

General Optics

National Tsing Hua University

Wave Optics

- **3** Ray optics is wave optics for infinitly small wavelength
- **3** Wave optics:
	- Plane waves \bullet
	- **B** Spherical waves
	- Interference \bullet
- **P** Diffraction
- **3** Gaussian beams

Postulates of ray optics

- Э light travels in form of waves
- Э optical medium is characterized by a quantity n

$$
c=\frac{c_0}{n},
$$

optical wave satisfies wave equation of type

$$
\nabla^2 u - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} = 0,
$$

- wave equation is linear superpositionif u_1 and u_2 is solution then also $a_1u_1+a_2u_2$,
- Э optical intensity, $I(r,t)=2\langle u^2$ $^{2}(r,t)\rangle,$ i.e. averaging over times longer than 1 optical cycle, $\,$
	- optical power, $P(t)=\int_A I(r,t)\mathsf{d} A,$

Wave equations

Э For a so*urce-free* medium, $\rho = \mathbf{J} = 0$,

$$
\nabla \times (\nabla \times E) = -\mu \epsilon \frac{\partial^2}{\partial t^2} E,
$$

\n
$$
\Rightarrow \qquad \nabla (\nabla \cdot E) - \nabla^2 E = -\mu \epsilon \frac{\partial^2}{\partial t^2} E.
$$

Э When $\nabla \cdot E = 0$, one has *wave equation*,

$$
\nabla^2 E = \mu \epsilon \frac{\partial^2}{\partial t^2} E
$$

Э which has following expression of the solutions, in 1D,

$$
E = \hat{x}[f_{+}(z - vt) + f_{-}(z + vt)],
$$

\n
$$
H = \sqrt{\frac{\epsilon}{\mu}} \hat{y}[f_{+}(z - vt) - f_{-}(z + vt)],
$$

$$
\mu \epsilon = \mu_0 \epsilon_0 (1 + \chi) = \frac{n^2}{c^2},
$$

Plane waves

1D wave equation,

$$
\frac{\partial^2}{\partial z^2}E = \mu \epsilon \frac{\partial^2}{\partial t^2}E,
$$

which has the solutions of
\n
$$
E = \hat{x}[f_{+}(z - vt) + f_{-}(z + vt)],
$$
 with

$$
v^2 = \frac{1}{\mu \epsilon} = \frac{n^2}{c_0^2},
$$

P plane wave solutions:

$$
E_+ = E_0 \cos(kz - \omega t),
$$

$$
\text{Var}_{\text{infinite}} = \frac{C_0}{n}.
$$

Travelling waves

A travelling plane EM wave along ^a direction ^k.

solution of wave equation

Э monochromatic wave is solution of wave equation

$$
u(r,t) = a(r) \cos[\omega t + \phi(r)],
$$

where $a(r)$ is the amplitude, $\omega = 2\pi\mu$ is the frequency, and $\phi(r)$ is the phase.

complex representation:

$$
u(r,t) = \text{Re}\{U(r,t)\} = \frac{1}{2}[U(r,t) + U^*(r,t)],
$$

where

Э

$$
U(r,t) = a(r) \exp[i\phi(r)] \exp(i\omega t) = U(r) \exp(i\omega t),
$$

has to satisfy

$$
\nabla^2 U - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} U = 0,
$$

complex representation and Helmholtz Equation

3 separation time/space

$$
U(r,t) = a(r) \exp[i\phi(r)] \exp(i\omega t) = U(r) \exp(i\omega t),
$$

where

 $U(r) is complex,$

with the amplitude $\vert U(r)\vert$ and the phase arg $\{U(r)\},$

3 Helmholtz wave equation

$$
(\nabla^2 + k^2)U(r) = 0,
$$

where

$$
k=\frac{\omega}{c},
$$

wavenumber,

relation to ray optics

- intensity: $I(r) = |U(r)|^2$,
- wavefront: $\phi(r) =$ constant,
- **P** rays are normals to the wavefronts change in the curvature of wavefronts bends rays

Link between wave optics and ray optics

plane waves

Э plane wave

 $U(r) = A$ exp $(-i**k** · **r**),$

where **^k** is the wavevector, defines propagation direction,

k · **r** = $2\pi n$, **n** is an integer,

- distance between neighboring wavefronts, $\lambda = \frac{2\pi}{k} = \frac{c}{\mu}$,
- Э in a medium with refractive index n, $\lambda = \frac{c}{\mu} = \frac{c_0}{n\mu} = \frac{\lambda_0}{n}$, and $k = nk_0$,

3 intensity,
$$
I(r) = |A|^2
$$

万清盈

As ^a monochromatic wave propagates through media of different refractive indices its **frequency remains the same** but its **velocity, wavelength and wavenumber are altered**.

spherical waves

Э spherical wave:

$$
U(r) = \frac{A}{|r - r_0|} \exp(-ik|r - r_0|),
$$

where $k|r-r_0|=\hbox{constant, wavefronts resemble sphere surfaces,}$

Э intensity:

$$
I(r) = \frac{|A|^2}{r^2},
$$

Phase velocity and Group velocity

- phase velocity: $v_p=c=\frac{c}{r}$ $\frac{c_0}{c_0}$ $\, n \,$ $=$ $\frac{\omega}{}$ k ,
- group velocity: $v_G=\frac{\mathrm{d}}{\mathrm{d}}$ ωd k '

Interference (spatial)

Э superposition of two monochromatic waves of the same frequency,

 $U(r) = U_1(r) + U_2(r),$

itensity:

$$
I = |U(r)|^2 = |U_1 + U_2|^2 = |U_1|^2 + |U_2|^2 + U_1^*U_2 + U_1U_2^*,
$$

define:

$$
U_1 = I_1^{1/2} \exp(i\phi_1), \qquad U_2 = I_2^{1/2} \exp(i\phi_2),
$$

then

$$
I = I_1 + I_2 + 2(I_1 I_2)^{1/2} \cos \phi,
$$

where

 $\phi=\phi_2-\phi_1,$

the phase can be measured by interference.

Interferometers

laser gyro in F16

- · Proven 0.8 nmi/br performance
- **1 IMU Processor**

1933.

- · TI DSP TMS320VC33 (60 Mips)
- * 128 Kbytes SRAM, 512 Kbytes Flash EEPROM
- · 300 Hz filtered angular rate and linear acceleration (other frequencies available).
- * 300 Hz compensated AVs and AOs (other frequencies available)

Power Input

 \div 5, ±15 Vdc input.

Interference (temporal)

Э superposition of two monochromatic waves of different frequency,

$$
U_1(\mathbf{r},t) = A_1 \exp(-i\mathbf{k}_1 \cdot \mathbf{r}) \exp(i\omega_1 t),
$$

$$
U_2(\mathbf{r},t) = A_2 \exp(-i\mathbf{k}_2 \cdot \mathbf{r}) \exp(i\omega_2 t),
$$

Э at fixed**r**,

$$
U(t) = I_1^{1/2} \exp(i\omega_1 t) + I_2^{1/2} \exp(i\omega_2 t),
$$

€ the intensity,

$$
I(t) = I_1 + I_2 + 2(I_1I_2)^{1/2}\cos[(\omega_2 - \omega_1)t],
$$

light beating at the frequency,

$$
\mu = \frac{\omega_2 - \omega_1}{2\pi},
$$

multiple-wave interference (temporal with M waves)

- Э equal amplitudes and equal phase differences, such as Fabry-Perot filter, Braggfilter,
- Э the total scalar field is thus the summation

$$
U(t) = I_0^{1/2} \sum_{q=-M}^{M} \exp(i\omega_q t),
$$

where

$$
\omega_q = 2\pi\mu_q = 2\pi(\mu_0 + q\mu_F),
$$

multiple-wave interference (temporal with M waves)

Э multiple-wave interference,

$$
U(t) = I_0^{1/2} \sum_{q=-M}^{M} \exp(i\omega_q t),
$$

Э intensity:

$$
I(t) = |U(t)|^2 = I_0 \frac{\sin^2(M\pi\mu_F t)}{\sin^2 \pi \mu_F t},
$$

acts as ^a high-finess/high-Q filter,

- light propagates in form of waves€
- wave equation in its simplest form is linear, which gives€ rise to superposition and separation of time and spacedependence (interference, diffraction)
- **P** waves are characterized by wavelength and frequency
- propagation through media is characterized byЭ refractive index $n,$ which describes the change in phase velocity
- media with refractive index n alter velocity, wavelength and wavenumber but not frequency
- lenses alter the curvature of wavefronts

 \bullet paraxial wave = wavefronts normals are paraxial rays

$$
U(r) = A(r) \exp(-ikz),
$$

- $A(r)$ slowly varying with at a distance of $\lambda,$
- **P** paraxial Helmholtz equation

$$
(\nabla^2 + k^2)U(r) = 0,
$$

\n
$$
\rightarrow (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - 2ik\frac{\partial}{\partial z})A(r) = 0,
$$

3 solution of the paraxial Helmholtz equation is the $Gaussian$ beams,

