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General Optics
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Wave Optics

2 Ray optics Is wave optics for infinitly small wavelength

2 Wave optics:
> Plane waves
> Spherical waves
> |nterference

2 Diffraction

2 Gaussian beams
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Postulates of ray optics

|

light travels in form of waves

optical medium is characterized by a quantity n

wave equation is linear - superposition
if u; and usg is solution then also a;u; + asus,

optical intensity, I(r,t) = 2(u?(r, 1)),
l.e. averaging over times longer than 1 optical cycle,

optical power, P(t) = [, I(r,t)dA,

+ 4

Mational Teing Hua University
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Wave equations

2 For a source-free medium, p = J = 0,

82
Vx(VXE)=—pe—2ZFE,
2 82
= V(V-E)—-V°E = —pue—E.

<2 When V - E = 0, one has wave equation,

2 which has following expression of the solutions, in 1D,

E = &lfi(z—vt)+ (2 +0b)],
€
= Sl ) — (o),
with
pialviAT n’
v :.:}mnnl Ts n: H-nfl.lm.cr:n-]: ILLE — /’LOEO(]‘ + X) — _27

&
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Plane waves

2 1D wave equation,

02 02
FE T

which has the solutions of
= 2| f+ (2 —vt) + f_(2 + vt)], with

b,

2
1 _
27
Co

2 plane wave solutions:

E., = Eycos(kz — wt),
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Travelling waves

A travelling plane EM wave along a direction k.

y Direction of propagation

O

Wave fronts

(constant phase surfaces) Wave fronts

|/ \ M Wave fronts
A
k ] : __._——-'r‘
2 > T
i : . __:___"h-v
- .- .
A perfect plane wave A perfect spherical wave ; T
ﬂ&;} i-ﬁ_f '_‘;1 :F'.fj_ | p I P p A divergent beam
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solution of wave equation

2 monochromatic wave is solution of wave equation
u(r,t) = a(r) cos|wt + ¢(r)],

where a(r) is the amplitude, w = 27 is the frequency, and ¢(r) is the phase.

2 complex representation:

u(r,t) = Re{U(r,t)} = =[U(r,t) + U (r, )],

1
2
where

U(r,t) = a(r)explip(r)]exp(iwt) = U (r)exp(iwt),

has to satisfy
1 02
ViU - = =—=U =0,
c2 Ot2
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complex representation and Helmholtz Equation

2 separation time/space
U(r,t) = a(r)explio(r)|exp(iwt) = U(r)exp(iwt),

where
U(r)iscomplex,
with the amplitude |U(r)| and the phase arg{U(r)},

2 Helmholtz wave equation

(V2 +E)U(r) =0,

: wavenumber,

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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relation to ray optics

2 intensity: I(r) = |U(r)|?,
2 wavefront: ¢(r) = constant,

2 rays are normals to the wavefronts change in the
curvature of wavefronts bends ravs

T
-------

THLHERSG
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Link between wave optics and ray optics
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plane waves

2 plane wave
U(r) = Aexp(—ik -r),

where k is the wavevector, defines propagation direction,

K-r=2mn, n IS an integer,

2 distance between neighboring wavefronts, A\ = 2?” = ﬁ

2 iIn a medium with refractive index n, A = ﬁ = :Tz = % and k£ = nko,

2 intensity, I(r) = | A2
/T'
e

Mational Teing Hua University
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As a monochromatic wave propagates through media of
different refractive indices ItS frequency remains the same but

ItS velocity, wavelength and wavenumber are altered.

| e | Optoelectronic, 2007 — p.13/23




spherical waves

2 spherical wave:

U(r) = exp(—ik|r — rol),

| — 7ol
where k|r — ro| = constant, wavefronts resemble sphere surfaces,

2 intensity:
_ AP

I(T) _ 7“2 ’

0E

a4

ﬂl:rﬁl_%} _ri;_’_ :"L%- __% _-/-F_-‘ ,'-g, e < an
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Phase velocity and Group velocity

1 . _ ___C _ W
2 phase velocity: v, =c= = = 2,

2 group velocity: vg = 32

Ema}{ Emax_"" ok ﬁ
T e A S DN ‘f’f 6(”
A A o
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-
-
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Wave packet
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Interference (spatial)

superposition of two monochromatic waves of the same frequency,

U(r) = Ui(r) + Uz(r),

itensity:
I=|U(r)|? = Ui+ Us|? = |UL|> + |U2|* + Uf Uz + U1 U3,
define:
U = I, Pexp(i¢1), Uz = I,/ *exp(ig2),
then
I =11+ Ir + 2(I1 I2)"/? cos ¢,
where

¢:¢2_¢17

the phase can be measured by interference.
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Interferometers

mirror mirror
Mach-Zehnder \
sample
Y
beam spltter / },\\ beam spitter
W
Michelson Sagnac

laser gyroscope

| AN

FE = Ik @ X Wrot
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laser gyro in F16
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Interference (temporal)

A G

superposition of two monochromatic waves of different frequency,

Ui(r,t) = Ajexp(—iky -r)exp(iwit),
Uax(r,t) = Agexp(—iksa - r)exp(iwat),

at fixed r,
U(t) = I/ 2exp(iwit) + I 2exp(iwat),

the intensity,
I1(t) =11 + Iz + 2(1112)"? cos[(wz — w1)t],

light beating at the frequency,

Hational Teing Hua University
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multiple-wave interference (temporal with M waves)

2 equal amplitudes and equal phase differences, such as Fabry-Perot filter, Bragg
filter,

2 the total scalar field is thus the summation

M

U(t) = 13/2 Z exp(iwqt),
qg=—M
where
wq = 27‘-,qu = 27’('(/10 + QUF)7
-
U(v)
M
—
S EES WY
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multiple-wave interference (temporal with M waves)

2 multiple-wave interference,

M

Ut) =122 > expliwgt),
q=—M

2 intensity:

. 2 M

1) = [U ()2 = 1,2 TRE),

sin® wupt)
9 actsasa high-finess/high-Q filter,
M =100 | S | vp=1GHz | S | M =10
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Summary of Wave Optics

2 light propagates in form of waves

2 wave equation in its simplest form is linear, which gives
rise to superposition and separation of time and space
dependence (interference, diffraction)

2 waves are characterized by wavelength and frequency

2 propagation through media is characterized by
refractive index n, which describes the change in
phase velocity

2 media with refractive index n alter velocity, wavelength
and wavenumber but not frequency

2 |lenses alter the curvature of wavefronts
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paraxial wave approximation

2 paraxial wave = wavefronts normals are paraxial rays
U(r) = A(r)exp(—ikz),

2 A(r) slowly varying with at a distance of ),

2 paraxial Helmholtz equation

(V2 +E*U(r) =0,

o> & D
(57 T gpr 2k ) A =0

2 solution of the paraxial Helmholtz equation is the
Gaussian beams,

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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