

General Optics

Wave Optics

- Ray optics is wave optics for infinitly small wavelength
- Wave optics:
 - Plane waves
 - Spherical waves
 - Interference
- Diffraction
- Gaussian beams

Postulates of ray optics

- light travels in form of waves
- \circ optical medium is characterized by a quantity n

$$c = \frac{c_0}{n},$$

optical wave satisfies wave equation of type

$$\nabla^2 u - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} = 0,$$

- wave equation is linear superposition if u_1 and u_2 is solution then also $a_1u_1 + a_2u_2$,
- optical intensity, $I(r,t) = 2\langle u^2(r,t) \rangle$,
 i.e. averaging over times longer than 1 optical cycle,
- **?** optical power, $P(t) = \int_A I(r, t) dA$,

Wave equations

? For a source-free medium, $\rho = \mathbf{J} = 0$,

$$\nabla \times (\nabla \times E) = -\mu \epsilon \frac{\partial^2}{\partial t^2} E,$$

$$\Rightarrow \qquad \nabla (\nabla \cdot E) - \nabla^2 E = -\mu \epsilon \frac{\partial^2}{\partial t^2} E.$$

When $\nabla \cdot E = 0$, one has wave equation,

$$\nabla^2 E = \mu \epsilon \frac{\partial^2}{\partial t^2} E$$

which has following expression of the solutions, in 1D,

$$E = \hat{x}[f_{+}(z - vt) + f_{-}(z + vt)],$$

$$H = \sqrt{\frac{\epsilon}{\mu}}\hat{y}[f_{+}(z - vt) - f_{-}(z + vt)],$$

$$\mu\epsilon = \mu_0\epsilon_0(1+\chi) = \frac{n^2}{c^2},$$

Plane waves

ID wave equation,

$$\frac{\partial^2}{\partial z^2}E = \mu \epsilon \frac{\partial^2}{\partial t^2}E,$$

which has the solutions of
$$E = \hat{x}[f_{+}(z - vt) + f_{-}(z + vt)], \text{ with}$$
$$v^{2} = \frac{1}{\mu\epsilon} = \frac{n^{2}}{c_{0}^{2}},$$

plane wave solutions:

$$E_+ = E_0 \cos(kz - \omega t),$$

で國立清華文字ere
$$\frac{\omega}{k} = \frac{c_0}{n}$$
.

Travelling waves

A travelling plane EM wave along a direction \mathbf{k} .

solution of wave equation

monochromatic wave is solution of wave equation

 $u(r,t) = a(r)\cos[\omega t + \phi(r)],$

where a(r) is the amplitude, $\omega = 2\pi\mu$ is the frequency, and $\phi(r)$ is the phase.

complex representation:

$$u(r,t) = \mathbf{Re}\{U(r,t)\} = \frac{1}{2}[U(r,t) + U^{*}(r,t)],$$

where

Э

$$U(r,t) = a(r)\exp[i\phi(r)]\exp(i\omega t) = U(r)\exp(i\omega t),$$

has to satisfy

$$\nabla^2 U - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} U = 0,$$

complex representation and Helmholtz Equation

separation time/space

$$U(r,t) = a(r)\exp[i\phi(r)]\exp(i\omega t) = U(r)\exp(i\omega t),$$

where

U(r) is complex,

with the amplitude |U(r)| and the phase $\arg\{U(r)\}$,

Helmholtz wave equation

$$(\nabla^2 + k^2)U(r) = 0,$$

where

$$k = \frac{\omega}{c},$$

wavenumber,

relation to ray optics

- intensity: $I(r) = |U(r)|^2$,
- wavefront: $\phi(r) = \text{constant}$,
- rays are normals to the wavefronts change in the curvature of wavefronts bends rays

Link between wave optics and ray optics

plane waves

plane wave

 $U(r) = A \exp(-i \mathbf{k} \cdot \mathbf{r}),$

where \mathbf{k} is the wavevector, defines propagation direction,

 $\mathbf{k} \cdot \mathbf{r} = 2\pi n,$ *n* is an integer,

- Istance between neighboring wavefronts, $\lambda = \frac{2\pi}{k} = \frac{c}{\mu}$,
- in a medium with refractive index n, $\lambda = \frac{c}{\mu} = \frac{c_0}{n\mu} = \frac{\lambda_0}{n}$, and $k = nk_0$,

• intensity,
$$I(r) = |A|^2$$

National Tsing Hua Univers

As a monochromatic wave propagates through media of different refractive indices its frequency remains the same but its velocity, wavelength and wavenumber are altered.

spherical waves

spherical wave:

$$U(r) = \frac{A}{|r - r_0|} \exp(-ik|r - r_0|),$$

where $k|r - r_0| = \text{constant}$, wavefronts resemble sphere surfaces,

intensity:

$$I(r) = \frac{|A|^2}{r^2},$$

Phase velocity and Group velocity

- phase velocity: $v_p = c = \frac{c_0}{n} = \frac{\omega}{k}$,
- group velocity: $v_G = \frac{d\omega}{dk}$,

Interference (spatial)

superposition of two monochromatic waves of the same frequency,

 $U(r) = U_1(r) + U_2(r),$

itensity:

$$I = |U(r)|^{2} = |U_{1} + U_{2}|^{2} = |U_{1}|^{2} + |U_{2}|^{2} + U_{1}^{*}U_{2} + U_{1}U_{2}^{*}$$

define:

$$U_1 = I_1^{1/2} \exp(i\phi_1), \qquad U_2 = I_2^{1/2} \exp(i\phi_2),$$

then

$$I = I_1 + I_2 + 2(I_1 I_2)^{1/2} \cos \phi,$$

where

 $\phi = \phi_2 - \phi_1,$

the phase can be measured by interference.

,

Interferometers

laser gyro in F16

IMU Processor

1990.

- T1 DSP TMS320VC33 (60 Mips)
- 128 Khytes SRAM, 512 Khytes Flash EEPROM
- 300 Hz compensated ΔVs and ΔΘs (other frequencies available)

Power Input

5, ±15 Vdc input.

Optoelectronic, 2007 - p.18/23

Interference (temporal)

superposition of two monochromatic waves of different frequency,

$$U_1(\mathbf{r},t) = A_1 \exp(-i\mathbf{k}_1 \cdot \mathbf{r}) \exp(i\omega_1 t),$$

$$U_2(\mathbf{r},t) = A_2 \exp(-i\mathbf{k}_2 \cdot \mathbf{r}) \exp(i\omega_2 t),$$

$$U(t) = I_1^{1/2} \exp(i\omega_1 t) + I_2^{1/2} \exp(i\omega_2 t),$$

the intensity,

$$I(t) = I_1 + I_2 + 2(I_1I_2)^{1/2} \cos[(\omega_2 - \omega_1)t],$$

$$\mu = \frac{\omega_2 - \omega_1}{2\pi},$$

multiple-wave interference (temporal with M waves)

- equal amplitudes and equal phase differences, such as Fabry-Perot filter, Bragg filter,
- the total scalar field is thus the summation

$$U(t) = I_0^{1/2} \sum_{q=-M}^{M} \exp(i\omega_q t),$$

where

$$\omega_q = 2\pi\mu_q = 2\pi(\mu_0 + q\mu_F),$$

multiple-wave interference (temporal with M waves)

multiple-wave interference,

$$U(t) = I_0^{1/2} \sum_{q=-M}^{M} \exp(i\omega_q t),$$

intensity:

$$I(t) = |U(t)|^2 = I_0 \frac{\sin^2(M\pi\mu_F t)}{\sin^2\pi\mu_F t},$$

- light propagates in form of waves
- wave equation in its simplest form is linear, which gives rise to superposition and separation of time and space dependence (interference, diffraction)
- waves are characterized by wavelength and frequency
- propagation through media is characterized by refractive index n, which describes the change in phase velocity
- media with refractive index n alter velocity, wavelength and wavenumber but not frequency
- Ienses alter the curvature of wavefronts

paraxial wave = wavefronts normals are paraxial rays

$$U(r) = A(r)\exp(-ikz),$$

- A(r) slowly varying with at a distance of λ ,
- paraxial Helmholtz equation

$$\begin{split} (\nabla^2 + k^2)U(r) &= 0, \\ \rightarrow (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - 2ik\frac{\partial}{\partial z})A(r) &= 0, \end{split}$$

solution of the paraxial Helmholtz equation is the Gaussian beams,

