Summary of Fourier Optics

Diffraction of the paraxial wave is described by Fresnel diffraction integral,

$$u(x,y,z) = \frac{j}{\lambda z} \int_{-\infty}^{\infty} dx_0 \int_{-\infty}^{\infty} dy_0 u_0(x_0,y_0) e^{-j(k/2z)[(x-x_0)^2 + (y-y_0)^2)]},$$

- Fraunhofer diffraction is the limit of Fresnel diffraction for large distances between the input plane and the observation plane via the Fourier transform,
- the radius of the central Airy disk, diffraction pattern of a circular disk, define the limit of diffraction, $\theta = 1.22\lambda/D$,
- with a 4*f*-system, one can modify the image by using a spatial filter in the mask plane.

Polarization

- Polarization of light is determined by the direction of x,y,z components of E(r,t) vary in time with different amplitudes and phases,
- **\bigcirc** for TEM waves *z*-component is zero,

$$E(z,t) = \mathsf{Re}\{A\exp(i2\pi\nu(t-\frac{z}{c}))\},\$$

where

$$A = A_x \hat{e}_x + A_y \hat{e}_y = a_x \exp(i\phi_x) \hat{e}_x + a_y \exp(i\phi_y) \hat{e}_y,$$

complex electric field vector,

$$E(z,t) = E_x \hat{e}_x + E_y \hat{e}_y,$$

= $a_x \cos[2\pi\nu(t-\frac{z}{c})+\phi_x] + a_y \cos[2\pi\nu(t-\frac{z}{c})+\phi_y],$

Linear polarized light

$$E_x = a_x \cos[2\pi\nu(t-\frac{z}{c})+\phi_x],$$

$$E_y = a_y \cos[2\pi\nu(t-\frac{z}{c})+\phi_y],$$

- Iinear polarized light, $a_y = 0$, field points in x direction,
- Iinear polarized light, $a_x = 0$, field points in y direction,

Circular polarized light

$$φ = φ_y - φ_x = ±π/2$$
 and $a_x = a_y = a_0$,

$$E_x = a_0 \cos[2\pi\nu(t-\frac{z}{c})+\phi_x],$$

$$E_y = \mp a_0 \sin[2\pi\nu(t-\frac{z}{c})+\phi_x],$$

$$\bullet$$
 $E_x^2 + E_y^2 = a_0^2$, which is a circle,

? right-circular polarized light, $\phi = +\pi/2$; and left-circular polarized light, $\phi = -\pi/2$,

Polarization circulation

Polarization ellipse

$$\frac{E_x^2}{a_x^2} + \frac{E_y^2}{a_y^2} - 2\cos\phi \frac{E_x E_y}{a_x a_y} = \sin^2\phi,$$

Optics of anisotropic media

anisotropy - optical properties depend on the orientation of the medium,

$$P_i = \sum_j \epsilon_0 \chi_{ij} E_j,$$

- \circ each component of P is a linear combination of the components of E,
- 2χ is now a tensor (susceptibility tensor),
- \bigcirc P are not necessarily parallel to E anymore,

$$D = \epsilon E + P = \epsilon (1 + \chi)E = \epsilon E$$

the permeability tensor

 \circ choosing coordinate system that way that ϵ is diagonal,

$$\epsilon = \begin{bmatrix} \epsilon_{11} & 0 & 0 \\ 0 & \epsilon_{22} & 0 \\ 0 & 0 & \epsilon_{33} \end{bmatrix} = \begin{bmatrix} \epsilon_x & 0 & 0 \\ 0 & \epsilon_y & 0 \\ 0 & 0 & \epsilon_z \end{bmatrix}$$

the components of ϵ are then the principal axes,

) principle refractive indices,
$$n_x = \sqrt{\frac{\epsilon_{11}}{\epsilon_0}}$$
, $n_y = \sqrt{\frac{\epsilon_{22}}{\epsilon_0}}$, and $n_z = \sqrt{\frac{\epsilon_{33}}{\epsilon_0}}$,

? optically isotropic,
$$n_x = n_y = n_z$$
,

• uniaxial, $n_x = n_y = n_o$ (ordinary index), and $n_z = n_e$ (extraordinary index, optical axis),

$$oldsymbol{0}$$
 biaxial, $n_x
eq n_y
eq n_z$,

optical anisotropy

optical anisotropy is related crystal structure

Symmetry	Lattice	χ	Indices of Refraction	
Isotropic	Cubic	$ \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} $	$n = \sqrt{1+a}$	diamond
Uniaxial	Triagonel Tetragonel Hexagonal	$ \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix} $	$n_O = \sqrt{1+a}$ $n_E = \sqrt{1+6}$	Calcit
Biaxial	Triclinic Monoclinic Orthorhombic	$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$	$n_1 = \sqrt{1+a}$ $n_2 = \sqrt{1+b}$ $n_3 = \sqrt{1+c}$	MICA

a

cubic

立清

玉

National Tsing Hua University

大學

triclinic

vectors of electromagnetic waves

 ${f D}$ not always parallel to ${f E}$

$$S = \frac{1}{\mu_0} E \times B,$$

energy flow is not in the direction of k,

Propagation along a principle axis

a linear polarized light propagates along principle axis,

$$k = \begin{bmatrix} 0 \\ 0 \\ k_z \end{bmatrix}, \quad D = \begin{bmatrix} \epsilon_{11} & 0 & 0 \\ 0 & \epsilon_{22} & 0 \\ 0 & 0 & \epsilon_{33} \end{bmatrix} \begin{bmatrix} E_x \\ 0 \\ 0 \end{bmatrix},$$

Phase velocity
$$\frac{c_0}{n_x}$$
, and the wave vector $k = n_x k_0$,

$$D = \epsilon_{11} E$$
, D parallel to E,

- equivalent for polarization in y-direction,
- these special cases are called "normal modes" of the crystal for propagation along a principle axis

Index ellipsoid

Uniaxial crystals

Optoelectronic, 2007 - p.13/21

Arbitrary polarization in the x-y plane

$$D = \begin{bmatrix} \epsilon_{11} & 0 & 0 \\ 0 & \epsilon_{22} & 0 \\ 0 & 0 & \epsilon_{33} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ 0 \end{bmatrix},$$

- both field components travel with different phase velocity,
- \circ for a travelled distance d, the phase differnce between x- and y-components,

$$E_x = a_x \cos[2\pi\nu(t-\frac{z}{c})+\phi_x],$$

$$E_y = a_y \cos[2\pi\nu(t-\frac{z}{c})+\phi_y],$$

$$\phi = \phi_y - \phi_x = (n_y - n_x)k_0d,$$

Normal modes

(a)

(b)

(c)

Polarizers

Unpolarized light

Half-wavelength-plate

Pockels cell

Liquid Crystals

- fluid materials, which have orientational order but typically positional disorder,
- phases of liquid crystal,

Molecules for liquid crystals

4-methoxylbenzylidene-4'-butylaniline (MBBA)

$$CH_{3}O - O - CH = N - O - CH_{2}CH_{2}CH_{3} \text{ nematic at 20 °C, isotropic at 74 °C}$$

$$CH_{3}O - O - CH = N - O - CH_{2}CH_{2}CH_{3} \text{ similar molecule but cholesteric phase}$$

twisted liquid crystals (induced cholesteric phase)

twist angle $\theta = \alpha z$

phase retardation $\ eta=(n_e-n_o)k_0$

typically $\beta >> \alpha$

thus linearly polarized light at z=0 stays linear polarized but turns its polarization direction by αd

い 国立 National Tsing Hua University

Liquid Crystal Displays - LCD

♥ 國立清. National Tsing H

depend on molecular collective reorientation - slow