
Syllabus

1. Introduction to modern photonics (Feb. 26),

2. Ray optics (lens, mirrors, prisms, et al.) (Mar. 7, 12, 14, 19),

3. Wave optics (plane waves and interference) (Mar. 26, 28),

4. Beam optics (Gaussian beam and resonators) (Apr. 9, 11, 16),

5. Electromagnetic optics (reflection and refraction) (Apr. 18, 23, 25),
Midterm (May 7-th),

6. Fourier optics (diffraction and holography) (May 14, May 16),

7. Crystal optics (birefringence and LCDs) (May 21, 23),

8. Waveguide optics (waveguides and optical fibers) (May 28, 30),

9. Photon optics (light quanta and atoms) (June 4),

10. Laser optics (spontaneous and stimulated emissions) (June 6),

11. Semiconductor optics (LEDs and LDs) (June 11),

12. Nonlinear optics (June 13),

13. Quantum optics (June 18),
Final exam (June 20),

14. Semester oral report (July 25, 27),
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Fourier Optics

Fourier transforms

Fresnel diffraction and paraxial wave equation

Near-field region

Fraunhofer diffraction

Fourier transformation by a lens
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Fourier transforms

A periodic function of time, f(t), of period T can be represented by a Fourier
transform,

F(n) =
1

T

∫ T/2

−T/2
f(t)e−jnω0t d t,

f(t) =
∞
∑

−∞

F(t)e+jnω0t,

where F(n) is the corresponding Fourier series.

For an aperiodic function,

F(ω) =
1

2π

∫ ∞

−∞
f(t)e−jωt d t,

f(t) =

∫ ∞

−∞
F(ω)e+jωt dω.
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Gaussian function

exp(−
t2

2τ 2
p

) ↔

√

τ 2

2π
exp(−

τ 2
pω

2

2
),
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Rectangle function

f(t) =







1, when|t| ≤ τp

0, when|t| > τp







↔ τp
sinωτp
πωτp

,
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Properties of Fourier transform

if f(t) is real, then F(−ω) = F∗(ω).

if f(t) is even, then F(−ω) = F(ω), i.e., F(ω) is even.

if f(t) is odd, then F(−ω) = −F(ω), i.e., F(ω) is odd.

Time scaling, f(a t) ↔ 1
|a|

F( ω
a

).

Frequency scaling, 1
|b|
f( t

b
) ↔ F(b ω).

Time shifting, f(t− t0) ↔ F(ω)e−jωt0 .

Frequency shifting, f(t)ejω0t ↔ F(ω − ω0).

Convolution theorem: A convolution of two time functions, f(t) and g(t), is defined,

g ⊗ f =

∫ ∞

−∞
g(t− t′)f(t′) d t′,

the Fourier transform of the convolution is

1

2π

∫ ∞

−∞
g ⊗ f e−jωt d t = 2πG(ω)F(ω).
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Optical beams with finite trasverse cross sections

Any physical optical beam is of finite transverse cross section.

Beams of finite cross section may be described in terms of a superposition of
plane waves, analogous to the representation of a time function of finite duration in
terms of a Fourier superposition of sinusoids.

The Fresnel diffraction integral expresses the amplitude distribution of a scalar
wave at any cross section of constant, z, in terms of a given distribution at z = 0.

A general plane-wave solution of the scalar wave equation in Cartesian
coordinates is of the form,

e−jkxxe−jkyye−jkzz ,

with

k2
x + k2

y + k2
z = k2.
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Paraxial wave equation

If the propagation vector k is inclined by a small angle with respect to the z axis,
then the wave vector is paraxial, and

kz =
√

k2 − k2
x − k2

y ≃ k −
k2

x + k2
y

2k
.

This is the paraxial approximation for the z component of k.

Let us build up an amplitude distribution u(x, y, z) by superposition of plane waves,

u(x, y, z) =

∫ ∞

−∞
dkx

∫ ∞

−∞
dkyU0(kx, ky)e−j(kxx+kyy)e[j(k

2

x
+k2

y
)/2k]z ,

U0(kx, ky) is the amplitude of the plane wave solution with particular transverse
components of k, kx, and ky .
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Fourier decompostions of plane waves

At z = 0, the amplitude distribution u0(x, y) is,

u0(x, y) =

∫ ∞

−∞
dkx

∫ ∞

−∞
dkyU0(kx, ky)e−j(kxx+kyy).

The wave amplitude function U0(kx, ky) is the Fourier transform of the amplitude
distribution at z = 0, u0(x, y).

Expressing U0(kx, ky) in terms of u0(x, y) by inverse Fourier transform,

U0(kx, ky) = (
1

2π
)2

∫ ∞

−∞
dx0

∫ ∞

−∞
dy0u0(x0, y0)ej(kxx0+kyy0).

In the paraxial approximation, one is able to express the solution to the scalar
wave equation u(x, y, z) in terms of the know distribution u0(x, y), at z = 0,

u(x, y, z) =

∫ ∞

−∞
dx0

∫ ∞

−∞
dy0u0(x0, y0) ·

(
1

2π
)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dkye

−j[kx(x−x0)+ky(y−y0)]e[j(k
2

x
+k2

y
)/2k]z .
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Fresnel diffraction and paraxial wave equation

This expression is the convolution of u0(x, y) with the Fresnel kernel,

h(x, y, z) = (
1

2π
)2

∫ ∞

∞
dkx

∫ ∞

∞
dkye

−j(kxx+kyy)e[j(k
2

x
+k2

y
)/2k]z

=
j

λz
e−jk[(x2+y2)/2z].

Then the Fresnel diffraction integral in the paraxial approximation,

u(x, y, z) =
j

λz

∫ ∞

−∞
dx0

∫ ∞

−∞
dy0u0(x0, y0)e−j(k/2z)[(x−x0)2+(y−y0)2)]

= h⊗ u0.

i.e.

∫ ∞

−∞
e−u2

du =
√
π,
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Near-field region

The wave of finite transverse extent retains its profile as it propagates in the
"near-field region" defined by,

z ≪ d2x
λ
, z ≪

d2y

λ
.

For a initial profile with an inclined phase front, u0(x0, y0) = f0(x0, y0)e−jkxx0 ,
here f0(x0, y0) is assumed to vary with x0 much less rapidly than exp(−jkxx0).

Then the amplitude distribution at z is,

h⊗ u0 =
j

λz

∫ ∞

−∞
dx0

∫ ∞

−∞
dy0f0(x0, y0)e−jkxx0e−j(k/2z)[(x−x0)2+(y−y0)2)]

≃
√

j

λz

∫ ∞

−∞
dx0f0(x0, y)e

−j(k/2z)[x−(kx/k)z−x0)]2e−jkxxej(k/2)(kx/k)2z

≃ f0(x− kx

k
z, y)e−jkxxej(k/2)(kx/k)2z ,

the profile is undistorted but shifts in the transverse direction as it propagates
along z.
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Fraunhofer diffraction

Fraunhofer diffraction is the limit of Fresnel diffraction for large distances between
the input plane at z = 0, at which u0(x0, y0) is specified, and the observation
plane at z.

In this limit, the far-field limit, one approximates the argument of the exponential,

k

z
[(x− x0)2 + (y − y0)2] ≃ k

z
[(x2 + y2) − 2xx0 − 2yy0],

and ignores the term k(x2
0 + y20)/z.

Thus the Fraunhofer approximation is valid if the amplitude distribution in the input
plane extends over a transverse dimension d such that

d≪
√

z

k
.

In this limit

u(x, y, z) =
j

λz
e−j[k(x2+y2)/2z]

∫ ∞

−∞
dx0

∫ ∞

−∞
dy0u0(x0, y0)exp[

jk

z
(xx0 + yy0)].
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Fraunhofer diffraction

The integral over x0 and y0 produces the Fourier transform of u0(x0, y0), denoted
by U0,

u(x, y, z) = j
(2π)2

λz
e−j[k(x2+y2)/2z]U0(

kx

z
,
ky

z
).

Note that there is a phase factor multiplying the amplitude distribution:
ψ(x, y, z) = u(x, y, z)exp(−jkz), where

phase factor = exp{−j[k(x
2 + y2

2z
+ kz]},

indicating that the phase front is curved, with the equation of constant phase,

k2(x2 + y2)

2φ
+ kz = φ.

This is the equation of a paraboloid, which has the radius of curvature R at x =0,

1

R
=

−d2z/dx2

√

1 + (dz/dx)2
3

=
k

φ
=

1

z
.
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Single rectangular slit

Consider as an example the uniform illumination of a slit at z = 0,

u0(x0, y0) =







1, |x0| < dx/2; 0 < |y0| < dy/2

0, dx/2 ≤ |x0|; dy/2 ≤ |y0|

Then

u(x, y, z) =
j

λz
exp[− jk(x

2 + y2)

2z
]dxdy

sin(kdxx/2z) sin(kdyy/2z)

(kdxx/2z)(kdxx/2z)
.

The widths of the diffraction patterns in the x and y directions are characterized by
the first null at

x =
2πz

kdx
and y =

2πz

kdy
.
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Single-slit

I(x, y) = I0sinc2 Dxx

λd
sinc2Dxx

λd
,
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Cicular aperture

I(x, y) = I0[
2J1(πDρ/λd)

πDρ/λd
]2, ρ = (x2 + y2)1/2,

The radius of the central Airy disk : ρs = 1.22λd/D, and the angle θ = 1.22λ/D,
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Fourier transformation by a lens

Consider a general illumination over the input plane, u0(x0, y0). If the lens is in the
far-field, then the excitation at the front face reference plane of the lens is ,

u(x, y) =
j(2π)2

λf
e−[jk(x2+y2)/2f ]U0(kx/f, ky/f).

The transmission through the lens removes the exponential factor, then at the
output plane,

u′′(x, y) =
j(2π)2

λf
U0(kx/f, ky/f),
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4f -system
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Spatial filters
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