Integrated Optics

Coupler Received Coupler light , germaan aanta:
Diberezat: egger: Transmitted
light 88 E 97 H H H Modulator Fiber Substrate Waveguide Photodiode Laser

万 National Tsing Hua L

Waveguides

Wave equation in nonuniform dielectric

$$
\nabla^2 A - \mu_0 \epsilon \frac{\partial^2 A}{\partial t^2} \approx 0,
$$

here $\epsilon(\rho)$ is not a constant, which represents an axially uniform medium, but with radial variation.

Э We write

$$
A = \hat{y}u(x,y)e^{-j\beta z},
$$

where β is an unknown propagation constant.

The wave equation for $u(x,y)$ is,

$$
\nabla_T^2 u + [\omega^2 \mu_0 \epsilon(\rho) - \beta^2] u = 0,
$$

where $\rho = \hat{x}x + \hat{y}y$.

Э

Wave equation in nonuniform dielectric

Э The wave equation for $u(x,y)$ is,

$$
\nabla_T^2 u + [\omega^2 \mu_0 \epsilon(\rho) - \beta^2] u = 0,
$$

Compared to the Schrödinger equation of ^a particle in ^a two-dimensional potential V , i.e.

$$
\frac{-\hbar^2}{2m}\nabla_T^2\Psi + (V - E)\Psi = 0,
$$

then the solutions are bounded, if and only if, there are local negative values of thefunction,

$$
|V| - |E| > 0,
$$

with

$$
V = -\omega^2 \mu_0 \epsilon(\rho), \qquad E = -\beta^2.
$$

玄 i → F Bounded solutions correspond to guided waves and are found only for specific <u>values of the eigenvalues β^2 </u>

Optoelectronic, 2007 – p.4/15

Slab-waveguides

Э transverse Electric modes:

$$
E_x = A \cos(k_y y) e^{-j\beta_0 z}, \qquad |y| < d,
$$

=
$$
Be^{-j\beta_0 z} e^{-\alpha_y y}, \qquad y > d,
$$

=
$$
Be^{-j\beta_0 z} e^{\alpha_y y}, \qquad y < -d,
$$

Slab-waveguides

Э transverse Electric modes:

$$
E_x = A \cos(k_y y) e^{-j\beta_0 z}, \qquad |y| < d,
$$

=
$$
Be^{-j\beta_0 z} e^{-\alpha_y y}, \qquad y > d,
$$

=
$$
Be^{-j\beta_0 z} e^{\alpha_y y}, \qquad y < -d,
$$

Э the magnetic field follows from Faraday's law,

$$
H_z = \frac{j k_y}{\omega \mu_0} A \sin(k_y y) e^{-j\beta_0 z}, \qquad |y| < d,
$$

$$
= \frac{j \alpha_y}{\omega \mu_0} B e^{-j\beta_0 z} e^{-\alpha_y y}, \qquad y > d,
$$

$$
= -\frac{j \alpha_y}{\omega \mu_0} B e^{-j\beta_0 z} e^{\alpha_y y}, \qquad y < -d.
$$

Э Continuity of E_x/H_z at $y=d$ gives,

$$
\tan(k_y d) = \frac{\alpha_y}{k_y}.
$$

大學 立清 National Tsing Hua University

Slab-waveguides

Э From the wave equation, we have

$$
\begin{aligned}\n\beta_0^2 - \alpha_y^2 &= \omega^2 \mu_0 \epsilon_2, \\
\beta_0^2 + k_y^2 &= \omega^2 \mu_0 \epsilon_1,\n\end{aligned}
$$

$$
\frac{\alpha_y}{k_y} = \sqrt{\frac{\omega^2 \mu_0 (\epsilon_1 - \epsilon_2)}{k_y^2} - 1},
$$

one can find the dispersion diagram, the dependence of the propagation constant β on frequency,

$$
\tan(k_y d) = \sqrt{\frac{\omega^2 \mu_0 (\epsilon_1 - \epsilon_2)}{k_y^2} - 1},
$$

Slab-Waveguides

$$
\tan(k_y d) = \sqrt{\frac{\omega^2 \mu_0 (\epsilon_1 - \epsilon_2)}{k_y^2} - 1},
$$

- Э For decreasing $\omega,$ α_y/k_y moves toward the origin and intersections are lost, except for the first branch of the \tan function.
- Э This corresponds to the dominant mode, $m=0$, with no $\it cutoff.$
- Э At low frequency, the fundamental mode acquires a small $k_y, \, \tan(k_yd) \approx k_yd,$

$$
\omega^2 \mu_0 (\epsilon_1 - \epsilon_2) d^2 - k_y^2 d^2 \approx k_y^4 d^4.
$$

Slab-Waveguides

Slab-Waveguides

- Э Neglecting $k_{y}^{4}d^{4}$ compared with $k_{y}^{2}d^{2}$, we have $k_{y}^{2}=\omega^{2}\mu_{0}(\epsilon_{1}-\epsilon_{2})$ and $\beta_0 \approx \omega \sqrt{\mu_0 \epsilon_2}.$
- Э The wave propagates at the speed characteristic of the external region.
- Э In the other hand, when $\omega\rightarrow\infty$, $k_{y}d$ approaches $\pi/2$ and we find that $\beta_0 \approx \omega \sqrt{\mu_0 \epsilon_1}.$

迈

National

≪☆

Optoelectronic, 2007 – p.15/15