- **3** Gaussian beams,
- **P** waves with limited spatial extension perpendicular to propagation direction,
- **3** Gaussian beam is solution of paraxial Helmholtz equation,
- **3** Gaussian beam has parabolic wavefronts, (as seen in lab experiment),
- **3** Gaussian beams characterized by focus waist and focus depth,

General Optics

ElectroMagnetic waves

- Э light is ^a wave of electric and magnetic fields,
- Э electric and magnetic fields are vectors \rightarrow polarization,
- Э microscopic nature of the refractive index, from atomic dipoles,

Syllabus

- 1. Introduction to modern photonics (Feb. 26),
- 2. Ray optics (lens, mirrors, prisms, et al.) (Mar. 7, 12, 14, 19),
- 3. Wave optics (plane waves and interference) (Mar. 26, 28),
- 4. Beam optics (Gaussian beam and resonators) (Apr. 9, 11, 16, 18),
- 5. Electromagnetic optics (reflection and refraction) (Apr. 23, 25, 30), Midterm (May 7-th),
- 6. Fourier optics (diffraction and holography) (May 2, 9),
- 7. Crystal optics (birefringence and LCDs) (May 14, 16),
- 8. Waveguide optics (waveguides and optical fibers) (May 21, 23),
- 9. Photon optics (light quanta and atoms) (May 28, 30),
- 10. Laser optics (spontaneous and stimulated emissions) (June 4),
- 11. Semiconductor optics (LEDs and LDs) (June 6),
- 12. Nonlinear optics (June 18),
- 13. Quantum optics (June 20),

Final exam (June 27),

emester oral report (July 4),

Maxwell's equations

3 Faraday's law:

$$
\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B},
$$

Ampére's law:

學

National Tsing Hua University

$$
\nabla \times \mathbf{H} = \frac{\partial}{\partial t} \mathbf{D} + \mathbf{J},
$$

3 Gauss's law for the electric field:

$$
\nabla \cdot \mathbf{D} = \rho,
$$

3 Gauss's law for the magnetic field:

$$
\nabla \cdot \mathbf{B} = 0,
$$

Plane electromagnetic waves

- € Maxwell's equations in free space, there is vacuum, no free charges, no currents, $\mathbf{J}=\rho=0,$
- ၁ both**E** and **B** satisfy wave equation,

$$
\nabla^2 \mathbf{E} = \epsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2},
$$

we can use the solutions of wave optics,

$$
\begin{array}{lcl} \mathbf{E}(\mathbf{r},t) & = & E_0 \exp(i\omega t) \exp(-i\mathbf{k}\cdot\mathbf{r}), \\ \mathbf{B}(\mathbf{r},t) & = & B_0 \exp(i\omega t) \exp(-i\mathbf{k}\cdot\mathbf{r}), \end{array}
$$

Elementary electromagnetic waves

Э The \mathbf{k} , \mathbf{B}_0 , and \mathbf{E}_0 are standing perpendicular on each other,

$$
\mathbf{k} \times \mathbf{B} = -\frac{\omega}{c^2} \mathbf{E}, \qquad \mathbf{k} \times \mathbf{E} = \omega \mathbf{B},
$$

$$
|\mathbf{B}_0|=|\mathbf{E}_0|/c,
$$

light is ^a TEM wave,

Poynting's theorem

Э Poynting's theorem is the law of power conservation for electromagnetic fields,

$$
\nabla \cdot (E \times H) + \frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon_0 E^2\right) + \frac{\partial}{\partial t} \left(\frac{1}{2} \mu_0 H^2\right) + E \cdot \frac{\partial P}{\partial t} + H \cdot \frac{\partial}{\partial t} (\mu_0 M) + E \cdot J = 0.
$$

for the linear constitutive law, $E\cdot\frac{\partial\,P}{\partial\,t}$ =∂ $\frac{\partial}{\partial t}(\frac{1}{2}%)+\frac{\partial}{\partial t}(\frac{1}{2}-\frac{1}{2})$ $\frac{1}{2}\epsilon_0\chi_eE^2$ $^2),$

Э then the Poynting's theorem for the *linear, isotropic* medium becomes,

$$
\nabla \cdot (E \times H) + \frac{\partial}{\partial t}(w_e + w_m) + E \cdot J = 0,
$$

where $w_e=\frac{1}{2}$ $\frac{1}{2}$ ϵE^2 and $w_m=\frac{1}{2}$ $\frac{1}{2}\mu H^2$.

Э Or write the Poynting's theorem in integral form,

$$
\oint_{S} E \times H \cdot dA + \frac{\partial}{\partial t} \int_{V} (w_e + w_m) dV + \int_{V} E \cdot J dV = 0,
$$

Energy density and intensity of ^a plane wave

Э energy density: $u=u_E+u_B,$

$$
u_E = \frac{\epsilon_0}{2} |\mathbf{E}|^2, \qquad u_B = \frac{1}{2\mu_0} |\mathbf{B}|^2,
$$

3 for
$$
|\mathbf{B}_0| = |\mathbf{E}_0|/c
$$
,

$$
u = \frac{\epsilon_0}{2} |\mathbf{E}|^2 + \frac{1}{2\mu_0 c^2} |\mathbf{E}|^2 = \epsilon_0 |\mathbf{E}|^2,
$$

energy is carried in equal parts by magnetic and electric field,

energy flow:

$$
\text{Poynting vector}: \qquad \mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B},
$$

in the direction of **k**,

Э time average: $I=\langle|\textbf{S}|\rangle$, (times longer than optical cycle)

intensity for a plane wave, $I=\frac{|\mathsf{E}|}{2m}$ 2 $\frac{|\mathsf{E}|^2}{2\eta_0}$, where $\eta_0=\sqrt{\epsilon_0/\mu_0}\approx 377\Omega$, is the impedance of vacuum,

Maxwell's equations in ^a medium

- electron cloud displaced by $\Delta r,$
- atomic dipole: $p=q\Delta r$
- Э many atomic dipoles in ^a medium will sum up to ^a larger dipole,
- Э this sum of dipoles is measured by**P**, dipole moment per volume,

$$
\mathbf{P}=Np,
$$

<u>Whe</u>re N is the atomic number density.

Maxwell's equations in ^a medium

Э Total electron charges $Q,$

$$
Q = -\oint \mathbf{P} d\mathbf{A},
$$

= $-\int \int \int \nabla \cdot \mathbf{P} d\mathbf{V}$, Gauss theorem,
= $\int \int \int \rho d\mathbf{V}$,

$$
\bullet \quad \rho = -\nabla \cdot \mathbf{P},
$$

Э time dependent polarization creates also current,

$$
J = Nqv,
$$

\n
$$
= Nq\frac{dr}{dt},
$$

\n
$$
= N\frac{dp}{dt},
$$

\n
$$
= \frac{dP}{dt},
$$

\n
$$
+ -
$$

\n
$$
-
$$

\n
$$
+ -
$$

\n
$$
-
$$

\n
$$
+ -
$$

\n
$$
-
$$

\n
$$
+ -
$$

\n
$$
-
$$

立清華 大學 National Tsing Hua Universit

Maxwell's equations in ^a medium

$$
\nabla(\epsilon_0 \cdot \mathbf{E}) = -\nabla \cdot \mathbf{P},
$$

$$
\nabla \times \mathbf{B} = \mu_0 \frac{\partial \mathbf{P}}{\partial t} + \epsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t},
$$

electric flux density, **D**,

$$
\mathbf{D}=\epsilon_0\mathbf{E}+\mathbf{P},
$$

- Э polarization density, **P**,
- Э magnetic flux density, **B**,

$$
\mathsf{D} = \mu_0 \mathsf{H} + \mathsf{M},
$$

- magnetization,**M**,
- Э both**P** and **M** are vector fields,
- Э we will deal mainly with nonmagnetic media, $\mathbf{M}=0$,

Types of polarization

Types of polarization

important for ionic crystals

important for flexible systems polymers ...

Dielectric media

- linear: a medium is said to be linear if $\mathbf{P}(r,t)$ is linearly related to $\mathbf{E}(r,t)$, this is important for superposition (no superposition possible in ^a nonlinear medium),
- G nondispersive ^a medium is said to be nondispersive if

$$
\mathbf{P}(t) = \mathbf{E}(t),
$$

medium responds instantaneously (idealization, since polarization is never reallyinstantaneous),

- Э homogeneous: ^a medium is said to be homogeneous if the relation between **^P** and **E** are not ^a function of **^r**,
- Э isotropic: ^a medium is said to be isotropic if the relation between **^P** and **^E** are not ^a function of direction **^P**||**E**, example for anisotropy: birefringence,

Simple media

Constitutive relation: $\mathbf{B} = \mu \mathbf{H}$ and $\mathbf{D} = \epsilon \mathbf{E}$.

 $\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} = \epsilon \mathbf{E},$

where D is the electric flux density (C/m^2) , E is the electric field strength (V/m) , and P is the dipole moment density $(C/m^2).$

Э linear: $\textbf{P} = \epsilon_0 \chi \textbf{E}$, where ϵ is the permittivity (F/m) , χ is the electric susceptibility,

3 isotropic:
$$
\chi(x) = \chi(y) = \chi(z)
$$
,

3 homogeneous:
$$
\chi(r)
$$
 is independent of r ,

dispersion-free media: $\chi(\omega)$ is independent of ω

Material equations: $\textbf{D} = \epsilon \textsf{E}$, where

$$
\mu \epsilon = \mu_0 \epsilon_0 (1 + \chi) = \frac{n^2}{c^2},
$$

Model for the polarization response

damped harmonic oscillator

$$
\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + \sigma \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = \frac{q}{m} E(t),
$$

3 assume
$$
E(t) = E_0 \exp(-i\omega t)
$$
, and $x(t) = x_0 \exp(-i\omega t)$, then

$$
x(t) = \frac{1}{\omega_0^2 - i\omega\sigma - \omega^2} \frac{q}{m} E(t),
$$

Э electronic dipole, $p(t) = qx(t)$, and the polarization, $\mathbf{P}(t) = Nq\Delta x(t) = \epsilon_0 \chi \mathbf{E}(t)$, where χ is a complex number,

ミiつを右置media have usually multiple resonances,

More general

$$
\chi(\omega) = \frac{Nq^2}{\epsilon_0 m} \frac{1}{\omega_0^2 - i\omega\sigma - \omega^2}
$$

Э Quantum mechanics,

$$
\chi(\omega) = \frac{Ne^2}{\epsilon_0 m} \sum_j \frac{f_j}{\omega_j^2 - i\omega \sigma_j - \omega^2}
$$

where f_j is the oscillator strength,

G redefine,

National Tsing

$$
\chi(\nu) = \chi_0 \frac{\nu_0^2}{\nu_0^2 - \nu^2 + i\nu \Delta \nu}
$$

3
$$
\chi = \chi' + i\chi''
$$
, where
\n
$$
\chi'(\nu) = \chi_0 \frac{\nu_0^2 (\nu_0^2 - \nu^2)}{(\nu_0^2 - \nu^2)^2 + (\nu \Delta \nu)^2},
$$
\n
\n\$ ∉ $\frac{\psi_0^2 \nu \Delta \nu}{\psi_0^2 \nu \Delta \nu}$

Lorentzian function,

Consequences of the simple model

Э complex susceptibility, $\chi=\chi'+i\chi"$,

 $\epsilon=\epsilon_0(1+\chi),$

Helmholtz equation still valid but

立清華大學 National Tsing Hua University

 $k=\omega\sqrt{\epsilon\mu_{0}}$ 1 $\frac{1}{\sqrt{2}}$ 2 $k_0(1 + \chi)^1$ $\frac{1}{\sqrt{2}}$ 2 $k_0(1 + \chi' + i\chi'')^1$ $\frac{1}{\sqrt{2}}$ 2,

Relation to refractive index

$$
\bullet \quad \text{plane waves: } \exp(-ikz),
$$

$$
k = \omega \sqrt{\epsilon \mu_0}^{1/2} = k_0 (1 + \chi)^{1/2} = k_0 (1 + \chi' + i \chi'')^{1/2},
$$

simplify

$$
k = \beta - i\frac{\alpha}{2} = n\frac{\omega}{c},
$$

Э refractive index is now also ^a complex number,

Э plane waves,

$$
\exp(-ikz)=\exp(-i\beta z)\exp(-\frac{\alpha}{2}),
$$

G intensity,

$$
I \propto |\exp(-ikz)|^2 = \exp(-\alpha z),
$$

where α is absorption coefficient,

Absorption coefficient

- Э plane waves, $\mathsf{exp}(-ikz) = \mathsf{exp}(-i\beta z) \mathsf{exp}(-\frac{\alpha}{2})$ $\frac{\alpha}{2}),$
- Э intensity, $I\propto|\textsf{exp}(-ikz)|^2$ $\alpha^2 = \exp(-\alpha z)$, where α is absorption coefficient,

Weakly absorbing media

Э weakly absorbing media: $\chi^{\prime}\ll 1,\qquad \chi^{\prime\prime}\ll 1,$

dispersion:

$$
n(\nu) \approx 1 + \frac{\chi'}{2},
$$

phase velocity is ^a function of frequency, typically ⁿ decreases with increasingfrequency

Э absorption:

$$
\alpha \approx -k_0 \chi",
$$

absorption is ^a function of frequency, characteristic for the material,

Absorption and Dispersion

materials are not transparent to all optical wavelength

Kramers Kronig Relation

Э absorption and dispersion are always related

$$
\chi'(\nu) = \frac{2}{\pi} \int_0^\infty \frac{s \chi''(s)}{s^2 - \nu^2} ds,
$$

$$
\chi''(\nu) = \frac{2}{\pi} \int_0^\infty \frac{s \chi'(s)}{\nu^2 - s^2} ds,
$$

Э group velocity,

$$
v_G = \frac{c}{n + \omega \frac{\partial n}{\partial \omega}},
$$

Э large $\frac{\partial n}{\partial \omega}$ always with large $\alpha,$

Slow-light

• Electromagnetically Induced Transparency (EIT) - Formation of *dark state* by intense pump in a three-level system Absorption Refractive Index $|3>$ Probe Pump $|2>$ $|1\rangle$ ω ω • Population Oscillation - Absorption dip generated by coherent beating between Spectral hole pump and probe in a two-level system Absorption Refractive Index 12> Probe Pump $|1\rangle$ ω ω National Tsing Hua Universit

Reflection, Refraction, and TIR

Consider ^a plane wave with its electric field polarized parallel to the surface of aninterface between two media, (transverse electric, or TE, wave),

$$
E_{in} = \hat{x}E_{+}e^{-j\mathbf{k}^{(1)}\cdot\mathbf{r}}
$$

the tangential E and E must be continuous at $z=0.$ This implies ,

National Tsing Hua Universit

 $k_z^{(1)}=k_z^{(2)}=k_z,\qquad$ phase matching,

Э The consequence is Snell's law,

$$
\sqrt{\mu_1 \epsilon_1} \sin \theta_1 = \sqrt{\mu_2 \epsilon_2} \sin \theta_2.
$$

At $y < 0,$ the superposition of the incident and reflected waves is,

$$
E_x = [E_+^{(1)}e^{-jk_y^{(1)}y} + E_-^{(1)}e^{+jk_y^{(1)}y}]e^{-jk_zz},
$$

from Faraday's law,

$$
H_z = -\frac{k_y^{(1)}}{\omega \mu_1} [E_+^{(1)} e^{-jk_y^{(1)}} y - E_-^{(1)} e^{+jk_y^{(1)}} y] e^{-jk_z z},
$$

where

$$
\frac{k_y^{(1)}}{\omega \mu_1} = \sqrt{\frac{\epsilon_1}{\mu_1}} \cos \theta_1 \equiv Y_0^{(1)},
$$

is the *characteristic admittance* by medium
 $\mathcal{F}^{(1)}$ 1 to ^a TE wave at inclination θ θ_1 with respect at the y direction. The inverse of $Y^{(1)}_0$ is the *characteristic impedance* $Z^{(1)}_0$ *.*

Э At $y>0,$ the transmitted waves is,

$$
E_x = E_{+}^{(2)} e^{-jk_y^{(2)}} y e^{-jk_z z},
$$

with the z component of the H field,

$$
H_z = -\frac{k_y^{(2)}}{\omega \mu_2} E_+^{(2)} e^{-jk_y^{(2)}} y e^{-jk_z z},
$$

with the characteristic admittance in medium $2,$

$$
\frac{k_y^{(2)}}{\omega \mu_2} = \sqrt{\frac{\epsilon_2}{\mu_2}} \cos \theta_2 \equiv Y_0^{(2)}
$$

Continuity of the tangential components of E and H requires the ratio

$$
Z\equiv -\frac{E_x}{H_z}
$$

to be continuous. Z is the *wave impedance* at the interface.
" National Tsing Hua

At $y=0$,

$$
Z_0^{(1)} \frac{E_+^{(1)} + E_-^{(1)}}{E_+^{(1)} - E_-^{(1)}} = Z_0^{(2)}.
$$

$$
\Gamma \equiv \frac{E_-}{E_+},
$$

is the *reflection coefficient*.

For $E^{(1)}_{-}$ $\binom{(1)}{2}$ / $E_+^{(1)}$ $+$,

$$
\Gamma^{(1)} = \frac{Z_0^{(2)} - Z_0^{(1)}}{Z_0^{(2)} + Z_0^{(1)}},
$$

using Snell's law,

$$
\Gamma^{(1)} = \frac{\sqrt{1-\sin^2\theta_1} - \sqrt{1-\sin^2\theta_1 \frac{\epsilon_1\mu_1}{\epsilon_2\mu_2}} \sqrt{\frac{\epsilon_2\mu_1}{\epsilon_1\mu_2}}}{\sqrt{1-\sin^2\theta_1} + \sqrt{1-\sin^2\theta_1 \frac{\epsilon_1\mu_1}{\epsilon_2\mu_2}} \sqrt{\frac{\epsilon_2\mu_1}{\epsilon_1\mu_2}}}.
$$

Э The density of power flow in the y direction is

$$
\frac{1}{2}\text{Re}[E \times H^*] \cdot \hat{y} = -\frac{1}{2}\text{Re}[E_x H_z] = \frac{1}{2}Y_0^{(1)}|E_+^{(1)}|^2(1-|\Gamma^{(1)}|^2).
$$

Thus $|\Gamma|^2$ is the ratio of reflected to incident power flow.

Fresnel's equations: TE

Э for TE waves, E_{\perp} , the reflection coefficient,

$$
r_{\perp} = \frac{E_{-}^{(1)}(0)}{E_{+}^{(1)}(0)} = \frac{\sqrt{1 - \sin^{2}\theta_{1}} - \sqrt{1 - \sin^{2}\theta_{1}} \frac{\epsilon_{1}\mu_{1}}{\epsilon_{2}\mu_{2}} \sqrt{\frac{\epsilon_{2}\mu_{1}}{\epsilon_{1}\mu_{2}}}}{\sqrt{1 - \sin^{2}\theta_{1}} + \sqrt{1 - \sin^{2}\theta_{1}} \frac{\epsilon_{1}\mu_{1}}{\epsilon_{2}\mu_{2}} \sqrt{\frac{\epsilon_{2}\mu_{1}}{\epsilon_{1}\mu_{2}}}},
$$

$$
= \frac{\cos\theta_{1} - [n^{2} - \sin^{2}\theta_{1}]^{1/2}}{\cos\theta_{1} + [n^{2} - \sin^{2}\theta_{1}]^{1/2}},
$$

where $n\equiv\frac{n}{n}$ 2 $\frac{n_2}{n_1} = \left(\frac{\epsilon_2}{\epsilon_1}\right)$ $\frac{\epsilon_2}{\epsilon_1})$ 1 $\frac{1}{\sqrt{2}}$ 2 , and the transmission coefficients,

$$
t_{\perp} = \frac{2 \cos \theta_1}{\cos \theta_1 + [n^2 - \sin^2 \theta_1]^{1/2}},
$$

Э relations between reflection and transmission coefficients,

$$
r_{\perp}+1=t_{\perp},
$$

Fresnel's equations: TM

Э for TM waves, $E_{\rm \parallel}$, the reflection coefficient,

$$
r_{\parallel} = -\frac{\sqrt{1 - \sin^2 \theta_1} - \sqrt{1 - \sin^2 \theta_1 \frac{\epsilon_1 \mu_1}{\epsilon_2 \mu_2}} \sqrt{\frac{\epsilon_1 \mu_2}{\epsilon_2 \mu_1}}}{\sqrt{1 - \sin^2 \theta_1} + \sqrt{1 - \sin^2 \theta_1 \frac{\epsilon_1 \mu_1}{\epsilon_2 \mu_2}} \sqrt{\frac{\epsilon_1 \mu_2}{\epsilon_2 \mu_1}}},
$$

$$
= \frac{[n^2 - \sin^2 \theta_1]^{1/2} - n^2 \cos \theta_1}{[n^2 - \sin^2 \theta_1]^{1/2} + n^2 \cos \theta_1},
$$

$$
t_{\parallel} = \frac{2n \cos \theta_1}{n^2 \cos \theta_1 + [n^2 - \sin^2 \theta_1]^{1/2}},
$$

Э relations between reflection and transmission coefficients,

 $r_{\parallel} + n t_{\parallel} = 1,$

$\bf{Reflection}$ and $\bf{transmission},$ $n_1 > n_2$,

Optoelectronic, 2007 – p.34/41

EM wave approach: TM

- Э Consider ^a plane wave with its magnetic field polarized parallel to the surface of aninterface between two media, (transverse magnetic, or TM, wave),
- Э at $y < 0,$ the superposition of the incident and reflected waves is,

$$
H_x = [H_+^{(1)} e^{-jk_y^{(1)}} y + H_-^{(1)} e^{+jk_y^{(1)}} y] e^{-jk_z z},
$$

from Ampére's law,

$$
E_z = \frac{k_y^{(1)}}{\omega \epsilon_1} [H_+^{(1)} e^{-jk_y^{(1)}z} - H_-^{(1)} e^{+jk_y^{(1)}z}] e^{-jk_z z}
$$

At $y>0,$ the transmitted waves is,

$$
H_x = H_+^{(2)} e^{-jk_y^{(2)}} y e^{-jk_z z},
$$

with the z component of the E field, $\;$

$$
E_z = \frac{k_y^{(2)}}{\omega \epsilon_2} H_+^{(2)} e^{-jk_y^{(2)}} y e^{-jk_z z},
$$

Optoelectronic, 2007 – p.35/41

.

Э with the characteristic admittance of the traveling TM wave,

$$
Y_0 = \frac{\omega \epsilon}{k_y} = \sqrt{\frac{\epsilon}{\mu}} \frac{1}{\cos \theta}.
$$

continuity of the tangential components of E and H requires the ratio

$$
Z\equiv\frac{E_z}{H_x}
$$

to be continuous. Z is the *wave impedance* at the interface.

Э

at $y=0$,

$$
Z_0^{(1)} \frac{H_+^{(1)} - H_-^{(1)}}{H_+^{(1)} + H_-^{(1)}} = Z_0^{(2)}.
$$

7 The quantity,
$$
\Gamma \equiv -\frac{H_{-}}{H_{+}}
$$
, is the *reflection coefficient*.

EM wave approach: TM

For $E^{(1)}_{-}$ $\binom{(1)}{2}$ / $E_+^{(1)}$ $+$,

$$
\Gamma^{(1)}=\frac{Z^{(2)}_0-Z^{(1)}_0}{Z^{(2)}_0+Z^{(1)}_0},
$$

using Snell's law,

大學

National Tsing Hua University

$$
\Gamma^{(1)} = -\frac{\sqrt{1 - \sin^2 \theta_1} - \sqrt{1 - \sin^2 \theta_1 \frac{\epsilon_1 \mu_1}{\epsilon_2 \mu_2}} \sqrt{\frac{\epsilon_1 \mu_2}{\epsilon_2 \mu_1}}}{\sqrt{1 - \sin^2 \theta_1} + \sqrt{1 - \sin^2 \theta_1 \frac{\epsilon_1 \mu_1}{\epsilon_2 \mu_2}} \sqrt{\frac{\epsilon_1 \mu_2}{\epsilon_2 \mu_1}}},
$$
\n
$$
= \frac{[n^2 - \sin^2 \theta_1]^{1/2} - n^2 \cos \theta_1}{[n^2 - \sin^2 \theta_1]^{1/2} + n^2 \cos \theta_1},
$$
\n
$$
t_{\parallel} = \frac{2n \cos \theta_1}{n^2 \cos \theta_1 + [n^2 - \sin^2 \theta_1]^{1/2}},
$$

Э TM waves can be transmitted reflection-free at ^a dielectric interface, when $\mu_1=\mu_2=\mu_0,$ for the angle $\theta_1=\theta_B,$ the so-called *Brewster angle*,

$$
\theta_B = \tan^{-1} \sqrt{\frac{\epsilon_2}{\epsilon_1}}.
$$

Optoelectronic, 2007 – p.37/41

Total internal reflection

Э If medium 1 has a larger value of $\sqrt{\mu\epsilon}$, *optical denser*, than medium 2 , Snell's law fails to yield a real angle θ_2 for a certain range of angle of incidence.

€ for $\mu_1=\mu_2=\mu_0,$

$$
\sin \theta_c = \sqrt{\frac{\epsilon_2}{\epsilon_1}} = \frac{n_2}{n_1}.
$$

When no real solution of θ_2 are found, the propagation constant must be allowed to become negative imaginary,

$$
k_z^{(2)} = k_z^{(1)}, \t k_y^{(2)} = -j\alpha_y^{(2)}.
$$

In this case,

$$
[k_z^{(2)}]^2 + [k_y^{(2)}]^2 = [k_z^{(2)}]^2 - [\alpha_y^{(2)}]^2 = \omega^2 \mu_0 \epsilon_2,
$$

and

$$
k_z^{(2)} = \sqrt{\omega^2 \mu_0 \epsilon_2 + [\alpha_z^{(2)}]^2}.
$$

Total internal reflection

Э In the case of ^a TE wave, the transmitted fields become,

$$
E_x = E_+^{(2)} e^{-\alpha_y^{(2)}} y e^{-jk_z z},
$$

\n
$$
H_z = \frac{j\alpha_y^{(2)}}{\omega\mu_0} E_+^{(2)} e^{-\alpha_y^{(2)}} y e^{-jk_z z}
$$

The wave impedance, $-E_{y}/H_{x},$

$$
\frac{\omega\mu_0}{k_y^{(1)}}\frac{E_+^{(1)}+E_-^{(1)}}{E_+^{(1)}-E_-^{(1)}}=\frac{j\omega\mu_0}{\alpha_y^{(2)}}=Z_0^{(2)}
$$

.

The characteristic impedance of medium 2 is now imaginary, $Z_0^{(2)}$ = $jX_0^{(2)}$ $\int_0^{(2)}$, with $X_{0}^{\left(2\right) }$ real.

Total internal reflection

Э Then the reflection coefficient, $\Gamma=E_{-}^{(1)}$ $\binom{(1)}{2}$ / $E_+^{(1)}$ $+$,

$$
\Gamma^{(1)} = \frac{E_{-}^{(1)}}{E_{+}^{(1)}} = \frac{jX_{0}^{(2)} - Z_{0}^{(1)}}{jX_{0}^{(2)} + Z_{0}^{(1)}},
$$

 $|\Gamma^{(1)}|=1$, and the magnitude of the reflected wave, $E_{-}^{(1)}$ | $\mathcal{L}^{(1)}$, equals to the magnitude of the incident wave, $E_+^{(1)}.$

$$
\bullet \quad \text{At } y < 0,
$$

$$
E_x = E_+^{(1)} [e^{-jk_y^{(1)}}y + \Gamma^{(1)} e^{+jk_y y}] e^{-jk_z z},
$$

= $2e^{-j\phi} E_+^{(1)} \cos(k_y^{(1)} y - \phi) e^{-jk_z z},$

where $\phi=-\frac{1}{2}$ $\frac{1}{2} \arg(\Gamma^{(1)})$, is the Goos-Hänchen shift.

Goos-Hänchen shift

