
Summary of Wave Optics

light propagates in form of waves

wave equation in its simplest form is linear, which gives
rise to superposition and separation of time and space
dependence (interference, diffraction)

waves are characterized by wavelength and frequency

propagation through media is characterized by
refractive index n, which describes the change in
phase velocity

media with refractive index n alter velocity, wavelength
and wavenumber but not frequency

lenses alter the curvature of wavefronts
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Syllabus

1. Introduction to modern photonics (Feb. 26),

2. Ray optics (lens, mirrors, prisms, et al.) (Mar. 7, 12, 14, 19),

3. Wave optics (plane waves and interference) (Mar. 26, 28),

4. Beam optics (Gaussian beam and resonators) (Apr. 9, 11, 16),

5. Electromagnetic optics (reflection and refraction) (Apr. 18, 23, 25),

6. Fourier optics (diffraction and holography) (Apr. 30, May 2),
Midterm (May 7-th),

7. Crystal optics (birefringence and LCDs) (May 9, 14),

8. Waveguide optics (waveguides and optical fibers) (May 16, 21),

9. Photon optics (light quanta and atoms) (May 23, 28),

10. Laser optics (spontaneous and stimulated emissions) (May 30, June 4),

11. Semiconductor optics (LEDs and LDs) (June 6),

12. Nonlinear optics (June 18),

13. Quantum optics (June 20),
Final exam (June 27),

14. Semester oral report (July 4),
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Paraxial wave approximation

paraxial wave = wavefronts normals are paraxial rays

U(r) = A(r)exp(−ikz),

A(r) slowly varying with at a distance of λ,

paraxial Helmholtz equation

(∇2 + k2)U(r) = 0,

→ (
∂2

∂x2
+

∂2

∂y2
− 2ik

∂

∂z
)A(r) = 0,

solution of the paraxial Helmholtz equation is the
Gaussian beams,
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Beam optics

so far we have considered waves with infinite
extension, optical beams have a limited spatial
extension perpendicular to the direction of propagation,

the solution of the paraxial Helmholtz equation
describing the characteristics of an optical beam is a
”Gaussian function”,

(
∂2

∂x2
+

∂2

∂y2
− 2ik

∂

∂z
)A(r) = 0,

properties of Gaussian beams,

other solutions of the wave equation,

Experimental relaxation with Gaussian beams,
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Fresnel approximation

For paraxial waves,
√

x2 + y2 ≪ z,

r =
√

x2 + y2 + z2 ≈ z +
x2 + y2

2z
,

the spherical waves can be approximated by,

U(r) =
A

r
exp(−ik · r) ≈ A

z
exp(−ikz)exp(

−ik(x2 + y2)

2z
),

for the wavefront, constant phase plane, x2+y2

2z
is paraboloid,
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Gaussian Beams

solution for x, y ≪ z, is the paraboloidal wave, i.e. U(r) = A(r)exp(−ikz),

A(r) =
A0

z
exp[

−ik(x2 + y2)

2z
] =

A0

z
exp(

−ikρ2

2z
),

shifted paraboloidal wave,

A(r) =
A1

q(z)
exp(

−ikρ2

2q(z)
),

where

q(z) = z − z′ − ζ = z − z′ + iz0, z0 is the Rayleigh range,

complex amplitude (general solution),

1

q(z)
=

1

R(z)
− i

λ

πW 2(z)
,
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Complex amplitude of a Gaussian beam

U(r) = A0
W0

W (z)
exp[− ρ2

W 2(z)
]exp[−ikz − ik

ρ2

2R(z)
+ iζ(z)],

beam parameters: A0 = A1

iz0
,

Waist:

W (z) = W0[1 + (
z0

z
)2]1/2,

wavefront curvature:

R(z) = z[1 + (
z

z0
)2],

phase retardation:

ζ(z) = tan−1 z

z0
,

Waist:

W0 = (
λz0

π
)1/2,
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Intensity of a Gaussian Beam

I(ρ, z) = I0[
W0

W (z)
]2exp[− 2ρ2

W 2(z)
],

when z is fixed, the intensity profile is perpendicular to z,

when W (z) = constant, I = I(ρ) ∝ exp(− 2ρ2

W2(z)
), at each z, the intensity is a 2D

Gaussian,

width of the Gaussian, W (z) = W0[1 + ( z
z0

)2]1/2,

Gaussian gets wider with increasing z,
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Measured beam profile
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Intensity at constant ρ

for a fixed ρ, along z, I(0, z) = I0[ W0

W (z)
]2 = I0

1+ z

z0

2
,
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Beam radius divergence

Gaussian decayed to 1/e2 at ρ = W (z),

for large z, small θ0,

W (z) = W0[1 + (
z

z0
)2]1/2 ≈ W0

z0
z = θ0z,

where θ0 = λ
πW0

,
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Depth of focus

depth of focus, DOF = 2z0 =
2πW2

0

λ
,

example: for He-Ne Lasers, at λ = 633nm, DOF = 1km for, W0 = 2cm, and
DOF = 1mm for, W0 = 20µ,
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Power of a Gaussian beam

power:

P (z) =

∫

∞

0
I(ρ, z)2πρdρ,

=
1

2
I0(πW 2

0 ),

which is independent of z,

the power of a Gaussian beam equals to
maximum intensity × beam area × 1/2,

write the intensity of a Gaussian beam in terms of its power,

I(ρ, z) =
2P

πW 2(z)
exp[− 2ρ2

W 2(z)
],
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Phase of a Gaussian beam

U(r) = A0
W0

W (z)
exp[− ρ2

W 2(z)
]exp[−ikz − ik

ρ2

2R(z)
+ iζ(z)],

phase of a Gaussian beam,

φ(ρ, z) = kz + k
ρ2

2R(z)
− ζ(z),

at the axis, ρ = 0, φ(0, z) = kz − ζ(z) and ζ(z) = tan−1 z
z0

,
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Wavefront of a Gaussian beam

phase of a Gaussian beam,

φ(ρ, z) = kz − ζ(z) + k
ρ2

2R(z)
,

the first and second terms, kz + k ρ2

2R(z)
depend only on z,

the third term depends on x, y, z defines wavefront bending,

constant phase plane,

k(z +
ρ2

2R(z)
) − ζ(z) = 2mπ, m ∈ N,

paraboloid constant phase plane,

z = − ρ2

2R(z)
+ mλ + ζ(z)

λ

2π
,
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Wavefront of a Gaussian beam
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Transmission through a lens

1

R′
=

1

R
− 1

f
,

Optoelectronic, 2007 – p.17/25



Transmission through a lens

waist radius:

W ′

0 = MW0,

waist location:

(z′ − f) = M2(z − f),

depth of focus:

2z′
2
0 = M2(2z0),

divergence:

2θ′0 =
2θ0

M
,

magnification:

M =
Mr√
1 + r2

, Mr = | f

z − f
|, and r =

z0

z − f
,

limit of ray optics:

(z − f) ≫ z0,
1

z′
+

1

z
≈ 1

f
,
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Hermite Gaussian beams

there are other solutions to the paraxial Helmholtz equation,

main interest in solutions with paraboloidal wavefronts of special interest for
resonators with spherical mirrors,

paraboloidal wavefronts are unaltered by spherical mirror,
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Hermite Gaussian beams

Hermite Gaussian beams,

Ul,m(x, y, z) = Al,m[
W0

W (z)
]Gl(

√
2x

W (z)
)Gm(

√
2y

W (z)
)

×exp[−ikz − ik
x2 + y2

2R(z)
+ i(l + m + 1)ζ(z)],

remember the Harmonic Oscillator in Quantum Mechanics,

Hermite Gaussian Function,

Gl(u) = Hl(u)exp(−−u2

2
), l = 0, 1, 2, . . . ,

Hermite Polynomials,

Hl(u) = 2uHl(u) − 2lHl−1(u), l = 0, 1, 2, . . . ,
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Hermite Gaussian beams - Intensity distributions
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Laguerre-Gaussian Beams

for cylinder coordinates, the solutions of the paraxial Helmholtz equation are
Laguerre-Gaussian Beams

they have cylinder symmetry composed by Bessel functions,
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Experimental relaxation with Gaussian beams
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Interference of two spherical waves
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Summary of Beam Optics

Gaussian beams,

waves with limited spatial extension perpendicular to
propagation direction,

Gaussian beam is solution of paraxial Helmholtz
equation,

Gaussian beam has parabolic wavefronts, (as seen in
lab experiment),

Gaussian beams characterized by focus waist and
focus depth,
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