Summary of Fourier Optics

Э Diffraction of the paraxial wave is described by Fresnel diffraction integral,

$$
u(x,y,z) = \frac{j}{\lambda z} \int_{-\infty}^{\infty} dx_0 \int_{-\infty}^{\infty} dy_0 u_0(x_0,y_0) e^{-j(k/2z)[(x-x_0)^2 + (y-y_0)^2]},
$$

- Fraunhofer diffraction is the limit of Fresnel diffraction for large distances between the input plane and the observation plane via the Fourier transform,
- Э the radius of the central **Airy disk**, diffraction pattern of ^a circular disk, define thelimit of diffraction, $\theta = 1.22 \lambda/D$,
- with a 4 f -system, one can modify the image by using a spatial filter in the mask plane.

Polarization

- Э polarization of light is determined by the direction of x,y,z components of $E(r,t)$ vary in time with different amplitudes and phases,
- Э for TEM waves z -component is zero,

$$
E(z,t) = \text{Re}\{A\exp(i2\pi\nu(t-\frac{z}{c})\},\,
$$

where

$$
A = A_x \hat{e}_x + A_y \hat{e}_y = a_x \exp(i\phi_x)\hat{e}_x + a_y \exp(i\phi_y)\hat{e}_y,
$$

complex electric field vector,

$$
E(z,t) = E_x \hat{e}_x + E_y \hat{e}_y,
$$

= $a_x \cos[2\pi\nu(t - \frac{z}{c}) + \phi_x] + a_y \cos[2\pi\nu(t - \frac{z}{c}) + \phi_y],$

Linear polarized light

$$
E_x = a_x \cos[2\pi\nu(t - \frac{z}{c}) + \phi_x],
$$

\n
$$
E_y = a_y \cos[2\pi\nu(t - \frac{z}{c}) + \phi_y],
$$

- € linear polarized light, $a_y=0$, field points in x direction,
- Э linear polarized light, a_x $x=0$, field points in y direction,

Circular polarized light

$$
\Phi = \phi_y - \phi_x = \pm \pi/2 \text{ and } a_x = a_y = a_0,
$$

$$
E_x = a_0 \cos[2\pi\nu(t - \frac{z}{c}) + \phi_x],
$$

\n
$$
E_y = \mp a_0 \sin[2\pi\nu(t - \frac{z}{c}) + \phi_x],
$$

$$
E_x^2 + E_y^2 = a_0^2
$$
, which is a circle,

G right-circular polarized light, $\phi=+\pi/2$; and left-circular polarized light, $\phi=-\pi/2$,

Polarization circulation

Polarization ellipse

$$
\frac{E_x^2}{a_x^2} + \frac{E_y^2}{a_y^2} - 2\cos\phi \frac{E_x E_y}{a_x a_y} = \sin^2\phi,
$$

Optics of anisotropic media

Э anisotropy - optical properties depend on the orientation of the medium,

$$
P_i = \sum_j \epsilon_0 \chi_{ij} E_j,
$$

- each component of P is a linear combination of the components of $E,$
- Э χ is now a tensor (susceptibility tensor),
- Э \overline{P} are not necessarily parallel to E anymore,

$$
D = \epsilon E + P = \epsilon (1 + \chi)E = \epsilon E
$$

the permeability tensor

Э choosing coordinate system that way that ϵ is diagonal,

$$
\epsilon = \left[\begin{array}{rrrr} \epsilon_{11} & 0 & 0 \\ 0 & \epsilon_{22} & 0 \\ 0 & 0 & \epsilon_{33} \end{array} \right] = \left[\begin{array}{rrrr} \epsilon_x & 0 & 0 \\ 0 & \epsilon_y & 0 \\ 0 & 0 & \epsilon_z \end{array} \right]
$$

the components of ϵ are then the principal axes,

9 principle refractive indices,
$$
n_x = \sqrt{\frac{\epsilon_{11}}{\epsilon_0}}
$$
, $n_y = \sqrt{\frac{\epsilon_{22}}{\epsilon_0}}$, and $n_z = \sqrt{\frac{\epsilon_{33}}{\epsilon_0}}$,

3 optically isotropic,
$$
n_x = n_y = n_z
$$
,

Э uniaxial, $n_x=n_y=n_o$ (ordinary index), and $n_z=n_e$ (extraordinary index, optical axis),

$$
\bullet \quad \text{biaxial, } n_x \neq n_y \neq n_z,
$$

optical anisotropy

optical anisotropy is related crystal structure

cubic

立清華大學 National Tsing Hua University

triclinic

vectors of electromagnetic waves

 $\mathbf D$ not always parallel to $\mathbf E$

$$
S = \frac{1}{\mu_0} E \times B,
$$

energy flow is not in the direction of $k,$

Propagation along ^a principle axis

Э ^a linear polarized light propagates along principle axis,

$$
k = \begin{bmatrix} 0 \\ 0 \\ k_z \end{bmatrix}, \qquad D = \begin{bmatrix} \epsilon_{11} & 0 & 0 \\ 0 & \epsilon_{22} & 0 \\ 0 & 0 & \epsilon_{33} \end{bmatrix} \begin{bmatrix} E_x \\ 0 \\ 0 \end{bmatrix},
$$

3 phase velocity
$$
\frac{c_0}{n_x}
$$
, and the wave vector $k = n_x k_0$,

$$
D = \epsilon_{11} E, D \text{ parallel to } E,
$$

- equivalent for polarization in y-direction,
- these special cases are called "normal modes" of the crystal for propagation along^a principle axis

Index ellipsoid

Uniaxial crystals

Arbitrary polarization in the x-y plane

$$
D = \left[\begin{array}{ccc} \epsilon_{11} & 0 & 0 \\ 0 & \epsilon_{22} & 0 \\ 0 & 0 & \epsilon_{33} \end{array} \right] \left[\begin{array}{c} E_x \\ E_y \\ 0 \end{array} \right],
$$

- both field components travel with different phase velocity,
- Э for a travelled distance d , the phase differnce between $x\text{-}$ and $y\text{-components},$

$$
E_x = a_x \cos[2\pi\nu(t - \frac{z}{c}) + \phi_x],
$$

\n
$$
E_y = a_y \cos[2\pi\nu(t - \frac{z}{c}) + \phi_y],
$$

$$
\phi = \phi_y - \phi_x = (n_y - n_x)k_0 d,
$$

Normal modes

 (a)

 (b)

 $\left(c\right)$

Polarizers

Unpolarized light

Half-wavelength-plate

Pockels cell

Liquid Crystals

- Э fluid materials, which have orientational order but typically positional disorder,
- Э phases of liquid crystal,

Molecules for liquid crystals

4-methoxylbenzylidene-4'-butylaniline (MBBA)

$$
CH_3O \xrightarrow{\frown} CH = N \xrightarrow{\frown} CH_2CH_2CH_2CH_3
$$
nematic at 20 °C, isotropic at 74 °C
\n
$$
CH_3O \xrightarrow{\frown} CH = N \xrightarrow{\frown} CH_2 \overset{\ast}{CH_2}CH_2CH_3
$$
similar molecule but cholesterol
\n
$$
CH_3
$$

twisted liquid crystals (induced cholesteric phase)

twist angle $\theta = \alpha z$

phase retardation $\beta = (n_e - n_o)k_0$

 $\beta >> \alpha$ typically

thus linearly polarized light at z=0 stays linear polarized but turns its polarization direction by αd

v National Tsing Hua University

Liquid Crystal Displays - LCD

立清 National Tsing H

depend on molecular collective reorientation - slow