EE 3130

Introduction to Optoelectronic Engineering,

Ray-Kuang Lee

Institute of Photonics Technologies, Department of Electrical Engineering, and Department of Physics, National Tsing-Hua University

e-mail: rklee@ee.nthu.edu.tw

EE 3130

Time: M5M6W5W6 (01:10-03:00 PM, Monday; <u>01:10</u>-03:00 PM, Wednesday)

Course Description:

- This course is designed for the beginners who are interested in Optoelectronics and Photonics.
- Modern optics, from EM-waves, geometric optics, interference, diffraction, birefringence, liquid crystals, waveguides, displays, lasers, and nonlinear optics, would be involved.
- No background is required.
- **Teaching Method**: in-class lectures with discussion and project studies.
- TA: Chin-Ming Wu, 1st Ph.D. student of IPT, u8814013@msg.ndhu.edu.tw

Reference Books

- In-class handouts.
- E. Hecht, "Optics," 4th edition, Addison Wesley (2001).
- S. O. Kasap, "Optoelectronics and Photonics," Prentice Hall (2001).
- **G.** Chartier, "Introduction to Optics," (2004).
- B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics," Wiley (1991).
- M. Born and E. Wolf, "Principles of Optics," 7th edition, Cambridge (1999).

Syllabus

- 1. Introduction to modern photonics (Feb. 26),
- 2. Ray optics (lens, mirrors, prisms, et al.) (Mar. 7, 12, 14),
- 3. Wave optics (plane waves and interference) (Mar. 19, 26),
- 4. Beam optics (Gaussian beam and resonators) (Apr. 9, 11, 16),
- 5. Electromagnetic optics (reflection and refraction) (Apr. 18, 23, 25),
- Fourier optics (diffraction and holography) (Apr. 30, May 2), Midterm (May 7-th),
- 7. Crystal optics (birefringence and LCDs) (May 9, 14),
- 8. Waveguide optics (waveguides and optical fibers) (May 16, 21),
- 9. Photon optics (light quanta and atoms) (May 23, 28),
- 10. Laser optics (spontaneous and stimulated emissions) (May 30, June 4),
- 11. Semiconductor optics (LEDs and LDs) (June 6),
- 12. Nonlinear optics (June 18),
- 13. Quantum optics (June 20),

Final exam (June 27),

Semester oral report (July 4),

General Optics

- Pay Optics: Fermat's principle, ABCD matrix diffraction free optics, $\lambda → 0$,
- Wave Optics: Wave equaiton scalar field theory
- Electromagnetic Optics: Maxwell's equations provide the explanation of classical (continuous) optics, i.e. classical electrodynamics,
- Quantum Optics: Shrödinger equaiton allow the explanations of all optical phenomena, i.e. quantum field theory,

- Postulates of Ray optics and the principle of Fermat,
- Ray optics v.s. Classical mechanics,
- Reflection, Refraction, and Snell's law,
- Refraction at spherical surfaces,
- Thin lenses, imaging equations,
- Stops, Mirrors, and Prisms,
- Fiber optics,
- Matrix optics for optical system, ABCD matrix,

ElectroMagnetic waves

An electromagnetic wave is a travelling wave which has time varying electric and magnetic fields which are perpendicular to each other and the direction of propagation, z.

Maxwell's equations

Faraday's law:

$$\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B},$$

鬯

National Tsing Hua Universit

$$\nabla \times \mathbf{H} = \frac{\partial}{\partial t} \mathbf{D} + \mathbf{J},$$

Gauss's law for the electric field:

$$\nabla \cdot \mathbf{D} = \rho,$$

Gauss's law for the magnetic field:

$$\nabla \cdot \mathbf{B} = 0,$$

Simple media

Constitutive relation: $\mathbf{B} = \mu \mathbf{H}$ and $\mathbf{D} = \epsilon \mathbf{E}$.

 $\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} = \epsilon \mathbf{E},$

where *D* is the electric flux density (C/m^2) , *E* is the electric field strength (V/m), and *P* is the *dipole moment density* (C/m^2) .

- **?** source-free: $\mathbf{J} = \rho = 0$,
- Iinear: $\mathbf{P} = \epsilon_0 \chi \mathbf{E}$, where ϵ is the permittivity (F/m), χ is the electric susceptibility,

isotropic:
$$\chi(x) = \chi(y) = \chi(z)$$
,

a homogenerous:
$$\chi(r)$$
 is independent of r ,

dispersion-free media: $\chi(\omega)$ is independent of ω

Material equations: $\mathbf{D} = \epsilon \mathbf{E}$, where

$$\mu \epsilon = \mu_0 \epsilon_0 (1 + \chi) = \frac{n^2}{c^2},$$

Maxwell-Schrödinger equations

the equations for the two-level atomic medium coupled to the field E are

$$\begin{split} \frac{\partial}{\partial t}\rho_{aa} &= \frac{i}{\hbar}[\mathbf{p}_{ab}\mathbf{E}\rho_{ba} - \mathbf{C}.\mathbf{C}] - \gamma_{a}\rho_{aa}, \\ \frac{\partial}{\partial t}\rho_{bb} &= -\frac{i}{\hbar}[\mathbf{p}_{ab}\mathbf{E}\rho_{ba} - \mathbf{C}.\mathbf{C}] - \gamma_{b}\rho_{bb}, \\ \frac{\partial}{\partial t}\rho_{ab} &= -\frac{i}{\hbar}\mathbf{p}_{ab}\mathbf{E}(\rho_{aa} - \rho_{bb}) - (i\omega + \frac{\gamma_{a} + \gamma_{b}}{2})\rho_{ab}, \end{split}$$

the condition of self-consistency requires that the equation of motion for the field E is driven by the atomic population matrix elements,

Э

the field is described by the Maxwell's equation,

$$abla \cdot \mathbf{D} = 0, \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},$$
 $abla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{H} = J + \frac{\partial \mathbf{D}}{\partial t},$

Ref: Quantum Optics

Wave equations

? For a source-free medium, $\rho = \mathbf{J} = 0$,

$$\nabla \times (\nabla \times E) = -\mu \epsilon \frac{\partial^2}{\partial t^2} E,$$

$$\Rightarrow \qquad \nabla (\nabla \cdot E) - \nabla^2 E = -\mu \epsilon \frac{\partial^2}{\partial t^2} E.$$

When $\nabla \cdot E = 0$, one has wave equation,

$$\nabla^2 E = \mu \epsilon \frac{\partial^2}{\partial t^2} E$$

which has following expression of the solutions, in 1D,

$$E = \hat{x}[f_{+}(z - vt) + f_{-}(z + vt)],$$

$$H = \sqrt{\frac{\epsilon}{\mu}}\hat{y}[f_{+}(z - vt) - f_{-}(z + vt)],$$

$$\mu\epsilon = \mu_0\epsilon_0(1+\chi) = \frac{n^2}{c^2},$$

Plane waves

ID wave equation,

$$\frac{\partial^2}{\partial z^2}E = \mu \epsilon \frac{\partial^2}{\partial t^2}E,$$

which has the solutions of
$$E = \hat{x}[f_+(z - vt) + f_-(z + vt)], \text{ with}$$
$$v^2 = \frac{1}{\mu\epsilon} = \frac{n^2}{c_0^2},$$

plane wave solutions:

$$E_+ = E_0 \cos(kz - \omega t),$$

で國立清華文字ere
$$\frac{\omega}{k} = \frac{c_0}{n}$$
.

Optoelectronic, 2007 – p.13/53

Travelling waves

A travelling plane EM wave along a direction \mathbf{k} .

Postulates of ray optics

- light travels in form of diffraction-free ray,
 - emitted by light sources,
 - detected by optical detector.

The arrow points toward the direction of energy flow, and the density is proportional to the optical energy.

 \circ optical medium is characterized by a quantity n

$$n = \frac{c_0}{c}, \qquad n \ge 1,$$

 \circ time to travel distance d in a homogeneous medium is

$$t = \frac{d}{c} = \frac{nd}{c_0},$$

where nd is optical path length.

Fermat's principle: An optical rays always chooses an optical path that is an extremum. Mathematically

$$\delta \int n(r) \mathrm{d}s = 0.$$

Principle of Fermat

 \circ n is function of r in an inhomogeneous medium,

optical path =
$$\int_{A}^{B} n(r) ds$$
,

ray takes path of shortest time,

$$\delta \int_A^B n(r) \mathrm{d} s = 0,$$

the optical path in an medium is an extremum compared to neighboring paths,

Ray optics v.s. Classical mechanics

- $\lambda \to 0 \leftrightarrow \hbar \to 0$
- **?** ray optics \leftrightarrow classical mechanics
- \circ light travels in form of diffraction-free ray \leftrightarrow classical particle
- **\mathbf{O}** Fermat's principle \leftrightarrow Hamilton principle

$$\delta \int n(r) \mathrm{d}s = 0 \leftrightarrow \delta \int L \mathrm{d}t = 0,$$

in the differential formulation

$$\frac{\mathsf{d}}{\mathsf{d}s}(n\frac{\mathsf{d}r}{\mathsf{d}s}) = \nabla n \leftrightarrow \frac{\mathsf{d}}{\mathsf{d}t}\frac{\mathsf{d}L}{\mathsf{d}\dot{q}_i} = \frac{\mathsf{d}L}{\mathsf{d}q_i}$$

a minimize the *optical path* \leftrightarrow minimize the *energy*,

? represented by $y, \theta \leftrightarrow$ represented by q, p,

Feynman's path integral for Quantum Electrodyanmics, QED,

Reflection

- reflected ray lies in the plane of incidence,
- **angle of reflection** θ' equals the angle of incidence θ ,

v.s. infinite potential well,

Refraction at Spherical Surfaces

Thin-lens equaitons

? optical path: **OPL** = $n_1 l_0 + n_2 l_i$,

$$l_0 = [R^2 + (s_0 + R)^2 - 2R(s_0 + R)\cos\phi]^{1/2},$$

$$l_i = [R^2 + (s_i - R)^2 + 2R(s_i - R)\cos\phi]^{1/2},$$

where the identity $a^2 = b^2 + c^2 - 2bc\cos\theta$ is used.

the optical path,

$$\begin{aligned} \mathsf{OPL} &= \int_{A}^{B} n(r) \mathsf{d}s, \\ &= n_1 [R^2 + (s_0 + R)^2 - 2R(s_0 + R) \cos \phi]^{1/2} \\ &+ n_2 [R^2 + (s_i - R)^2 + 2R(s_i - R) \cos \phi]^{1/2}, \end{aligned}$$

Fermat's principle:

$$\delta \int n(r) \mathrm{d}s = \frac{\mathrm{dOPL}}{\mathrm{d}\phi} = 0,$$

$$\frac{n_1 R(s_0 + R) \sin \phi}{2l_0} - \frac{n_2 R(s_i - R) \sin \phi}{2l_i} = 0,$$

Thin-lens equaitons

from Fermat's principle,

$$\frac{n_1 R(s_0 + R) \sin \phi}{2l_0} - \frac{n_2 R(s_i - R) \sin \phi}{2l_i} = 0,$$

$$\frac{n_1}{l_0} + \frac{n_2}{l_i} = \frac{1}{R}(\frac{n_2s_i}{l_i} - \frac{n_1s_0}{l_0}),$$

? for paraxial rays, i.e. small values of ϕ ,

 $l_0 \approx s_o, \qquad l_i \approx s_i,$

then

$$\frac{n_1}{s_0} + \frac{n_2}{s_i} = \frac{n_2 - n_!}{R},$$

Refraction

- refracted ray lies in the plane of incidence
- angle of refraction ϕ is related to angle of incidence θ by the Snell's law

$$n_1\sin\theta = n_2\sin\phi,$$

v.s. ???

Optoelectronic, 2007 - p.22/53

Refraction

Snell's law

plane wave solutions:

$$E_{+} = E_0 \cos(kz - \omega t),$$

where

大學

方清

National Tsing Hua University

$$\frac{\omega}{k} = \frac{c_0}{n},$$

for 3D waves,

$$|\mathbf{k}|^2 = k_x^2 + k_y^2 + k_z^2 = n^2 \omega^2 / c_0^2,$$

in the transverse plane (x,z),

$$k_x^{(1)} = |\mathbf{k}^{(1)}| \sin \theta = k_x^{(2)} = |\mathbf{k}^{(2)}| \sin \phi,$$

$$\rightarrow n_1 \sin \theta = n_2 \sin \phi,$$

Optoelectronic, 2007 – p.24/53

Refraction at spherical boundaries

- derivation for paraxial rays
- paraxial means close to the optical axis

Conjugated planes

Refraction at sperical lenses

- Iens includes two spherical surfaces with different radii
- biconvex lens
- lens is thin if y = y',

Lens

立清

Refraction at a thin lens

$$\theta_2 \approx \frac{n_1}{n_2} \theta_1 - \frac{n_2 - n_1}{n_2 R} y,$$

first refraction
\$\theta_t \approx \frac{1}{n}\theta_1 - \frac{n-1}{nR_1}y\$,
second refraction
\$\theta_2 \approx \frac{n}{1}\theta_t - \frac{1-n}{R_2}y\$,

Refraction at a spherical lens

Imaging with a lens

imaging equation:

$$\frac{1}{f} = \frac{1}{z_1} + \frac{1}{z_2},$$

where

- z_1 object distance
- z_2 image distance
- magnification:

$$y_2 = -\frac{z_2}{z_1}y_1,$$

• focal length f completely defines the effect of the lens $a_{3} \neq a_{3} \neq a_{3}$ paraxial ray.

- spherical optics only for paraxial beams,
- **\circ** spherical aberration \rightarrow aspheric lenses,
- chromatic aberration $n = n(\lambda) \rightarrow$ achromatic lenses,

Total Internal Reflection

- Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$,
- $n_1 > n_2$, $\theta_2 > 90^o$,
- critical angle, $\theta_c = \sin^{-1} \frac{n_2}{n_1}$, i.e. $\theta_c \approx 42^o$ for glass (n=1.5)

Snell's law for total internal reflection

in the transverse plane (x,z),

$$k_x^{(1)} = |\mathbf{k}^{(1)}| \sin \theta = k_x^{(2)} = |\mathbf{k}^{(2)}| \sin \phi,$$

$$\rightarrow n_1 \sin \theta = n_2 \sin \phi,$$

 \circ if $n_1 > n_2$, then

$$k_x^{(2)} = k_x^{(1)} = |\mathbf{k}^{(1)}| \sin \theta > |\mathbf{k}^{(2)}|,$$

• then define $k_z^{(2)} \equiv j\alpha$,

$$|\mathbf{k}^{(2)}|^2 = (k_x^{(2)})^2 + (k_z^{(1)})^2 = (k_x^{(2)})^2 - \alpha^2,$$

• in the n_2 medium, the wave is an *evanescence* wave, $a \ge \frac{1}{2} \neq 0$ in the n_2 medium, the wave is an *evanescence* wave,

Total internal reflection

3

Prisms and Optical fibers

Guiding light

optical fiber (step index fiber)

- **acceptance angle** θ_a
- numerical aperture: $NA = sin\theta_{max} = \sqrt{n_1^2 n_2^2}$,

The state of the University for $n_1 = 1.475$ and $n_2 = 1.46$, National Taing Hua University

Fiber optics

副 広清 National Tsing

Optoelectronic, 2007 - p.38/53

Global overseas fiber network

~()^

Optoelectronic, 2007 - p.39/53

Taiwan-US overseas fiber network

Capacities of optical network

園

Wavelength-Division-Multiplex

ゎ

Optoelectronic, 2007 - p.42/53

Multi-mode and Single-mode fibers

Fermat's principle

integral formulation:

$$\delta \int n(r) \mathrm{d}s = 0,$$

differential formulation:

$$\frac{\mathsf{d}}{\mathsf{d}s}(n\frac{\mathsf{d}r}{\mathsf{d}s}) = \nabla n,$$

$$\frac{\mathrm{d}}{\mathrm{d}s}(n\frac{\mathrm{d}x}{\mathrm{d}s}) = \frac{\partial n}{\partial x}, \frac{\mathrm{d}}{\mathrm{d}s}(n\frac{\mathrm{d}y}{\mathrm{d}s}) = \frac{\partial n}{\partial y}, \frac{\mathrm{d}}{\mathrm{d}s}(n\frac{\mathrm{d}z}{\mathrm{d}s}) = \frac{\partial n}{\partial z},$$
$$x(s), y(s), z(s)$$

Э

parametrize x, y as function of z, i.e. x = x(z), y = y(z),

$$\mathrm{d}s = \mathrm{d}z \sqrt{1 + (\mathrm{d}x/\mathrm{d}z)^2 + (\mathrm{d}y/\mathrm{d}z)^2},$$

Paraxial ray equation

simplification for paraxial rays,

 \mathbf{c} ds \approx dz,

$$\frac{\mathsf{d}}{\mathsf{d}z}(n\frac{\mathsf{d}x}{\mathsf{d}z}) \approx \frac{\partial n}{\partial x}, \frac{\mathsf{d}}{\mathsf{d}z}(n\frac{\mathsf{d}y}{\mathsf{d}z}) \approx \frac{\partial n}{\partial y},$$

• homogeneous medium: n = constant,

$$\frac{\mathsf{d}^2 x}{\mathsf{d} z^2} = \frac{\mathsf{d}^2 y}{\mathsf{d} z^2} = 0,$$

optical trajectory is a line,

GRIN - graded index optics

$$n(y) = n_0 \sqrt{(1 - \alpha^2 y^2)} \approx n_0 (1 - \frac{1}{2} \alpha^2 y^2),$$

paraxial ray equation: $\frac{d^2y}{dz^2} = -\alpha^2 y$, this is differential equation of oscillation,

$$y(z) = y_0 \cos \alpha z + \frac{\theta_0}{\alpha} \sin \alpha z,$$

Optoelectronic, 2007 – p.46/53

- if the systems is more complex (lots of optical elements ...)
- Second rest algorithms to calculate ray propagation → matrix optics

Matrix optics

for paraxial beams (small angles):

$$y_2 = Ay_1 + B\theta_1, \qquad \theta_2 = Cy_1 + D\theta_1,$$

matrix form, with a tranfer matrix M

$$\begin{bmatrix} y_2 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} y_1 \\ \theta_1 \end{bmatrix} = \mathbf{M} \begin{bmatrix} y_1 \\ \theta_1 \end{bmatrix},$$

examples - matrix optics

examples - matrix optics

examples - matrix for an system of objects

 $\mathbf{M} = \mathbf{M}_N \mathbf{M}_{N-1} \cdots \mathbf{M}_1,$

Optoelectronic, 2007 – p.51/53

do it yourself matrix optics

Optoelectronic, 2007 – p.52/53

Summary of Ray Optics

- Light propagates in rays
- Rays take path of shortest time (Fermat) straight in homogeneous media
- Rays are reflected and refracted at interfaces refraction
 - according to Snells law
 - spherical surfaces transform object points into image points for paraxial rays = imaging by lenses
 - total internal reflection for wave guiding
- matrix optics delivers fast way to evaluate complex optical systems

