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Wave equation in nonuniform dielectric

∇2A − µ0ǫ
∂2 A

∂ t2
≈ 0,

here ǫ(ρ) is not a constant, which represents an axially uniform medium, but with
radial variation.

We write

A = ŷu(x, y)e−jβz ,

where β is an unknown propagation constant.

The wave equation for u(x, y) is,

∇2

T u + [ω2µ0ǫ(ρ) − β2]u = 0,

where ρ = x̂x + ŷy.
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Wave equation in nonuniform dielectric

The wave equation for u(x, y) is,

∇2

T u + [ω2µ0ǫ(ρ) − β2]u = 0,

Compared to the Schrödinger equation of a particle in a two-dimensional potential
V , i.e.

−~2

2m
∇2

T Ψ + (V − E)Ψ = 0,

then the solutions are bounded, if and only if, there are local negative values of the
function,

|V | − |E| > 0,

with

V = −ω2µ0ǫ(ρ), E = −β2.

Bounded solutions correspond to guided waves and are found only for specific
values of the eigenvalues β2.
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Slab-waveguides

transverse Electric modes:

Ex = A cos(kyy)e−jβ0z , |y| < d,

= Be−jβ0ze−αyy , y > d,

= Be−jβ0zeαyy , y < −d,
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Slab-waveguides

transverse Electric modes:

Ex = A cos(kyy)e−jβ0z , |y| < d,

= Be−jβ0ze−αyy , y > d,

= Be−jβ0zeαyy , y < −d,

the magnetic field follows from Faraday’s law,

Hz =
jky

ωµ0

A sin(kyy)e−jβ0z , |y| < d,

=
jαy

ωµ0

Be−jβ0ze−αyy , y > d,

= − jαy

ωµ0

Be−jβ0zeαyy, y < −d.

Continuity of Ex/Hz at y = d gives,

tan(kyd) =
αy

ky

.
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Slab-waveguides

From the wave equation, we have

β2

0 − α2

y = ω2µ0ǫ2,

β2

0 + k2

y = ω2µ0ǫ1,

and combine these two equations,

αy

ky

=

√

ω2µ0(ǫ1 − ǫ2)

k2
y

− 1,

one can find the dispersion diagram, the dependence of the propagation constant
β on frequency,

tan(kyd) =

√

ω2µ0(ǫ1 − ǫ2)

k2
y

− 1,
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Slab-Waveguides

tan(kyd) =

√

ω2µ0(ǫ1 − ǫ2)

k2
y

− 1,

For decreasing ω, αy/ky moves toward the origin and intersections are lost,
except for the first branch of the tan function.

This corresponds to the dominant mode, m = 0, with no cutoff.

At low frequency, the fundamental mode acquires a small ky , tan(kyd) ≈ kyd,

ω2µ0(ǫ1 − ǫ2)d2 − k2

yd2 ≈ k4

yd4.
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Slab-Waveguides
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Slab-Waveguides

Neglecting k4
yd4 compared with k2

yd2, we have k2
y = ω2µ0(ǫ1 − ǫ2) and

β0 ≈ ω
√

µ0ǫ2.

The wave propagates at the speed characteristic of the external region.

In the other hand, when ω → ∞, kyd approaches π/2 and we find that
β0 ≈ ω

√
µ0ǫ1.
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Optical fibers
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Optical fibers
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Optical fibers
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Optical fibers
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Optical fibers
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