
Einstein on Radiation

"On the Quantum Theory of Radiation"

D(ω) =
A/B

e~ω/kBT
− 1

A

B
=

~ω3

π2c3

A. Einstein, Phys. Z. 18, 121 (1917).
D. Kleppner, "Rereading Einstein on Radiation," Physics Today 58, 30 (Feb. 2005).
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Quantization of the Electromagnetic Field

Like simple harmonic oscillator, Ĥ = p2

2m
+ 1

2
kx2, where [x̂, p̂] = i~,

For EM field, Ĥ = 1
2

∑
j [mjω2

mq2
j +

p2

j

mj
], , where [q̂i, p̂j ] = i~δij ,

the Hamiltonian for EM fields becomes: Ĥ =
∑

j ~ωj(â
†
j âj + 1

2
),

the electric and magnetic fields become,

Êx(z, t) =
∑

j

(
~ωj

ǫ0V
)1/2[âje−iωjt + â†

jeiωjt] sin(kjz),

Ĥy(z, t) = −iǫ0c
∑

j

(
~ωj

ǫ0V
)1/2[âje−iωjt − â†

jeiωjt] cos(kjz),

energy level for quantized field, En = (n + 1
2
)~ω.
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Planck’s Law

In the thermal equilibrium at temperature T, the probability Pn that the mode
oscillator is thermally excited to the n-th excited state is given by the Boltzman factor,

Pn =
exp[−En/kBT ]∑
n exp[−En/kBt]

,

the mean number n̄ of photons is,

n̄ =
∑

n

nPn =
U

1 − U
=

1

exp(~ω/kBT ) − 1
,

where U ≡ exp(−~ω/kBT ) and
∑∞

n=0 Un = 1/(1 − U).

energy density of the radiation:

D(ω)dω = n̄~ωdω = n̄~ωρωdω,

= n̄~ω3dω/π2c3 =
~ω3

π2c3
dω

exp[~ω/kBT ] − 1
.

total electromagnetic energy density:
∫ ∞

0 D(ω)dω = 1/2V
∫

cavity ǫ0|E(r, t)|2dV .
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Fluctuations in Photon Number

the ergodic theorem of statistical mechanics: time averages are equivalent to
averages taken over a large number of exactly similar systems, each maintained in
a fixed state (ensemble).

the probability of finding n̄ photons,

Pn =
exp[−En/kBT ]∑
n exp[−En/kBt]

= (1 − U)Un =
n̄n

(1 + n̄)1+n
,

which is a thermal distribution or the geometric distribution.

the root-mean-square deviation:

∆n2 =
∑

n

(n − n̄2)Pn = n̄2 + n̄,

then

∆n ≈ n̄ +
1

2
, for n̄ ≫ 1.
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Probability distribution for n̄ = 1
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Einstein’s A and B coefficients

For a two-level atom, the rates of changes of N1 and N2 are,

dN1

dt
= −

dN2

dt
= N2A21 − N1B12D(ω) + N2B21D(ω),

A21 is the probability of photon in state 2 spontaneously fall into the lower state 1,
i.e. spontaneous emission;

B12 is the probability of photon absorption in state 1 into state 2, i.e. absorption;

B21 is the probability of photon emission from state 2 into state 1, i.e. stimulated
emission;

in thermal equilibrium, dN1

dt
= − dN2

dt
= 0,

D(ω) =
A21

(N1/N2)B12 − B21
,

where the populations N1 and N2 are related by Boltzmann’s law,

N1/N2 = (g1/g2)exp[~ω/kBT ],
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Einstein’s A and B coefficients

the density distribution of EM fields in a two-level atom,

D(ω) =
A21

(g1/g2)exp[~ω/kBT ]B12 − B21
,

where g1 and g2 are the level degenerate parameters.

compare it in free space,

D(ω) =
~ω3

π2c3
1

exp[~ω/kBT ] − 1
,

at all temperatures T , we have

(g1/g2)B12 = B21,

(~ω3/π2c3)B21 = A21,

the consistency between the Einstein theory and Planck’s law could not have been
achieved without the introduction of the stimulated emission process.
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Einstein’s A and B coefficients

for nondegenerate two-level atom, g1 = g2 = 1 and N1 + N2 = N ,

dN1

dt
= −

dN2

dt
= N2A + (N2 − N1)BD(ω),

the solution for N1 is,

N1 = [N0
1 −

N(A + BD(ω)

A + 2BD(ω)
]exp[−(A + 2BD(ω))t] +

N [A + BD(ω)]

A + 2BD(ω)

where N0
1 is the initial value of N1 at t = 0,

if N0
2 = 0, all atoms are in the ground state at t = 0,

N2 =
NBD(ω)

A + 2BD(ω)
[1 − exp[−(A + 2BD(ω))t],

in the steady-state,

N2 =
NBD(ω)

A + 2BD(ω)
≈ 0.5, if BD(ω) ≫ A,
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Macroscopic theory of Absorption

for the excited state,
dN2

dt
= −N2A,

with the solution N2 = N0
2 exp[−At], where A ≡ 1/τR the radiative lifetime of the

excited states.

in macroscopic, the polarization P by an applied electric field E is related with
P = ǫ0χE, where the susceptibility χ = χ1 + iχ2,

the relation between frequency and the wavevector,
kc/ω = 1 + χ = n2 = (η + iκ)2, where η2 − κ2 = 1 + χ1 and 2ηκ = χ2,

the traveling-wave solution propagated in the z−direction becomes,

exp[i(kz − ωt)] = exp[iω(
ηz

c
− t) −

ωκz

c
],

the averaged Poynting vector, Ī = 〈E × B/µ0〉 = 1
2
ǫ0cη|E(r, t)|2, where

Ī(z) = Ī0exp[−2ωκz/c],

where 2ωκ/c is called the absorption coefficient.
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Microscopic theory of Absorption

total electromagnetic energy density:
∫ ∞

0 D(ω)dω = 1/2V
∫

cavity ǫ0|E(r, t)|2dV .

for a lossy dielectric medium,
∫ ∞

0 D(ω)dω = 1/2V
∫

cavity ǫ0η2|E(r, t)|2dV .

in steady-state condition, − dN2

dt
= N2A + (N2 − N1)BD(ω)/η2 = 0, with an

additional factor η2 for the energy density,

the attenuation energy within a small section of dz, cross-section A is,

∂

∂t
D(ω)dωAdz = −(N1 − N2)F (ω)dωBD(ω)/η2

~ω(Adz/V ),

for the absorption, − ∂
∂t

D(ω)dωAdz = − ∂
∂z

ĪdωAdz, or ∂
∂t

D(ω) = ∂
∂z

Ī,

for Ī = 1
2
ǫ0cη|E(r, t)|2, we have cD(ω) = ηĪ , then,

∂

∂z
Ī = −(N1 − N2)F (ω)(B~ω/V cη)~I,

where F (ω) is the distribution of atomic transition frequencies.
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Microscopic theory of Absorption

if N0
2 = 0, all atoms are in the ground state at t = 0,

N2 =
NBD(ω)

A + 2BD(ω)/η2
[1 − exp[−(A + 2BD(ω))t] ≈

NBD(ω)

A + 2BD(ω)/η2
,

and we have,

N1 − N2 =
NA

A + 2BD(ω)/η2
=

NA

A + 2BĪ/cη
,

the equation for the average beam intensity becomes,

1

Ī
(1 +

2BĪ

Acη
)

∂

∂z
Ī = −

NB~ωF (ω)

V cη

for all ordinary light beams, 2BĪ
Acη

≪ 1, then we have,

Ī(z) = Ī0exp[−NB~ωF (ω)z/V cη],

= Ī0exp[−Kz],

where the absorption coefficient, K = 2ωκ/c.
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Microscopic theory of Absorption

A dielectric with one single resonance may be modeled as a distribution of "+" and
"−" charges, the + charges immobile and the − charges tied to the + charges by
a spring constant k,

m(
d2

d t2
+ 2β

d

d t
+ ω2

0)d = −
e

m
E,

for the incident field E = E0exp[−i(ωt − kz)] and the dipole
d = aexp[−i(ωt − kz)], we have

a =
−(e/m)E0

ω2 − ω2
0 + 2iβω

,

the polarization P = Np = N
∑

j edj = Nα(ω)E0e−i(ωt−kz), where

α(ω) =
−e2/m

ω2−ω2

0
+2iβω

.

Ch. 2, 3, 7, 8 in ”Lasers,” by P. Milonni and J. Eberly.
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Microscopic theory of Absorption

the dispersion relation,

k2 =
ω2

c2
[1 +

Nα(ω)

ǫ0
] =

ω2

c2
n2(ω2),

the real index of refraction,

nR(ω) = 1 +
Ne2

mǫ0

ω2
0 − ω2

(ω2
0 − ω2)2 + 4β2ω2

,

the absorption coefficient or extinction coefficient,

a(ω) = 2nI(ω)ω/c =
2Ne2

mǫ0c

βω2

(ω2
0 − ω2)2 + 4β2ω2

,

which has the lineshape of the Lorentzian function,

a(ω) =
Ne2

2mǫ0c

δω0

(ω0 − ω)2 + δω2
0

,

where δω = β
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Population Inversion: the Laser

for a three level atom, N1 + N2 + N3 = N , the rate equations are:

dN2

dt
= −N2A21 − N2A23 + DpB23(N3 − N2) − D(ω)B21(N2 − N1),

dN1

dt
= N2A21 − N1A13 + D(ω)B21(N2 − N1),

dN3

dt
= −N2A23 + N1A13 − DpB23(N3 − N2),

the pumping rate γ = DpB23(N3 − N2)/N ,

in steady-state,

N2[A21 + B21D(ω)] = N1[A12 + B21D(ω)],

N2A23 + N1A13 = Nγ,

for A21 < A13, we have N2 > N1.
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Purcell effect : Cavity-QED (Quantum ElectroDynamics)

E. M. Purcell, Phys. Rev. 69 (1946).

Nobel laureate Edward Mills Purcell (shared the prize with Felix Bloch) in 1952,

for their contribution to nuclear magnetic precision measurements.

from: K. J. Vahala, Nature 424, 839 (2003).
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