EE 3130

Introduction to Optoelectronic Engineering,

Ray-Kuang Lee

Institute of Photonics Technologies, Department of Electrical Engineering, and Department of Physics, National Tsing-Hua University

e-mail: rklee@ee.nthu.edu.tw

EE 3130

Time: M5M6W5W6 (01:10-03:00 PM, Monday; 01:10-03:00 PM, Wednesday)

Course Description:

- G This course is designed for the beginners who are interested in Optoelectronics and Photonics.
- Э Modern optics, from EM-waves, geometric optics, interference, diffraction, birefringence, liquid crystals, waveguides, displays, lasers, and nonlinear optics, would be involved.
- No background is required.
- **Teaching Method**: in-class lectures with discussion and project studies.
- Э TA: Chin-Ming Wu, 1st Ph.D. student of IPT, u8814013@msg.ndhu.edu.tw

Reference Books

- Э In-class handouts.
- Э E. Hecht, "Optics," 4th edition, Addison Wesley (2001).
- Э S. O. Kasap, "Optoelectronics and Photonics," Prentice Hall (2001).
- Э G. Chartier, "Introduction to Optics," (2004).
- G B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics," Wiley (1991).
- Э M. Born and E. Wolf, "Principles of Optics," 7th edition, Cambridge (1999).

Syllabus

- 1. Introduction to modern photonics (Feb. 26),
- 2. Ray optics (lens, mirrors, prisms, et al.) (Mar. 7, 12, 14),
- 3. Wave optics (plane waves and interference) (Mar. 19, 26),
- 4. Beam optics (Gaussian beam and resonators) (Apr. 9, 11, 16),
- 5. Electromagnetic optics (reflection and refraction) (Apr. 18, 23, 25),
- 6. Fourier optics (diffraction and holography) (Apr. 30, May 2), Midterm (May 7-th),
- 7. Crystal optics (birefringence and LCDs) (May 9, 14),
- 8. Waveguide optics (waveguides and optical fibers) (May 16, 21),
- 9. Photon optics (light quanta and atoms) (May 23, 28),
- 10. Laser optics (spontaneous and stimulated emissions) (May 30, June 4),
- 11. Semiconductor optics (LEDs and LDs) (June 6),
- 12. Nonlinear optics (June 18),
- 13. Quantum optics (June 20),

Final exam (June 27),

mester oral report (July 4),

General Optics

- **P** Ray Optics: Fermat's principle, ABCD matrix diffraction free optics, $\lambda \to 0$,
- **3** Wave Optics: Wave equaiton scalar field theory
- **B.** Electromagnetic Optics: Maxwell's equations provide the explanation of classical (continuous)optics, i.e. classical electrodynamics,
- **3** Quantum Optics: Shrödinger equaiton allow the explanations of all optical phenomena, i.e. quantum field theory,

- **Postulates of Ray optics and the principle of Fermat,**
- **P** Ray optics v.s. Classical mechanics,
- **P** Reflection, Refraction, and Snell's law,
- **P** Refraction at spherical surfaces,
- **3** Thin lenses, imaging equations,
- **3** Stops, Mirrors, and Prisms,
- **3** Fiber optics,
- **3** Matrix optics for optical system, ABCD matrix,

ElectroMagnetic waves

An electromagnetic wave is ^a travelling wave which has time varying electric andmagnetic fields which are perpendicular to each other and the direction of propagation, $z.$

Maxwell's equations

3 Faraday's law:

$$
\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B},
$$

3 Ampére's law:

National Tsing Hua Universit

$$
\nabla \times \mathbf{H} = \frac{\partial}{\partial t} \mathbf{D} + \mathbf{J},
$$

3 Gauss's law for the electric field:

$$
\nabla \cdot \mathbf{D} = \rho,
$$

3 Gauss's law for the magnetic field:

$$
\nabla \cdot \mathbf{B} = 0,
$$

Simple media

Constitutive relation: $\mathbf{B} = \mu \mathbf{H}$ and $\mathbf{D} = \epsilon \mathbf{E}$.

 $\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} = \epsilon \mathbf{E},$

where D is the electric flux density (C/m^2) , E is the electric field strength (V/m) , and P is the dipole moment density $(C/m^2).$

- source-free: ${\bf J}=\rho=0,$
- Э linear: $\textbf{P} = \epsilon_0 \chi \textbf{E}$, where ϵ is the permittivity (F/m) , χ is the electric susceptibility,

3 isotropic:
$$
\chi(x) = \chi(y) = \chi(z)
$$
,

3 homogeneous:
$$
\chi(r)
$$
 is independent of r ,

dispersion-free media: $\chi(\omega)$ is independent of ω

Material equations: $\textbf{D} = \epsilon \textsf{E}$, where

$$
\mu \epsilon = \mu_0 \epsilon_0 (1 + \chi) = \frac{n^2}{c^2},
$$

Maxwell-Schrödinger equations

Э the equations for the two-level atomic medium coupled to the field **E** are

$$
\frac{\partial}{\partial t}\rho_{aa} = \frac{i}{\hbar}[\mathbf{p}_{ab}\mathbf{E}\rho_{ba} - \mathbf{C}\cdot\mathbf{C}] - \gamma_a \rho_{aa},
$$
\n
$$
\frac{\partial}{\partial t}\rho_{bb} = -\frac{i}{\hbar}[\mathbf{p}_{ab}\mathbf{E}\rho_{ba} - \mathbf{C}\cdot\mathbf{C}] - \gamma_b \rho_{bb},
$$
\n
$$
\frac{\partial}{\partial t}\rho_{ab} = -\frac{i}{\hbar}\mathbf{p}_{ab}\mathbf{E}(\rho_{aa} - \rho_{bb}) - (i\omega + \frac{\gamma_a + \gamma_b}{2})\rho_{ab},
$$

Э the condition of self-consistency requires that the equation of motion for the field**E** is driven by the atomic population matrix elements,

ာ

Э the field is described by the Maxwell's equation,

$$
\nabla \cdot \mathbf{D} = 0, \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},
$$

$$
\nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{H} = J + \frac{\partial \mathbf{D}}{\partial t},
$$

Ref: Quantum Optics

Wave equations

Э For a so*urce-free* medium, $\rho = \mathbf{J} = 0$,

$$
\nabla \times (\nabla \times E) = -\mu \epsilon \frac{\partial^2}{\partial t^2} E,
$$

\n
$$
\Rightarrow \qquad \nabla (\nabla \cdot E) - \nabla^2 E = -\mu \epsilon \frac{\partial^2}{\partial t^2} E.
$$

Э When $\nabla \cdot E = 0$, one has *wave equation*,

$$
\nabla^2 E = \mu \epsilon \frac{\partial^2}{\partial t^2} E
$$

Э which has following expression of the solutions, in 1D,

$$
E = \hat{x}[f_{+}(z - vt) + f_{-}(z + vt)],
$$

\n
$$
H = \sqrt{\frac{\epsilon}{\mu}} \hat{y}[f_{+}(z - vt) - f_{-}(z + vt)],
$$

$$
\mu \epsilon = \mu_0 \epsilon_0 (1 + \chi) = \frac{n^2}{c^2},
$$

Plane waves

1D wave equation,

$$
\frac{\partial^2}{\partial z^2}E = \mu \epsilon \frac{\partial^2}{\partial t^2}E,
$$

which has the solutions of
\n
$$
E = \hat{x}[f_{+}(z - vt) + f_{-}(z + vt)],
$$
 with

$$
v^2 = \frac{1}{\mu \epsilon} = \frac{n^2}{c_0^2},
$$

P plane wave solutions:

$$
E_+ = E_0 \cos(kz - \omega t),
$$

$$
\mathbf{P} \mathbf{B} \leq \mathbf{A} \mathbf{B} \mathbf{B} \leq \mathbf{B} \mathbf{B} \mathbf{B}
$$

Travelling waves

A travelling plane EM wave along ^a direction ^k.

Postulates of ray optics

- Э light travels in form of diffraction-free ray,
	- Э emitted by light sources,
	- э detected by optical detector.

The arrow points toward the direction of energy flow, and the density isproportional to the optical energy.

Э optical medium is characterized by a quantity n

$$
n = \frac{c_0}{c}, \qquad n \ge 1,
$$

Э time to travel distance d in a *homogeneous* medium is

$$
t = \frac{d}{c} = \frac{nd}{c_0},
$$

where nd is optical path length.

Fermat's principle: An optical rays always chooses an optical path that is anextremum. Mathematically

$$
\delta \int n(r) \mathrm{d}s = 0.
$$

Principle of Fermat

Э \overline{n} is function of \overline{r} in an inhomogeneous medium,

$$
\text{optical path} = \int_A^B n(r) \mathrm{d} s,
$$

ray takes path of shortest time,

$$
\delta \int_A^B n(r) \mathrm{d} s = 0,
$$

the optical path in an medium is an extremum compared to neighboring paths,

Ray optics v.s. Classical mechanics

 $\lambda\rightarrow 0 \leftrightarrow \hbar\rightarrow 0$

lational Tsing

- ray optics \leftrightarrow classical mechanics
- Э light travels in form of diffraction-free ray \leftrightarrow classical particle
- Э Fermat's principle \leftrightarrow Hamilton principle

$$
\delta \int n(r) \mathrm{d} s = 0 \leftrightarrow \delta \int L \mathrm{d} t = 0,
$$

in the differential formulation

$$
\frac{\mathsf{d}}{\mathsf{d} s}(n\frac{\mathsf{d} r}{\mathsf{d} s})=\nabla n \leftrightarrow \frac{\mathsf{d}}{\mathsf{d} t}\frac{\mathsf{d} L}{\mathsf{d} \dot{q}_i}=\frac{\mathsf{d} L}{\mathsf{d} q_i},
$$

minimize the *optical path* \leftrightarrow minimize the *energy*,

represented by $y, \theta \leftrightarrow$ represented by $q, p,$

Feynman's path integral for Quantum Electrodyanmics, QED,

Reflection

- reflected ray lies in the plane of incidence, Э
- ၁ angle of reflection θ' equals the angle of incidence $\theta,$

v.s. infinite potential well,

Refraction at Spherical Surfaces

Thin-lens equaitons

Э optical path: $\mathsf{OPL}=n_1l_0+n_2l_i,$

$$
l_0 = [R^2 + (s_0 + R)^2 - 2R(s_0 + R)\cos\phi]^{1/2},
$$

\n
$$
l_i = [R^2 + (s_i - R)^2 + 2R(s_i - R)\cos\phi]^{1/2},
$$

where the identity a^2 $a^2 = b^2$ $^{2}+c^{2}$ $^{2}-2bc\cos\theta$ is used.

G the optical path,

$$
\begin{aligned}\n\mathbf{OPL} &= \int_A^B n(r) \mathsf{d}s, \\
&= n_1 [R^2 + (s_0 + R)^2 - 2R(s_0 + R) \cos \phi]^{1/2} \\
&\quad + n_2 [R^2 + (s_i - R)^2 + 2R(s_i - R) \cos \phi]^{1/2},\n\end{aligned}
$$

Э Fermat's principle:

$$
\delta \int n(r) \mathrm{d}s = \frac{\mathrm{dOPL}}{\mathrm{d}\phi} = 0,
$$

$$
\frac{n_1 R(s_0 + R) \sin \phi}{2l_0} - \frac{n_2 R(s_i - R) \sin \phi}{2l_i} = 0,
$$

Thin-lens equaitons

Э from Fermat's principle,

$$
\frac{n_1 R(s_0 + R) \sin \phi}{2l_0} - \frac{n_2 R(s_i - R) \sin \phi}{2l_i} = 0,
$$

$$
\frac{n_1}{l_0} + \frac{n_2}{l_i} = \frac{1}{R} (\frac{n_2 s_i}{l_i} - \frac{n_1 s_0}{l_0}),
$$

Э for paraxial rays, i.e. small values of $\phi,$

 $l_0\approx s_o, \qquad l_i\approx s_i,$

then

$$
\frac{n_1}{s_0} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R},
$$

Refraction

- refracted ray lies in the plane of incidenceЭ
- angle of refraction ϕ is related to angle of incidence θ by the Snell's law

$$
n_1 \sin \theta = n_2 \sin \phi,
$$

v.s. ???

Refraction

立清 阈 埀 ีี≈ National Tsing Hua L

Snell's law

P plane wave solutions:

$$
E_+ = E_0 \cos(kz - \omega t),
$$

where

立清

National Tsing Hua University

大學

$$
\frac{\omega}{k} = \frac{c_0}{n},
$$

3 for 3D waves,

$$
|\mathbf{k}|^2 = k_x^2 + k_y^2 + k_z^2 = n^2 \omega^2 / c_0^2,
$$

 \bullet in the transverse plane (x,z) ,

$$
k_x^{(1)} = |\mathbf{k}^{(1)}| \sin \theta = k_x^{(2)} = |\mathbf{k}^{(2)}| \sin \phi,
$$

\n
$$
\rightarrow n_1 \sin \theta = n_2 \sin \phi,
$$

Optoelectronic, 2007 – p.24/53

Refraction at spherical boundaries

- **3** derivation for paraxial rays
- **P** paraxial means close to the optical axis

Conjugated planes

Refraction at sperical lenses

- **P** lens includes two spherical surfaces with different radii
- **3** biconvex lens
- lens is thin if $y=y^{\prime},$

Lens

立清

National Tsing H

Optoelectronic, 2007 – p.28/53

Refraction at ^a thin lens

$$
\theta_2 \approx \frac{n_1}{n_2} \theta_1 - \frac{n_2 - n_1}{n_2 R} y,
$$

3 first refraction $\theta_t \approx \frac{1}{n} \theta_1 - \frac{n}{n i}$ 11 $\theta_1-\frac{n}{n}$ −≈ $\frac{n}{nR_1}y$, $n_1 = 1$ \overline{n} **3** second refraction $n_2 = n$ $\theta_2\approx \frac{n}{1}\theta_t-\frac{1-n}{p_s}y,$ $\theta_t-{\scriptstyle \frac{1}{2}}$ $\, n \,$ $\frac{\cdot}{R_2}y$, 1 $=1$ $n₁$ $n_2 = n$ 立清華大學 National Tsing Hua University

Refraction at ^a spherical lens

Optoelectronic, 2007 – p.30/53

Imaging with ^a lens

Э imaging equation:

$$
\frac{1}{f} = \frac{1}{z_1} + \frac{1}{z_2},
$$

where

- z_{1} object distance
- z_{2} image distance
- magnification:Э

$$
y_2 = -\frac{z_2}{z_1}y_1,
$$

Э focal length f completely defines the effect of the lens on paraxial ray. 蓝 National Tsing Hua University

- **3** spherical optics only for paraxial beams,
- spherical aberration \rightarrow aspheric lenses,
- chromatic aberration $n = n(\lambda) \rightarrow$ achromatic lenses,

Total Internal Reflection

- Snell's law: n_1 $\sin\theta_1=n_2$ $_{2}\sin\theta_{2}$
- $n_1 > n_2, \, \theta_2 > 90^o$,
- critical angle, $\theta_c = \sin^-$ 1 $\, n \,$ 2 $\frac{n_2}{n_1}$, i.e. $\theta_c\approx 42^o$ for glass $(n=1.5)$

Snell's law for total internal reflection

 \bullet in the transverse plane (x,z) ,

$$
k_x^{(1)} = |\mathbf{k}^{(1)}| \sin \theta = k_x^{(2)} = |\mathbf{k}^{(2)}| \sin \phi,
$$

\n
$$
\rightarrow n_1 \sin \theta = n_2 \sin \phi,
$$

if $n_1 > n_2$, then

$$
k_x^{(2)} = k_x^{(1)} = |\mathbf{k}^{(1)}| \sin \theta > |\mathbf{k}^{(2)}|,
$$

then define $k_z^{(2)}\equiv j\alpha$,

$$
|\mathbf{k}^{(2)}|^2 = (k_x^{(2)})^2 + (k_z^{(1)})^2 = (k_x^{(2)})^2 - \alpha^2,
$$

in the n_2 $_{\rm 2}$ medium, the wave is an *evanescence* wave, decaying along z -direction. National Tsing Hua Univers

Total internal reflection

Prisms and Optical fibers

Guiding light

optical fiber (step index fiber)

 $n_2 < n_1$,

- acceptance angle θ_a
- $A=sin\theta_{max}=\sqrt{n_1^2-n_2^2},$ ၁ numerical aperture: NA

typical value: $NA = 0.2$ for $n_1 = 1.475$ and $n_2 = 1.46$, National Tsing Hua University

Fiber optics

Optoelectronic, 2007 – p.38/53

Global overseas fiber network

National Tsing Hua University

Taiwan-US overseas fiber network

Optoelectronic, 2007 – p.40/53

Capacities of optical network

阈

Wavelength-Division-Multiplex

迈 2斎

Optoelectronic, 2007 – p.42/53

Multi-mode and Single-mode fibers

(a) multimode step index fiber; (b) single-mode step index fiber; (c) multimode gradedad 立清革大學

Fermat's principle

Э integral formulation:

$$
\delta \int n(r) \mathrm{d}s = 0,
$$

Э differential formulation:

$$
\frac{\mathrm{d}}{\mathrm{d}s}(n\frac{\mathrm{d}r}{\mathrm{d}s})=\nabla n,
$$

$$
\frac{d}{ds}(n\frac{dx}{ds}) = \frac{\partial n}{\partial x}, \frac{d}{ds}(n\frac{dy}{ds}) = \frac{\partial n}{\partial y}, \frac{d}{ds}(n\frac{dz}{ds}) = \frac{\partial n}{\partial z},
$$

$$
x(s), y(s), z(s)
$$

Э parametrize x, y as function of z , i.e. $x = x(z)$, $y = y(z)$,

$$
ds = dz\sqrt{1 + (dx/dz)^2 + (dy/dz)^2},
$$

Paraxial ray equation

Э simplification for paraxial rays,

Э d $s\approx$ d $z,$

$$
\frac{\mathsf{d}}{\mathsf{d}z}(n\frac{\mathsf{d}x}{\mathsf{d}z})\approx \frac{\partial n}{\partial x}, \frac{\mathsf{d}}{\mathsf{d}z}(n\frac{\mathsf{d}y}{\mathsf{d}z})\approx \frac{\partial n}{\partial y},
$$

Э homogeneous medium: $n=\mathsf{constant},$

$$
\frac{\mathrm{d}^2 x}{\mathrm{d}z^2} = \frac{\mathrm{d}^2 y}{\mathrm{d}z^2} = 0,
$$

optical trajectory is ^a line,

GRIN - graded index optics

$$
n(y) = n_0 \sqrt{(1 - \alpha^2 y^2)} \approx n_0 (1 - \frac{1}{2} \alpha^2 y^2),
$$

paraxial ray equation: $\frac{d}{d}$ 2 $\frac{\mathsf{d}^2 y}{\mathsf{d} z^2}=-\alpha^2$ 2y , this is differential equation of oscillation,

$$
y(z) = y_0 \cos \alpha z + \frac{\theta_0}{\alpha} \sin \alpha z,
$$

Optoelectronic, 2007 – p.46/53

- **3** if the systems is more complex (lots of optical elements ...)
- Э we need fast algorithms to calculate ray propagation \rightarrow matrix optics

Matrix optics

Э for paraxial beams (small angles):

$$
y_2 = Ay_1 + B\theta_1, \qquad \theta_2 = Cy_1 + D\theta_1,
$$

Э matrix form, with ^a tranfer matrix **^M**

$$
\left[\begin{array}{c}y_2\\ \theta_2\end{array}\right]=\left[\begin{array}{cc}A&B\\ C&D\end{array}\right]\left[\begin{array}{c}y_1\\ \theta_1\end{array}\right]=\mathbf{M}\left[\begin{array}{c}y_1\\ \theta_1\end{array}\right],
$$

examples - matrix optics

examples - matrix optics

万

National Sumg nua umreceny

Optoelectronic, 2007 – p.50/53

examples - matrix for an system of objects

 $\boldsymbol{\mathsf{M}}=\boldsymbol{\mathsf{M}}_N\boldsymbol{\mathsf{M}}_{N-1}\cdots\boldsymbol{\mathsf{N}}$ $\mathsf{M}_1,$

Optoelectronic, 2007 – p.51/53

do it yourself matrix optics

Optoelectronic, 2007 – p.52/53

Summary of Ray Optics

- Light propagates in rays
- Rays take path of shortest time (Fermat) straight in homogeneous media
- Rays are reflected and refracted at interfaces refraction
	- Э according to Snells law
	- Э spherical surfaces transform object points into image points for paraxial rays ⁼imaging by lenses
	- Э total internal reflection for wave guiding
- matrix optics delivers fast way to evaluate complex optical systems

