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Waveguides
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Wave equation in nonuniform dielectric

2 here e(p) is not a constant, which represents an axially uniform medium, but with
radial variation.

2 We write
A = gu(z,y)e IP%,

where (3 is an unknown propagation constant.

2 The wave equation for u(x, y) is,
Viu+ [w?poe(p) — B%lu =0,

where p = zx + gy.
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Wave equation in nonuniform dielectric

2 The wave equation for u(x, y) is,

Viu+ [wpoe(p) — 8%u = 0,

2 Compared to the Schrodinger equation of a particle in a two-dimensional potential
V,l.e.
2

—h
— V20 + (V- E)¥ =0,
2m

then the solutions are bounded, if and only if, there are local negative values of the
function,

V| —1|E| >0,
with

V =—w’noelp), E=-p§

p A IO : - o
= =« ~¥ = Botnded solutions correspond to guided waves and are found only for specific
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Slab-waveguides
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Slab-waveguides

2 transverse Electric modes:

By

= Acos(kyy)e 7907, |yl < d,

— Be Pozemayy y >d,
— Be P02y, y < —d,

9 the magnetic field follows from Faraday’s law,

H,

Jk

= Y Asin(kyy)e P02 |y < d,
WO
_ JCy Be—jﬁoze—ayy’ y > d,
WO
e ] Be B0z eyy. y < —d.
WO

2 Continuity of £, /H, aty = d gives,
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Slab-waveguides

2 From the wave equation, we have

2 2
/Bo_ay

B85 + k2

9 and combine these two equations,

2
w” poe2,

2
w” po€t,

ay _ \/w2uo(€1 —e)

2 one can find the dispersion diagram, the dependence of the propagation constant

G on frequency,

tan(kyd) = \/wzﬂo(él —€)
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Slab-Waveguides

2 For decreasing w, oy /ky moves toward the origin and intersections are lost,
except for the first branch of the tan function.

This corresponds to the dominant mode, m = 0, with no cutoff.

2 Atlow frequency, the fundamental mode acquires a small k, tan(kyd) ~ kyd,

w2,u0(61 — 62)d2 — kde ~ k§d4.
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Slab-Waveguides
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Slab-Waveguides

9 Neglecting k;;d* compared with k2d?, we have k2 = w?uo(e1 — e2) and
Bo = wi/o€2.

2 The wave propagates at the speed characteristic of the external region.

In the other hand, when w — oo, k,d approaches 7 /2 and we find that

Bo ~ w./o€1.
iy
Slope =¢/n,
Slope = ¢/n,
mcut—nf‘f
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Optical fibers

Along the fiber
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Optical fibers

(a) The electric field (b) The mtensity in (c) The intensity (d) The intensity
of the fundamental  the fundamental in LPy, in LP,;
mode mode LPy,

000

The electric field distribution of the fundamental mode
in the transverse plane to the fiber axis z. The light
intensity is greatest at the center of the fiber. Intensity
' ' »  patterns in LPy,. LP;; and LP,; modes.
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Optical fibers
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Optical fibers
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Optical fibers

Dispersioncoefficient (pskm !l nm1)
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