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EE 3130

Time : M5M6W5W6 (01:10-03:00 PM, Monday; 01:10-03:00 PM, Wednesday)

Course Description :

This course is designed for the beginners who are interested in Optoelectronics
and Photonics.

Modern optics, from EM-waves, geometric optics, interference, diffraction,
birefringence, liquid crystals, waveguides, displays, lasers, and nonlinear optics,
would be involved.

No background is required.

Teaching Method : in-class lectures with discussion and project studies.

TA: Chin-Ming Wu, 1st Ph.D. student of IPT,
u8814013@msg.ndhu.edu.tw
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Reference Books

In-class handouts.

E. Hecht, "Optics," 4th edition, Addison Wesley (2001).

S. O. Kasap, "Optoelectronics and Photonics," Prentice Hall (2001).

G. Chartier, "Introduction to Optics," (2004).

B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics," Wiley (1991).

M. Born and E. Wolf, "Principles of Optics," 7th edition, Cambridge (1999).
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Syllabus

1. Introduction to modern photonics (Feb. 26),

2. Ray optics (lens, mirrors, prisms, et al.) (Mar. 7, 12, 14),

3. Wave optics (plane waves and interference) (Mar. 19, 26),

4. Beam optics (Gaussian beam and resonators) (Apr. 9, 11, 16),

5. Electromagnetic optics (reflection and refraction) (Apr. 18, 23, 25),

6. Fourier optics (diffraction and holography) (Apr. 30, May 2),
Midterm (May 7-th),

7. Crystal optics (birefringence and LCDs) (May 9, 14),

8. Waveguide optics (waveguides and optical fibers) (May 16, 21),

9. Photon optics (light quanta and atoms) (May 23, 28),

10. Laser optics (spontaneous and stimulated emissions) (May 30, June 4),

11. Semiconductor optics (LEDs and LDs) (June 6),

12. Nonlinear optics (June 18),

13. Quantum optics (June 20),
Final exam (June 27),

14. Semester oral report (July 4),
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General Optics
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General Optics

Ray Optics: Fermat’s principle, ABCD matrix
diffraction free optics, λ → 0,

Wave Optics: Wave equaiton
scalar field theory

Electromagnetic Optics: Maxwell’s equations
provide the explanation of classical (continuous)
optics, i.e. classical electrodynamics,

Quantum Optics: Shrödinger equaiton
allow the explanations of all optical phenomena, i.e.
quantum field theory,
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Ray Optics

Postulates of Ray optics and the principle of Fermat,

Ray optics v.s. Classical mechanics,

Reflection, Refraction, and Snell’s law,

Refraction at spherical surfaces,

Thin lenses, imaging equations,

Stops, Mirrors, and Prisms,

Fiber optics,

Matrix optics for optical system, ABCD matrix,
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ElectroMagnetic waves

An electromagnetic wave is a travelling wave which has time varying electric and
magnetic fields which are perpendicular to each other and the direction of propagation, z.
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Maxwell’s equations

Faraday’s law:

∇× E = −
∂

∂ t
B,

Ampére’s law:

∇× H =
∂

∂ t
D + J,

Gauss’s law for the electric field:

∇ · D = ρ,

Gauss’s law for the magnetic field:

∇ · B = 0,
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Simple media

Constitutive relation: B = µH and D = ǫE.

D = ǫ0E + P = ǫE,

where D is the electric flux density (C/m2), E is the electric field strength (V/m), and P

is the dipole moment density (C/m2).

source-free: J = ρ = 0,

linear: P = ǫ0χE, where ǫ is the permittivity (F/m), χ is the electric susceptibility,

isotropic: χ(x) = χ(y) = χ(z),

homogenerous: χ(r) is independent of r,

dispersion-free media: χ(ω) is independent of ω

Material equations: D = ǫE, where

µǫ = µ0ǫ0(1 + χ) =
n2

c2
,
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Maxwell-Schrödinger equations

the equations for the two-level atomic medium coupled to the field E are

∂

∂t
ρaa =

i

~
[pabEρba − c.c] − γaρaa,

∂

∂t
ρbb = −

i

~
[pabEρba − c.c] − γbρbb,

∂

∂t
ρab = −

i

~
pabE(ρaa − ρbb) − (iω +

γa + γb

2
)ρab,

the condition of self-consistency requires that the equation of motion for the field E is
driven by the atomic population matrix elements,

the field is described by the Maxwell’s equation,

∇ · D = 0, ∇× E = −
∂B
∂t

,

∇ · B = 0, ∇× H = J +
∂D
∂t

,

Ref: Quantum Optics
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Wave equations

For a source-free medium, ρ = J = 0,

∇× (∇× E) = −µǫ
∂2

∂ t2
E,

⇒ ∇(∇ · E) −∇2E = −µǫ
∂2

∂ t2
E.

When ∇ · E = 0, one has wave equation,

∇2E = µǫ
∂2

∂ t2
E

which has following expression of the solutions, in 1D,

E = x̂[f+(z − vt) + f
−

(z + vt)],

H =

√

ǫ

µ
ŷ[f+(z − vt) − f

−
(z + vt)],

with

µǫ = µ0ǫ0(1 + χ) =
n2

c2
,
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Plane waves

1D wave equation,

∂2

∂z2
E = µǫ

∂2

∂ t2
E,

which has the solutions of
E = x̂[f+(z − vt) + f−(z + vt)], with

v2 =
1

µǫ
=

n2

c2
0

,

plane wave solutions:

E+ = E0 cos(kz − ωt),

where ω
k

= c0
n

.
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Travelling waves

A travelling plane EM wave along a direction k.
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Postulates of ray optics

light travels in form of diffraction-free ray,

emitted by light sources,

detected by optical detector.

The arrow points toward the direction of energy flow, and the density is
proportional to the optical energy.

optical medium is characterized by a quantity n

n =
c0

c
, n ≥ 1,

time to travel distance d in a homogeneous medium is

t =
d

c
=

nd

c0
,

where nd is optical path length.

Fermat’s principle: An optical rays always chooses an optical path that is an
extremum. Mathematically

δ

∫

n(r)ds = 0.
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Principle of Fermat

n is function of r in an inhomogeneous medium,

optical path =

∫ B

A
n(r)ds,

ray takes path of shortest time,

δ

∫ B

A
n(r)ds = 0,

the optical path in an medium is an extremum compared to neighboring paths,
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Ray optics v.s. Classical mechanics

λ → 0 ↔ ~ → 0

ray optics ↔ classical mechanics

light travels in form of diffraction-free ray ↔ classical particle

Fermat’s principle ↔ Hamilton principle

δ

∫

n(r)ds = 0 ↔ δ

∫

Ldt = 0,

in the differential formulation

d
ds

(n
dr

ds
) = ∇n ↔

d
dt

dL

dq̇i
=

dL

dqi
,

minimize the optical path ↔ minimize the energy,

represented by y, θ ↔ represented by q, p,

Feynman’s path integral for Quantum Electrodyanmics, QED,
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Reflection

reflected ray lies in the plane of incidence,

angle of reflection θ′ equals the angle of incidence θ,

v.s. infinite potential well,
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Refraction at Spherical Surfaces
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Thin-lens equaitons

optical path: OPL = n1l0 + n2li,

l0 = [R2 + (s0 + R)2 − 2R(s0 + R) cos φ]1/2,

li = [R2 + (si − R)2 + 2R(si − R) cos φ]1/2,

where the identity a2 = b2 + c2 − 2bc cos θ is used.

the optical path,

OPL =

∫ B

A
n(r)ds,

= n1[R
2 + (s0 + R)2 − 2R(s0 + R) cos φ]1/2

+ n2[R
2 + (si − R)2 + 2R(si − R) cos φ]1/2,

Fermat’s principle:

δ

∫

n(r)ds =
dOPL

dφ
= 0,

then
n1R(s0 + R) sin φ

2l0
−

n2R(si − R) sin φ

2li
= 0,
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Thin-lens equaitons

from Fermat’s principle,

n1R(s0 + R) sin φ

2l0
−

n2R(si − R) sin φ

2li
= 0,

re-arrange,
n1

l0
+

n2

li
=

1

R
(
n2si

li
−

n1s0

l0
),

for paraxial rays, i.e. small values of φ,

l0 ≈ so, li ≈ si,

then
n1

s0

+
n2

si
=

n2 − n!

R
,
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Refraction

refracted ray lies in the plane of incidence

angle of refraction φ is related to angle of incidence θ

by the Snell’s law

n1 sin θ = n2 sin φ,

v.s. ???
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Refraction
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Snell’s law

plane wave solutions:

E+ = E0 cos(kz − ωt),

where
ω

k
=

c0

n
,

for 3D waves,

|k|2 = k2
x + k2

y + k2
z = n2ω2/c2

0,

in the transverse plane (x,z),

k(1)
x = |k(1)| sin θ = k(2)

x = |k(2)| sin φ,

→ n1 sin θ = n2 sin φ,
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Refraction at spherical boundaries

derivation for paraxial rays

paraxial means close to the optical axis

θ2 ≈
n1

n2
θ1 −

n2 − n1

n2R
y,
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Conjugated planes

n1

z1

+
n2

z2

≈
n2 − n1

R
,
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Refraction at sperical lenses

lens includes two spherical surfaces with different radii

biconvex lens

lens is thin if y = y′,
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Lens
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Refraction at a thin lens

θ2 ≈
n1

n2

θ1 −
n2 − n1

n2R
y,

first refraction
θt ≈

1
n
θ1 −

n−1
nR1

y,

second refraction
θ2 ≈

n
1
θt −

1−n
R2

y,
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Refraction at a spherical lens

θ2 = θ1 −
y

f
,
1

f
= (n − 1)(

1

R1

−
1

R2

)
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Imaging with a lens

imaging equation:

1

f
=

1

z1

+
1

z2

,

where

z1 object distance

z2 image distance

magnification:

y2 = −
z2

z1
y1,

focal length f completely defines the effect of the lens
on paraxial ray.
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Imaging errors

spherical optics only for paraxial beams,

spherical aberration → aspheric lenses,

chromatic aberration n = n(λ) → achromatic lenses,
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Total Internal Reflection

Snell’s law: n1 sin θ1 = n2 sin θ2,

n1 > n2, θ2 > 90o,

critical angle, θc = sin−1 n2

n1
, i.e. θc ≈ 42o for glass

(n=1.5),

Optoelectronic, 2007 – p.33/53



Snell’s law for total internal reflection

in the transverse plane (x,z),

k(1)
x = |k(1)| sin θ = k(2)

x = |k(2)| sin φ,

→ n1 sin θ = n2 sin φ,

if n1 > n2, then

k(2)
x = k(1)

x = |k(1)| sin θ > |k(2)|,

then define k
(2)
z ≡ jα,

|k(2)|2 = (k(2)
x )2 + (k(1)

z )2 = (k(2)
x )2 − α2,

in the n2 medium, the wave is an evanescence wave,
decaying along z-direction.
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Total internal reflection
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Prisms and Optical fibers
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Guiding light

optical fiber (step index fiber)

n2 < n1,

acceptance angle θa

numerical aperture: NA = sinθmax =
√

n2
1 − n2

2,

typical value: NA = 0.2 for n1 = 1.475 and n2 = 1.46,
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Fiber optics
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Global overseas fiber network
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Taiwan-US overseas fiber network
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Capacities of optical network
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Wavelength-Division-Multiplex
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Multi-mode and Single-mode fibers

(a) multimode step index fiber; (b) single-mode step index fiber; (c) multimode graded

index fiber;
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Fermat’s principle

integral formulation:

δ

∫

n(r)ds = 0,

differential formulation:
d
ds

(n
dr

ds
) = ∇n,

d
ds

(n
dx

ds
) =

∂n

∂x
,

d
ds

(n
dy

ds
) =

∂n

∂y
,

d
ds

(n
dz

ds
) =

∂n

∂z
,

x(s), y(s), z(s)

parametrize x, y as function of z, i.e. x = x(z), y = y(z),

ds = dz
√

1 + (dx/dz)2 + (dy/dz)2,
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Paraxial ray equation

simplification for paraxial rays,

ds ≈ dz,
d
dz

(n
dx

dz
) ≈

∂n

∂x
,

d
dz

(n
dy

dz
) ≈

∂n

∂y
,

homogeneous medium: n = constant,

d2x

dz2
=

d2y

dz2
= 0,

optical trajectory is a line,
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GRIN - graded index optics

n(y) = n0

√

(1 − α2y2) ≈ n0(1 −
1

2
α2y2),

paraxial ray equation: d2y
dz2

= −α2y, this is differential equation of oscillation,

y(z) = y0 cos αz +
θ0

α
sin αz,
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Real systems

if the systems is more complex (lots of optical
elements ...)

we need fast algorithms to calculate ray propagation →

matrix optics
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Matrix optics

for paraxial beams (small angles):

y2 = Ay1 + Bθ1, θ2 = Cy1 + Dθ1,

matrix form, with a tranfer matrix M





y2

θ2



 =





A B

C D









y1

θ1



 = M





y1

θ1



 ,
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examples - matrix optics

M =





1 d

0 1



,

M =





1 0

0 n1

n2



,

M =





1 0

−n2−n1

n2R
n1

n2



,
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examples - matrix optics

M =





1 0

− 1
f

0



,

M =





1 0

2
R

1



,
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examples - matrix for an system of objects

M = MNMN−1 · · ·M1,

M1 =





1 d

0 1



 , M2 =





1 0

− 1
f

0



 ,
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do it yourself matrix optics
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Summary of Ray Optics

Light propagates in rays

Rays take path of shortest time (Fermat) straight in homogeneous media

Rays are reflected and refracted at interfaces refraction

according to Snells law

spherical surfaces transform object points into image points for paraxial rays =
imaging by lenses

total internal reflection for wave guiding

matrix optics delivers fast way to evaluate complex optical systems
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