=\sum_{i} \alpha_{i}(t)\left|\psi_{i}(r)\right\rangle
$$

Time Evolution of a Minimum Uncertainty State

the Hamiltonian for a free particle，$\hat{H}=\frac{\hat{\hat{p}}^{2}}{2 m}$ ，then

$$
\hat{U}=\exp \left(-\frac{i}{\hbar} \frac{\hat{p}^{2}}{2 m} t\right)
$$

（the Schrödinger wavefunction，

$$
\begin{aligned}
\Psi(q, t)=\langle q| \hat{U}|\Psi(0)\rangle & =\int_{-\infty}^{\infty} \mathrm{d} p\langle\mid p\rangle \Psi(p, 0) \exp \left(-\frac{i}{\hbar} \frac{p^{2}}{2 m} t\right) \\
& =\frac{1}{(2 \pi)^{1 / 4}(\Delta q+i \hbar t / 2 m \Delta q)^{1 / 2}} \exp \left[-\frac{q^{2}}{4(\Delta q)^{2}+2 i \hbar t / m}\right]
\end{aligned}
$$

where $\Delta q=\hbar / 2\left\langle\hat{p}^{2}\right\rangle^{1 / 2}$ ，and $\langle q \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \exp \left(\frac{i p q}{\hbar}\right)$ ．
－even though the momentum uncertainty $\left\langle\Delta \hat{p}^{2}\right\rangle$ is preserved，
（the position uncertainty increases as time develops，

$$
\left\langle\Delta \hat{q}^{2}(t)\right\rangle=(\Delta \hat{q})^{2}+\frac{\hbar^{2} t^{2}}{4 m^{2}(\Delta q)^{2}}
$$

Gaussian Optics

（ Wave equation：In free space，the vector potential，A ，is defined as $A(r, t)=\vec{n} \psi(x, y, z) e^{j \omega t}$ ，which obeys the vector wave equation，

$$
\nabla^{2} \psi+k^{2} \psi=0
$$

The paraxial wave equation：$\psi(x, y, z)=u(x, y, z) e^{-j k z}$ ，one obtains

$$
\nabla_{T}^{2} u-2 j k \frac{\partial u}{\partial z}=0
$$

where $\nabla_{T} \equiv \hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}$.
This solution is proportional to the impulse response function（Fresnel kernel），

$$
h(x, y, z)=\frac{j}{\lambda z} e^{-j k\left[\left(x^{2}+y^{2}\right) / 2 z\right]}
$$

i．e．$\nabla_{T}^{2} h(x, y, z)-2 j k \frac{\partial h}{\partial z}=0$ ．

Gaussian Optics

The solution of the scalar paraxial wave equation is，

$$
u_{00}(x, y, z)=\frac{\sqrt{2}}{\sqrt{\pi} w} \exp (j \phi) \exp \left(-\frac{x^{2}+y^{2}}{w^{2}}\right) \exp \left[-\frac{j k}{2 R}\left(x^{2}+y^{2}\right]\right.
$$

D beam width $w^{2}(z)=\frac{2 b}{k}\left(1+\frac{z^{2}}{b^{2}}=w_{0}^{2}\left[1+\left(\frac{\lambda z}{\pi w_{0}^{2}}\right)^{2}\right]\right.$ ，
（2）radius of phase front $\frac{1}{R(z)}=\frac{z}{z^{2}+b^{2}}=\frac{z}{z^{2}+\left(\pi w_{0}^{2} / \lambda\right)^{2}}$ ，
ค phasedelay $\tan \phi=\frac{z}{b}=\frac{z}{\pi w_{0}^{2} / \lambda}$ ，
（）with the minimum beam radius $w_{0}=\sqrt{2 b} k$ ．

Heisenberg equation

（ The solution of the Schrödinger equation is， $\left.|\Psi(t)\rangle=\overleftarrow{T} \exp \left[-\frac{i}{\hbar} \int_{t_{0}}^{t} \mathrm{~d} \tau \hat{H}(\tau)\right]|\Psi(0)\rangle \equiv \hat{U}_{S}\left(t, t_{0}\right) \right\rvert\, \Psi\left(t_{0}\right)$.
－The quantities of physical interest are the expectation values of operators，

$$
\langle\Psi(t)| \hat{A}|\Psi(t)\rangle=\left\langle\Psi\left(t_{0}\right)\right| \hat{A}(t)\left|\Psi\left(t_{0}\right)\right\rangle,
$$

where

$$
\hat{A}(t)=\hat{U}_{S}^{\dagger}\left(t, t_{0}\right) \hat{A} \hat{U}_{S}\left(t, t_{0}\right)
$$

T The time－dependent operator $\hat{A}(t)$ evolves according to the Heisenberg equation，

$$
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} \hat{A}(t)=[\hat{A}, \hat{H}(t)] .
$$

Schrödinger picture：time evolution of the states．
－Heisenberg picture：time evolution of the operators．

Interaction picture

－Consider a system described by $|\Psi(t)\rangle$ evolving under the action of a hamiltonian $\hat{H}(t)$ decomposable as，

$$
\hat{H}(t)=\hat{H}_{0}+\hat{H}_{1}(t),
$$

where \hat{H}_{0} is time－independent．
－Define

$$
\left|\Psi_{I}(t)\right\rangle=\exp \left(i \hat{H}_{0} t / \hbar\right)|\Psi(t)\rangle
$$

then $\left|\Psi_{I}(t)\right\rangle$ evolves accords to

$$
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}\left|\Psi_{I}(t)\right\rangle=\hat{H}_{I}(t)\left|\Psi_{I}(t)\right\rangle
$$

where

$$
\hat{H}_{I}(t)=\exp \left(i \hat{H}_{0} t / \hbar\right) \hat{H}_{1}(t) \exp \left(-i \hat{H}_{0} t / \hbar\right) .
$$

（ The evolution is in the interaction picture generated by \hat{H}_{0} ．

Paradoxes of Quantum Theory

－Geometric phase
（）Measurement theory
T Schrödinger＇s Cat paradox
（ Einstein－Podolosky－Rosen paradox
D Local Hidden Variables theory

Quantum Zeno effect（watchdog effect）

－multi－time joint probability：$P\left(\left\{\left|\phi_{i}\right\rangle, t_{i}\right\}\right)$ ，the probability that a system in a state $\left|\phi_{0}\left(t_{0}\right)\right\rangle$ at t_{0} is found in the state $\left|\phi_{i}\right\rangle$ at t_{i} ，where $i=1, \ldots, n$ ．
${ }^{-}$at t_{1} ：the state is $\hat{U}_{S}\left(t_{1}, t_{0}\right)\left|\phi_{0}\left(t_{0}\right)\right\rangle$ ．
D
projection on $\left|\phi_{1}\right\rangle$ is

$$
\left|\phi_{1}\left(t_{1}\right)\right\rangle=\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right| \hat{U}_{S}\left(t_{1}, t_{0}\right)\left|\phi_{0}\left(t_{0}\right)\right\rangle
$$

（he sate $\left|\phi_{1}\left(t_{1}\right)\right\rangle$ then evolves till time t_{2} to $\hat{U}_{S}\left(t_{2}, t_{1}\right)\left|\phi_{1}\left(t_{1}\right)\right\rangle$ ，with the projection，

$$
\left|\phi_{2}\left(t_{2}\right)\right\rangle=\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right| \hat{U}_{S}\left(t_{2}, t_{1}\right)\left|\phi_{1}\left(t_{1}\right)\right\rangle .
$$

\rightarrow
continuing till time t_{n} ，

$$
\left.P\left(\left\{\left|\phi_{i}\right\rangle, t_{i}\right\}\right)=\left|\prod_{i=1}^{n}\left\langle\phi_{i}\right| \hat{U}_{S}\left(t_{i}, t_{i-1}\right)\right| \phi_{i-1}\right\rangle\left.\right|^{2} .
$$

Quantum Zeno effect（watchdog effect）

\Rightarrow consider a time－independent hamiltonian，$\hat{U}_{S}\left(t_{i}, t_{j}\right)=\exp \left[-i \hat{H}\left(t_{i}-t_{j}\right) / \hbar\right]$ ．
－let the observation be spaced at equal time intervals，$t_{i}-t_{i-1}=t / n$ ．
－the probability that at each time t_{i} the system is observed in its initial state $\left|\phi_{0}\right\rangle$ is，

$$
\left.P\left(\left\{\left|\phi_{0}\right\rangle, t_{i}\right\}\right)=\left|\left\langle\phi_{0}\right| \exp [-i \hat{H} t / n \hbar]\right| \phi_{0}\right\rangle\left.\right|^{2 n} .
$$

let $t / n \ll 1$ ，

$$
\left.\left|\left\langle\phi_{0}\right| \exp [-i \hat{H} t / n \hbar]\right| \phi_{0}\right\rangle\left.\right|^{2} \approx 1-\left(\frac{t}{n \hbar}\right)^{2} \Delta \hat{H}^{2}
$$

where $\Delta \hat{H}^{2}=\left\langle\phi_{0}\right| \hat{H}^{2}\left|\phi_{0}\right\rangle-\left\langle\phi_{0}\right| \hat{H}\left|\phi_{0}\right\rangle^{2}$.

Quantum Zeno effect (watchdog effect)

(he joint probability for n equally spaced observations becomes,

$$
P\left(\left\{\left|\phi_{0}\right\rangle, t_{i}\right\}\right)=\left[1-\left(\frac{t}{n \hbar}\right)^{2} \Delta \hat{H}^{2}\right]^{n} .
$$

for unobserved in between, the probability is,

$$
P\left(\left\{\left|\phi_{0}\right\rangle, t\right\}\right)=1-\left(\frac{t^{2}}{\hbar^{2}}\right) \Delta \hat{H}^{2}
$$

(he probability of finding the system in its initial state at a given time is increased if it is observed repeatedly at intermediate times.
\rightarrow
for $n \gg 1$,

$$
P\left(\left\{\left|\phi_{0}\right\rangle, t_{i}\right\}\right)=\left[1-\left(\frac{t}{n \hbar}\right)^{2} \Delta \hat{H}^{2}\right]^{n} \approx \exp \left[-t^{2} \Delta \hat{H}^{2} / n \hbar^{2}\right]
$$

the system under observation does not evolve.

Time－dependent perturbation theory

－with the interaction picture，$\hat{H}=\hat{H}_{0}+\hat{H}_{1}$ ．
The state，$\Psi(r, t)=\sum_{n} C_{n}(t) u_{n}(r) e^{-i \omega_{n} t}$ with the energy eigenvalue $\hat{H}_{0} u_{n}(r)=\hbar \omega_{n} u_{n}(r)$.
the wavefunction has the initial value，$\Psi(r, 0)=u_{i}(r)$ ，i．e．$C_{i}(0)=1, C_{n \neq i}=0$ ．
（the equation of motion for the probability amplitude $C_{n}(t)$ is，

$$
\begin{aligned}
\dot{C}_{n}(t) & =-\frac{i}{\hbar} \sum_{m}\langle n| \hat{H}_{1}|m\rangle e^{i \omega_{n m} t} C_{m}(t), \\
& \approx \quad \dot{C}_{n}^{(1)}(t)=-i \hbar^{-1}\langle n| \hat{H}_{1}|i\rangle e^{i \omega_{n i} t} .
\end{aligned}
$$

（）if $\hat{H}_{1}=V_{0}$ time independent，we have
$C_{n}(t) \approx C_{n}{ }^{(1)}(t)=-i \hbar^{-1}\langle n| \hat{H}_{1}|i\rangle \frac{e^{i \omega_{n i} t}-1}{i \omega_{n i}}=-i \hbar^{-1}\langle n| \hat{H}_{1}|i\rangle e^{i \omega_{n i} t / 2} \frac{\sin \left(\omega_{n i} t / 2\right)}{\omega_{n i} / 2}$
Ch． 3 in＂Elements of Quantum Optics，＂by P．Meystre and M．Sargent III．
國立清5率＂大＂Madern Quantum Mechanics，＂by J．Sakurai．
National Tsing Hua University

Rotational－Wave Approximation

つ if $\hat{H}_{1}=V_{0} \cos \nu t$ ，we have

$$
C_{n}(t) \approx C_{n}^{(1)}(t)=-i \frac{V_{n i}}{2 \hbar}\left[\frac{e^{i\left(\omega_{n i}+\nu\right) t}-1}{i\left(\omega_{n i}+\nu\right)}+\frac{e^{i\left(\omega_{n i}-\nu\right) t}-1}{i\left(\omega_{n i}-\nu\right)}\right],
$$

where $V_{n i}=\langle n| \hat{H}_{1}|i\rangle$.
D if near resonance $\omega_{n i} \approx \nu$ ，we can neglect the terms with $\omega_{n i}+\nu$ ．This is called the rotational－wave approximation．
－making the rotational－wave approximation，

$$
\left|C_{n}^{(1)}\right|^{2}=\frac{\left|V_{n i}\right|^{2}}{4 \hbar^{2}} \frac{\sin ^{2}\left[\left(\omega_{n i}-\nu\right) t / 2\right]}{\left(\omega_{n i}-\nu\right)^{2} / 4} .
$$

\rightharpoonup
we have the same transition probability as the dc case，provided we substitute $\omega_{n i}-\nu$ for $\omega_{n i}$ ．

Fermi－Golden rule

（he total transition probability from an initial state to the final state is，

$$
P_{T} \approx \int D(\omega)\left|C_{n}^{(1)}\right|^{2} \mathrm{~d} \omega
$$

where $D(\omega)$ is the density of state factor．
－Fermi－Golden rule，

$$
P_{T}=\int \mathrm{d} \omega D(\omega) \frac{|V(\omega)|^{2}}{4 \hbar^{2}} t^{2} \frac{\sin ^{2}\left[\left(\omega_{n i}-\nu\right) t / 2\right]}{\left[\left(\omega_{n i}-\nu\right) t / 2\right]^{2}} .
$$

T consider resonance condition $\omega=\nu$ ，

$$
\begin{aligned}
P_{T} & \approx D(\nu) \frac{|V(\nu)|^{2}}{4 \hbar^{2}} t^{2} \int \mathrm{~d} \omega \frac{\sin ^{2}\left[\left(\omega_{n i}-\nu\right) t / 2\right]}{\left[\left(\omega_{n i}-\nu\right) t / 2\right]^{2}} \\
& =\frac{\pi}{2 \hbar^{2}} D(\nu)|V(\nu)|^{2} t
\end{aligned}
$$

$\xrightarrow[\text { 者 }]{ }$ the transition rate，$\Gamma=\frac{\mathrm{d} P_{T}}{\mathrm{~d} t}=-\frac{\mathrm{d}}{\mathrm{d} t}\left|C_{n}^{(1)}\right|^{2}=\frac{\pi}{2 \hbar^{2}} D(\nu)|V(\nu)|^{2}$ ，which is a constant國立清䔞intilime

Casimir effect

Hendrik Casimir (1909-2000)
there is a force between two metal slabs if brought in close vicinity

force is due to vacuum fluctuations of the electromagnetic field
important for micromechanical devices (MEMS)

http//physicsweb.orgiarticles/worid/15/9/6

