Summary of Wave Optics

2 light propagates in form of waves

2 wave equation in its simplest form is linear, which gives
rise to superposition and separation of time and space
dependence (interference, diffraction)

2 waves are characterized by wavelength and frequency

2 propagation through media is characterized by
refractive index n, which describes the change in
phase velocity

2 media with refractive index n alter velocity, wavelength
and wavenumber but not frequency

2 |lenses alter the curvature of wavefronts
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Introduction to modern photonics (Feb. 26),

Ray optics (lens, mirrors, prisms, et al.) (Mar. 7, 12, 14, 19),
Wave optics (plane waves and interference) (Mar. 26, 28),

Beam optics (Gaussian beam and resonators) (Apr. 9, 11, 16),
Electromagnetic optics (reflection and refraction) (Apr. 18, 23, 25),

Fourier optics (diffraction and holography) (Apr. 30, May 2),
Midterm (May 7-th),

Crystal optics (birefringence and LCDs) (May 9, 14),

Waveguide optics (waveguides and optical fibers) (May 16, 21),

Photon optics (light quanta and atoms) (May 23, 28),

Laser optics (spontaneous and stimulated emissions) (May 30, June 4),
Semiconductor optics (LEDs and LDs) (June 6),

Nonlinear optics (June 18),

Quantum optics (June 20),
Final exam (June 27),

i,
{fugarﬁester oral report (July 4),
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Paraxial wave approximation

2 paraxial wave = wavefronts normals are paraxial rays
U(r) = A(r)exp(—ikz),

2 A(r) slowly varying with at a distance of A,

2 paraxial Helmholtz equation

(V2+E)U(r) =0,

0? 0? 0
: — =2 Alr) =
(85132 Oy? Zk@z) (r) =0,

2 solution of the paraxial Helmholtz equation is the
Gaussian beams,
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2 so far we have considered waves with infinite
extension, optical beams have a limited spatial
extension perpendicular to the direction of propagation,

2 the solution of the paraxial Helmholtz equation
describing the characteristics of an optical beam is a

"Gaussian function”,

9 9
J 8——22/@8

(@ D12 &z)A( r) =0,

2 properties of Gaussian beams,

2 other solutions of the wave equation,
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Fresnel approximation

2 For paraxial waves, /72 + 42 < z,

m2+y2

r=vaz2+y2 +22xz+ 5

2 the spherical waves can be approximated by,

—ik(z? + y?)
2z

U(r) = éexp(—ik ‘T R éexp(—ilcz)exp( ),
Tr z

2 2
2 for the wavefront, constant phase plane, u Is paraboloid,

( I
A / //////////////// I

aal spherical paraboloid plane wave
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Gaussian Beams

2 solution for x,y < z, is the paraboloidal wave, i.e. U(r) = A(r)exp(—ikz),

2 shifted paraboloidal wave,

A —ikp?
A(r) = = exp(——1),
q(z) 2q(z)
where
q(2) =z — 2 — (=22 +iz, zo Is the Rayleigh range,

2 complex amplitude (general solution),

1 _ 1A
qa(z) R(z) 7W2(2)’
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Complex amplitude of a Gaussian beam

2 p2
—ikz — ik
lexp[—ikz — 1 2R(2)

Wo
W(z)

P
W2(z)

U(r) = Ao exp|—

2 peam parameters: Ag = i—(l),

2 Waist:;

2 wavefront curvature:

R(2) = 2[1+ (=),
20
2 phase retardation:
((2) = tan™t =,
20

2 Waist;

+1i¢(2)],
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Intensity of a Gaussian Beam

2p

Wo

W(Z)]Zexp[—

I(p,z) = o]

2 when zis fixed, the intensity profile is perpendicular to z,

o _ - 2
when W (z) = constant, I = I(p) o exp(— 77575

Gaussian,

), at each z, the intensity is a 2D

2 width of the Gaussian, W (z) = Wo[l + (£)21'/2,

2 Gaussian aets wider with increasina z.

z=1) < = £ EZZED

- % Wy P Wo P Wo p
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Measured beam profile
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Intensity at constant

p

for a fixed p, along z, (0,

W I
z) = IO[W(Z)]Z = #
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measured intensity profile

Gaussian fit
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Beam radius divergence

9 Gaussian decayed to 1/e? at p = W (=2),

2 for large z, small 0,

W,
W(z) = Woll + (2)21/2 ~ 29, — gy,
20 20
where 0y = ﬂ/f\Vo’
Wi(z) +
beam waist I
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Depth of focus

27rW02
A )

2 depth of focus, DOF = 2z¢ =

2 example: for He-Ne Lasers, at A = 633nm, DOF = 1km for, Wy = 2¢m, and
DOF = 1mm for, Wy = 20u,

W(z) +

beam waist

ﬂﬂ."“@ E:l.r‘i%' o dEpth of focus
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Power of a Gaussian beam

3 power:

P(z) = /Ooof(p,Z)Qﬂpdp,

1
— EIO(WWOQ)a

which is independent of z,

9 the power of a Gaussian beam equals to

maximum intensity X beam area X 1/2,

2 write the intensity of a Gaussian beam in terms of its power,

2P 202

Ip,2) = —5— B expl— 15 B

]7
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Phase of a Gaussian beam

— Wo __P T P ,
U(r) = Ao W) exp| 2(2)]eXp[ itkz — ik R) +i¢(2)],
2 phase of a Gaussian beam,
P2
o(p,z) =kz+k R(z) — ((2),

9 atthe axis, p = 0, ¢(0,2) = kz — ((z) and {(z) = tan—! £,

Z0

phase of a plane wave retardation
Guoy effect

bo |
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Wavefront of a Gaussian beam

2 phase of a Gaussian beam,

2

¢(p,z) = kz — ((z) + k2R(2>,

2 the first and second terms, kz + k 21_5;?2) depend only on z,

the third term depends on z, y, z defines wavefront bending,
constant phase plane,

2

"t SR

) —((2) = 2mm, m € N,

2 paraboloid constant phase plane,

2

2R(z2)

Z = —

A
27
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Transmission through a lens

E]
(]

L3
W
r

v

kz—l—kp——{; kz+k%—§
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Transmission through a lens

|

waist radius:

waist location:

depth of focus:

W, = MW,

(2" = f) = M?*(z— f),

22/3 = M?(2z0),

divergence:
20
29/0 — _07
M
magnification:
M, f
M= —— M, = : and
V14 r? r = z—f |
limit of ray optics:
1 1 1
(z = f) > =0, —+ -~ -
z z f
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Hermite Gaussian beams

2 there are other solutions to the paraxial Helmholtz equation,

2 main interest in solutions with paraboloidal wavefronts of special interest for
resonators with spherical mirrors,

spherical mirror Cha.
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spherical mirror

2 paraboloidal wavefronts are unaltered by spherical mirror,
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Hermite Gaussian beams

Hermite Gaussian beams,

Wo 1G( \/_ ( V2y

x? + y
2R(z)

Ul,m($7y7z) — Al,m[

)

xexp|—ikz — ik

+ (Il +m+ 1)¢(2)],

remember the Harmonic Oscillator in Quantum Mechanics,
Hermite Gaussian Function,

2,2
Gy (u) = Hl(u)exp(—Tu), 1=0,1,2,...,

Hermite Polynomials,

Hl(u) =2qu(u)—2lHl_1(u), l:O,l,Q,...,
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Hermite Gaussian beams -

Intensity distributions

©O.1)
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Laguerre-Gaussian Beams

2 for cylinder coordinates, the solutions of the paraxial Helmholtz equation are

Laguerre-Gaussian Beams

2 they have cylinder symmetry composed by Bessel functions,
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Experimental relaxation with Gaussian beams

mirror

screen

mirror

beamsplitter

lens

laserpointer
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Interference of two spherical waves
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Summary of Beam Optics

2 Gaussian beams,

2 waves with limited spatial extension perpendicular to

propagation direction,

2 (Gaussian beam is solution of paraxial Helmholtz

equation,

2 (Gaussian beam has parabolic wavefronts, (as seen in

lab experiment),

2 (Gaussian beams characterized by focus waist and

focus depth,
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