
Summary of Beam Optics

Gaussian beams,

waves with limited spatial extension perpendicular to
propagation direction,

Gaussian beam is solution of paraxial Helmholtz
equation,

Gaussian beam has parabolic wavefronts, (as seen in
lab experiment),

Gaussian beams characterized by focus waist and
focus depth,
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General Optics
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ElectroMagnetic waves

light is a wave of electric and magnetic fields,

electric and magnetic fields are vectors → polarization,

microscopic nature of the refractive index, from atomic dipoles,
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Syllabus

1. Introduction to modern photonics (Feb. 26),

2. Ray optics (lens, mirrors, prisms, et al.) (Mar. 7, 12, 14, 19),

3. Wave optics (plane waves and interference) (Mar. 26, 28),

4. Beam optics (Gaussian beam and resonators) (Apr. 9, 11, 16, 18),

5. Electromagnetic optics (reflection and refraction) (Apr. 23, 25, 30),
Midterm (May 7-th),

6. Fourier optics (diffraction and holography) (May 2, 9),

7. Crystal optics (birefringence and LCDs) (May 14, 16),

8. Waveguide optics (waveguides and optical fibers) (May 21, 23),

9. Photon optics (light quanta and atoms) (May 28, 30),

10. Laser optics (spontaneous and stimulated emissions) (June 4),

11. Semiconductor optics (LEDs and LDs) (June 6),

12. Nonlinear optics (June 18),

13. Quantum optics (June 20),
Final exam (June 27),

14. Semester oral report (July 4),
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Maxwell’s equations

Faraday’s law:

∇× E = −
∂

∂ t
B,

Ampére’s law:

∇× H =
∂

∂ t
D + J,

Gauss’s law for the electric field:

∇ · D = ρ,

Gauss’s law for the magnetic field:

∇ · B = 0,
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Plane electromagnetic waves

Maxwell’s equations in free space, there is vacuum, no free charges, no currents,
J = ρ = 0,

both E and B satisfy wave equation,

∇2E = ǫ0µ0
∂2E
∂t2

,

we can use the solutions of wave optics,

E(r, t) = E0exp(iωt)exp(−ik · r),

B(r, t) = B0exp(iωt)exp(−ik · r),
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Elementary electromagnetic waves

The k, B0, and E0 are standing perpendicular on each other,

k × B = − ω

c2
E, k × E = ωB,

|B0| = |E0|/c,

light is a TEM wave,
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Poynting’s theorem

Poynting’s theorem is the law of power conservation for electromagnetic fields,

∇ · (E × H) +
∂

∂ t
(
1

2
ǫ0E2) +

∂

∂ t
(
1

2
µ0H2) + E · ∂ P

∂ t
+ H · ∂

∂ t
(µ0M) + E · J = 0.

for the linear constitutive law, E · ∂ P
∂ t

= ∂
∂ t

( 1
2
ǫ0χeE2),

then the Poynting’s theorem for the linear, isotropic medium becomes,

∇ · (E × H) +
∂

∂ t
(we + wm) + E · J = 0,

where we = 1
2
ǫE2 and wm = 1

2
µH2.

Or write the Poynting’s theorem in integral form,

∮

S
E × H · d A +

∂

∂ t

∫

V
(we + wm) d V +

∫

V
E · J d V = 0,
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Energy density and intensity of a plane wave

energy density: u = uE + uB ,

uE =
ǫ0

2
|E|2, uB =

1

2µ0
|B|2,

for |B0| = |E0|/c,

u =
ǫ0

2
|E|2 +

1

2µ0c2
|E|2 = ǫ0|E|2,

energy is carried in equal parts by magnetic and electric field,

energy flow:

Poynting vector : S =
1

µ0
E × B,

in the direction of k,

time average: I = 〈|S|〉, (times longer than optical cycle)

intensity for a plane wave, I =
|E|2

2η0
, where η0 =

√

ǫ0/µ0 ≈ 377Ω, is the
impedance of vacuum,
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Maxwell’s equations in a medium

electron cloud displaced by ∆r,

atomic dipole: p = q∆r

many atomic dipoles in a medium will sum up to a larger dipole,

this sum of dipoles is measured by P, dipole moment per volume,

P = Np,

where N is the atomic number density.
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Maxwell’s equations in a medium

Total electron charges Q,

Q = −
∮

P dA,

= −
∫ ∫ ∫

∇ · P dV, Gauss theorem,

=

∫ ∫ ∫

ρ dV,

ρ = −∇ · P,

time dependent polarization creates also current,

J = Nqv,

= Nq
dr
dt

,

= N
dp

dt
,

=
dP
dt

,
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Maxwell’s equations in a medium

∇(ǫ0 · E) = −∇ · P,

∇× B = µ0
∂P
∂t

+ ǫ0µ0
∂E
∂t

,

electric flux density, D,

D = ǫ0E + P,

polarization density, P,

magnetic flux density, B,

D = µ0H + M,

magnetization, M,

both P and M are vector fields,

we will deal mainly with nonmagnetic media, M = 0,
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Types of polarization
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Types of polarization
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Dielectric media

linear: a medium is said to be linear if P(r, t) is linearly related to E(r, t), this is
important for superposition (no superposition possible in a nonlinear medium),

nondispersive a medium is said to be nondispersive if

P(t) = E(t),

medium responds instantaneously (idealization, since polarization is never really
instantaneous),

homogeneous: a medium is said to be homogeneous if the relation between P and
E are not a function of r,

isotropic: a medium is said to be isotropic if the relation between P and E are not a
function of direction P||E, example for anisotropy: birefringence,
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Simple media

Constitutive relation: B = µH and D = ǫE.

D = ǫ0E + P = ǫE,

where D is the electric flux density (C/m2), E is the electric field strength (V/m), and P

is the dipole moment density (C/m2).

linear: P = ǫ0χE, where ǫ is the permittivity (F/m), χ is the electric susceptibility,

isotropic: χ(x) = χ(y) = χ(z),

homogeneous: χ(r) is independent of r,

dispersion-free media: χ(ω) is independent of ω

Material equations: D = ǫE, where

µǫ = µ0ǫ0(1 + χ) =
n2

c2
,
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Model for the polarization response

damped harmonic oscillator

d2x

dt2
+ σ

dx

dt
+ ω2

0x =
q

m
E(t),

assume E(t) = E0exp(−iωt), and x(t) = x0exp(−iωt), then

x(t) =
1

ω2
0 − iωσ − ω2

q

m
E(t),

electronic dipole, p(t) = qx(t), and the polarization, P(t) = Nq∆x(t) = ǫ0χE(t),
where χ is a complex number,

real media have usually multiple resonances,
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More general

χ(ω) =
Nq2

ǫ0m

1

ω2
0 − iωσ − ω2

Quantum mechanics,

χ(ω) =
Ne2

ǫ0m

∑

j

fj

ω2
j − iωσj − ω2

where fj is the oscillator strength,

redefine,

χ(ν) = χ0
ν2
0

ν2
0 − ν2 + iν∆ν

χ = χ′ + iχ”, where

χ′(ν) = χ0
ν2
0(ν2

0 − ν2)

(ν2
0 − ν2)2 + (ν∆ν)2

,

χ”(ν) = χ0
ν2
0ν∆ν

(ν2
0 − ν2)2 + (ν∆ν)2

, Lorentzian function,
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Consequences of the simple model

complex susceptibility, χ = χ′ + iχ”,

ǫ = ǫ0(1 + χ),

Helmholtz equation still valid but

k = ω
√

ǫµ0
1/2 = k0(1 + χ)1/2 = k0(1 + χ′ + iχ”)1/2,
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Relation to refractive index

plane waves: exp(−ikz),

k = ω
√

ǫµ0
1/2 = k0(1 + χ)1/2 = k0(1 + χ′ + iχ”)1/2,

simplify

k = β − i
α

2
= n

ω

c
,

refractive index is now also a complex number,

plane waves,

exp(−ikz) = exp(−iβz)exp(−α

2
),

intensity,

I ∝ |exp(−ikz)|2 = exp(−αz),

where α is absorption coefficient,
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Absorption coefficient

plane waves, exp(−ikz) = exp(−iβz)exp(−α
2
),

intensity, I ∝ |exp(−ikz)|2 = exp(−αz), where α is absorption coefficient,
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Weakly absorbing media

weakly absorbing media: χ′ ≪ 1, χ” ≪ 1,

dispersion:

n(ν) ≈ 1 +
χ′

2
,

phase velocity is a function of frequency, typically n decreases with increasing
frequency

absorption:

α ≈ −k0χ”,

absorption is a function of frequency, characteristic for the material,
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Absorption and Dispersion

materials are not transparent to all optical wavelength
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Kramers Kronig Relation

absorption and dispersion are always related

χ′(ν) =
2

π

∫ ∞

0

sχ”(s)

s2 − ν2
ds,

χ”(ν) =
2

π

∫ ∞

0

sχ′(s)

ν2 − s2
ds,

group velocity,

vG =
c

n + ω ∂n
∂ω

,

large ∂n
∂ω

always with large α,
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Slow-light
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Reflection, Refraction, and TIR
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EM wave approach

Consider a plane wave with its electric field polarized parallel to the surface of an
interface between two media, (transverse electric, or TE, wave),

Ein = x̂E+e−jk(1)·r

the tangential E and E must be continuous at z = 0. This implies ,

k
(1)
z = k

(2)
z = kz , phase matching,
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EM wave approach

The consequence is Snell’s law,

√
µ1ǫ1 sin θ1 =

√
µ2ǫ2 sin θ2.

At y < 0, the superposition of the incident and reflected waves is,

Ex = [E
(1)
+ e−jk

(1)
y y + E

(1)
− e+jk

(1)
y y ]e−jkzz ,

from Faraday’s law,

Hz = − k
(1)
y

ωµ1
[E

(1)
+ e−jk

(1)
y y − E

(1)
− e+jk

(1)
y y ]e−jkzz ,

where

k
(1)
y

ωµ1
=

√

ǫ1

µ1
cos θ1 ≡ Y

(1)
0 ,

is the characteristic admittance by medium 1 to a TE wave at inclination θ1 with respect

at the y direction. The inverse of Y
(1)
0 is the characteristic impedance Z

(1)
0 .
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EM wave approach

At y > 0, the transmitted waves is,

Ex = E
(2)
+ e−jk

(2)
y ye−jkzz ,

with the z component of the H field,

Hz = − k
(2)
y

ωµ2
E

(2)
+ e−jk

(2)
y ye−jkzz ,

with the characteristic admittance in medium 2,

k
(2)
y

ωµ2
=

√

ǫ2

µ2
cos θ2 ≡ Y

(2)
0 .

Continuity of the tangential components of E and H requires the ratio

Z ≡ −Ex

Hz

to be continuous. Z is the wave impedance at the interface.
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EM wave approach

At y = 0,

Z
(1)
0

E
(1)
+ + E

(1)
−

E
(1)
+ − E

(1)
−

= Z
(2)
0 .

The quantity,

Γ ≡ E−

E+
,

is the reflection coefficient.
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EM wave approach

For E
(1)
− /E

(1)
+ ,

Γ(1) =
Z

(2)
0 − Z

(1)
0

Z
(2)
0 + Z

(1)
0

,

using Snell’s law,

Γ(1) =

√

1 − sin2 θ1 −
√

1 − sin2 θ1
ǫ1µ1
ǫ2µ2

√

ǫ2µ1
ǫ1µ2

√

1 − sin2 θ1 +
√

1 − sin2 θ1
ǫ1µ1
ǫ2µ2

√

ǫ2µ1
ǫ1µ2

.

The density of power flow in the y direction is

1

2
Re[E × H∗] · ŷ = −1

2
Re[ExHz ] =

1

2
Y

(1)
0 |E(1)

+ |2(1 − |Γ(1)|2).

Thus |Γ|2 is the ratio of reflected to incident power flow.
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Fresnel’s equations: TE

for TE waves, E⊥, the reflection coefficient,

r⊥ =
E

(1)
− (0)

E
(1)
+ (0)

=

√

1 − sin2 θ1 −
√

1 − sin2 θ1
ǫ1µ1
ǫ2µ2

√

ǫ2µ1
ǫ1µ2

√

1 − sin2 θ1 +
√

1 − sin2 θ1
ǫ1µ1
ǫ2µ2

√

ǫ2µ1
ǫ1µ2

,

=
cos θ1 − [n2 − sin2 θ1]1/2

cos θ1 + [n2 − sin2 θ1]1/2
,

where n ≡ n2
n1

= ( ǫ2
ǫ1

)1/2, and the transmission coefficients,

t⊥ =
2 cos θ1

cos θ1 + [n2 − sin2 θ1]1/2
,

relations between reflection and transmission coefficients,

r⊥ + 1 = t⊥,

Optoelectronic, 2007 – p.32/41



Fresnel’s equations: TM

for TM waves, E‖, the reflection coefficient,

r‖ = −

√

1 − sin2 θ1 −
√

1 − sin2 θ1
ǫ1µ1
ǫ2µ2

√

ǫ1µ2
ǫ2µ1

√

1 − sin2 θ1 +
√

1 − sin2 θ1
ǫ1µ1
ǫ2µ2

√

ǫ1µ2
ǫ2µ1

,

=
[n2 − sin2 θ1]1/2 − n2 cos θ1

[n2 − sin2 θ1]1/2 + n2 cos θ1
,

t‖ =
2n cos θ1

n2 cos θ1 + [n2 − sin2 θ1]1/2
,

relations between reflection and transmission coefficients,

r‖ + nt‖ = 1,
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Reflection and transmission, n1 > n2,

θc is the critical angle for total internal reflection,

there is a phase change for TIR,

for θi = 90, there is a phaseshift for the reflection TE wave even r = 1,

for TM waves, the reflection can be zero at the Brewster’s angle, θp,
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EM wave approach: TM

Consider a plane wave with its magnetic field polarized parallel to the surface of an
interface between two media, (transverse magnetic, or TM, wave),

at y < 0, the superposition of the incident and reflected waves is,

Hx = [H
(1)
+ e−jk

(1)
y y + H

(1)
− e+jk

(1)
y y]e−jkzz ,

from Ampére’s law,

Ez =
k
(1)
y

ωǫ1
[H

(1)
+ e−jk

(1)
y z − H

(1)
− e+jk

(1)
y z ]e−jkzz .

At y > 0, the transmitted waves is,

Hx = H
(2)
+ e−jk

(2)
y ye−jkzz ,

with the z component of the E field,

Ez =
k
(2)
y

ωǫ2
H

(2)
+ e−jk

(2)
y ye−jkzz ,
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EM wave approach: TM

with the characteristic admittance of the traveling TM wave,

Y0 =
ωǫ

ky
=

√

ǫ

µ

1

cos θ
.

continuity of the tangential components of E and H requires the ratio

Z ≡ Ez

Hx

to be continuous. Z is the wave impedance at the interface.

at y = 0,

Z
(1)
0

H
(1)
+ − H

(1)
−

H
(1)
+ + H

(1)
−

= Z
(2)
0 .

The quantity, Γ ≡ −H
−

H+
, is the reflection coefficient.
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EM wave approach: TM

For E
(1)
− /E

(1)
+ ,

Γ(1) =
Z

(2)
0 − Z

(1)
0

Z
(2)
0 + Z

(1)
0

,

using Snell’s law,

Γ(1) = −

√

1 − sin2 θ1 −
√

1 − sin2 θ1
ǫ1µ1
ǫ2µ2

√

ǫ1µ2
ǫ2µ1

√

1 − sin2 θ1 +
√

1 − sin2 θ1
ǫ1µ1
ǫ2µ2

√

ǫ1µ2
ǫ2µ1

,

=
[n2 − sin2 θ1]1/2 − n2 cos θ1

[n2 − sin2 θ1]1/2 + n2 cos θ1
,

t‖ =
2n cos θ1

n2 cos θ1 + [n2 − sin2 θ1]1/2
,

TM waves can be transmitted reflection-free at a dielectric interface, when
µ1 = µ2 = µ0, for the angle θ1 = θB , the so-called Brewster angle,

θB = tan−1

√

ǫ2

ǫ1
.
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Total internal reflection

If medium 1 has a larger value of
√

µǫ, optical denser, than medium 2, Snell’s law
fails to yield a real angle θ2 for a certain range of angle of incidence.

for µ1 = µ2 = µ0,

sin θc =

√

ǫ2

ǫ1
=

n2

n1
.

When no real solution of θ2 are found, the propagation constant must be allowed
to become negative imaginary,

k
(2)
z = k

(1)
z , k

(2)
y = −jα

(2)
y .

In this case,

[k
(2)
z ]2 + [k

(2)
y ]2 = [k

(2)
z ]2 − [α

(2)
y ]2 = ω2µ0ǫ2,

and

k
(2)
z =

√

ω2µ0ǫ2 + [α
(2)
z ]2.
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Total internal reflection

In the case of a TE wave, the transmitted fields become,

Ex = E
(2)
+ e−α

(2)
y ye−jkzz ,

Hz =
jα

(2)
y

ωµ0
E

(2)
+ e−α

(2)
y ye−jkzz .

The wave impedance, −Ey/Hx,

ωµ0

k
(1)
y

E
(1)
+ + E

(1)
−

E
(1)
+ − E

(1)
−

=
jωµ0

α
(2)
y

= Z
(2)
0 .

The characteristic impedance of medium 2 is now imaginary, Z
(2))
0 = jX

(2)
0 , with

X
(2)
0 real.
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Total internal reflection

Then the reflection coefficient, Γ = E
(1)
− /E

(1)
+ ,

Γ(1) =
E

(1)
−

E
(1)
+

=
jX

(2)
0 − Z

(1)
0

jX
(2)
0 + Z

(1)
0

,

|Γ(1)| = 1, and the magnitude of the reflected wave, E
(1)
− , equals to the magnitude

of the incident wave, E
(1)
+ .

At y < 0,

Ex = E
(1)
+ [e−jk

(1)
y y + Γ(1)e+jkyy ]e−jkzz ,

= 2e−jφE
(1)
+ cos(k

(1)
y y − φ)e−jkzz ,

where φ = − 1
2

arg(Γ(1)), is the Goos-Hänchen shift.
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Goos-Hänchen shift
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