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We study the low-intensity light pulse propagation through an asymmetric double quantum well via Fano-
type interference based on intersubband transitions. The propagation of the pulse across the quantum well is
studied analytically and numerically with the coupled Maxwell-Schrödinger equations. We show the generation
of ultraslow bright and dark optical solitons in this system. Whether the solitons are dark and bright can be
controlled by the ratio of dipole moments of the intersubband transitions. Such investigation of ultraslow
optical solitons in the present work may lead to important applications such as high-fidelity optical delay lines
and optical buffers in semiconductor quantum wells structure.
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Solitons describe a class of fascinating shaping-preserving
wave propagation phenomena in nonlinear media. Over the
past few years, the subject of extensive theoretical and ex-
perimental investigations on solitons in optical fibers �1,2�,
cold-atom media �3–7�, Bose-Einstein condensates �BEC�
�8,9�, and other nonlinear media �10�, has received a great
deal of attention mainly due to that these special types of
wave packets are formed as the result of interplay between
nonlinearity and dispersion properties of media under exci-
tations, and can lead to undistorted propagation over an ex-
tended distance. Among the various solitons studied so far,
optical solitons of the interacting system of atoms and elec-
tromagnetic field via electromagnetically induced transpar-
ency �EIT� have received much attention because of the po-
tential applications in quantum information processing and
transmission �1,2,11�. In fact, ever since ultraslow light
propagation, large Kerr nonlinearities, and refractive-index
enhancement without absorption have been investigated and
observed �12,13�, light storage with the technique of EIT has
been an exciting research field. Recently, optical solitons in-
cluding two-color solitons with very low group velocities,
based on Raman excitation, have been systematically pro-
posed by Wu and Deng �3–7�. Consequently, the dynamics of
ultraslow optical solitons in cold atomic medium were stud-
ied �14�.

It should be noted that similar phenomena involving EIT
and ultraslow propagation of optical pulses in semiconductor
quantum well �QW� systems have also attracted great atten-
tion due to the potentially important applications in optoelec-
tronics and solid-state quantum information science �15–36�.
In fact, the analogies between coherent nonlinear phenomena
in atomic two-level systems and two-band semiconductor
models have been successfully exploited over the past few
years, various effects including the resonant solitons have
been considered in the literature. More recently, several stud-
ies can be found in the literature focusing on exploiting the
analogy between atomic three level system and semiconduc-
tor heterostructures with a band structure. For example, co-

herently controlled photocurrent generation �26�, EIT �29�,
and gain without inversion �20–22� have been extensively
investigated in semiconductor QW systems. In particular,
quantum tunneling to a continuum from two resonant sub-
band levels in asymmetric double QW may give rise to Fano-
type interference �17,18�. In contrast, devices based on the
intersubband transitions in the semiconductor QW have
many inherent advantages in quantum information process-
ing. One may naturally ask if such techniques can also be
used to facilitate the formation of an optical soliton in semi-
conductor QW media.

In the present paper, we wish to extend the above analogy
by examining the low-intensity light pulse propagation
across an asymmetric double quantum well that exhibits
Fano-type interference between adjacent intersubband transi-
tions. We obtain the equation of space-time-dependent Rabi
frequency for the pulsed laser field and demonstrate the for-
mation of ultraslow bright and dark solitons in semiconduc-
tor QW structures. A few works have discussed coherent
control of intersubband transitions in QW �27,28� focusing
on the absorption spectra and relaxation dynamics in three-
level �or four-level� models. Unlike those works, we will
mainly discuss the propagation of coherent light pulse. In
addition, a few authors have also considered the pulse propa-
gation dynamics �32,37�. Our work is also different from
those investigations as we will consider the space-time-
dependent propagation of a single pulsed laser field.

Let us consider a semiconductor double QW structure
consisting of two quantum wells that are separated by a nar-
row barrier as shown in Fig. 1 �16�. At a certain bias voltage,
the first subband of the shallow well labeled �a� is resonant
with the second subband of the deep well labeled �b� �see
Fig. 1�a��, and because of the strong coherent coupling via
the thin barrier, the levels split into a doublet, i.e., �2�= ��a�
− �b�� /�2, �3�= ��a�+ �b�� /�2 �see Fig. 1�b��. The splitting �s
between �2� and �3� is given by the coupling strength and can
be controlled by adjusting the height and width of the tun-
neling barrier with applied bias voltage �15–18�. A low-
intensity pulsed laser field with optical frequency �p and
amplitude Ep is subjected to couple simultaneously the tran-
sitions �1�↔ �2� and �1�↔ �3� with the respective Rabi fre-*wenxingyang2@126.com
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quencies �31Ep / �2�� and �21Ep / �2�� �here �31 and �21 is
the intersubband dipole moments of the respective transi-
tions�. The low-intensity light pulse propagates in the z di-
rection and likewise for the polarization. As in the experi-
ments in Ref. �16�, we consider a transverse magnetic
polarized probe incident at an angle of 45° with respect to
the growth axis so that all transition dipole moments include
a factor 1 /�2 as intersubband transitions are polarized along
the growth axis. What we are interested in is the propagation
of the weak pulsed field across the QWs. We work in the
interaction picture utilizing the rotating-wave approximation
�RWA� and the electric-dipole approximation �EDA� follow-
ing the standard processes which favor the physical insight
into the nature of the probe propagation mechanism based on
coupled Schrödinger-Maxwell equations. �There have been
theoretical discussions concerning the equivalence between
the Schrödinger-formalism adding phenomenal decay rates
with the density matrix formalism in dealing with the
dephasing processes in such circumstances in Ref. �38�.�

�A1

�t
= i�p

�A2 + i��31

�21
	�

�p
�A3, �1�

�A2

�t
= i��s

2
+ � + i�2	A2 + i�pA1 + �A3, �2�

�A3

�t
= i�� −

�s

2
+ i�3	A3 + i

�31

�21
�pA1 + �A2, �3�

together with Aj�j=1,2 ,3�, the amplitudes of subbands �j�.
Here �p=�21Ep / �2�� �assumed real� denotes one-half Rabi

frequencies for the transition �1�↔ �2�, the coefficient
�31 /�21 describes the ratio of a pair of dipole moments, and
�ij =�ij · ẽL with ẽL �i , j=1,2 ,3� being the polarization unit
vector of the laser field describing the intersubband dipole
moments of the respective transitions. �s=E3−E2 is the en-
ergy splitting between the upper levels, given by the coherent
coupling strength of the tunneling. �=�p−�0 is the detuning
between the frequency of the pulsed laser field and the aver-
age transition frequency �0= �E3+E2� / �2��.

The population decay rates and the dephasing rates are
added phenomenologically in the above equations. The
population decay rates for subband �i�, denoted by �il, are
due primarily to longitudinal optical �LO� phonon emission
events at low temperature. The total decay rates �i are given
by �2=�2l+�21

dph, �3=�3l+�31
dph, where �ij

dph, determined by
carrier-carrier scattering, interface roughness, and phonon
scattering processes, is the dephasing decay rates of quantum
coherence of the �i�↔ �j� transitions. The population decay
rates can be calculated by solving the effective mass
Schrödinger equation. And, as we know, the initially non-
thermal carrier distribution is quickly broadened due to in-
elastic carrier-carrier scattering, with the broadening rate in-
creasing as carrier density is increased. For the temperatures
up to 10 K, the carrier density smaller than 1012 cm−2, the
dephasing decay rates �ij

dph can be estimated according to
Refs. �18,31�. For our QWs considered, they turn out to be
�21

dph=1.5 meV, �31
dph=2.3 meV. �=��2l�3l represents the

cross coupling of states �2� and �3� via the LO phonon decay;
it describes the process in which a phonon is emitted by
subband �2� and is recaptured by subband �3�. These cross-
coupling terms can be obtained if tunneling is present, e.g.,
through an additional barrier next to the deeper well. As
mentioned above, �2� and �3� are both the superpostions of
the resonant states �a� and �b�. Because �b� is strongly
coupled to a continuum via a thin barrier, the decay from
state �b� to the continuum inevitably results in these two
dependent decay pathways: from the excited doublet to the
common continuum. That is to say, the two decay pathways
are related: the decay from one of the excited doublets can
strongly affect the neighboring transition, resulting in Fano-
type interference characterized by those cross-coupling
terms. The probe absorption can be canceled due to the Fano
destructive interference between the two decay paths. Such
destructive interference is similar to the decay-induced co-
herence in atomic systems with two closely lying energy
states. If �=� /��2�3 is used to assess the strength of the
cross-coupling, where the limit values �=0 and 1 corre-
spond, respectively, to no interference and perfect interfer-
ence.

In order to correctly describe the propagation of the gen-
erated optical solitons in the medium, equations of motion
must be simultaneously solved with Maxwell’s equation in a
self-consistent manner. In the limit of plane waves and
slowly varying amplitude approximations, the amplitude of
the pulsed laser field Ep=Ep�z , t� obeys Maxwell’s equation.
Making full use of the polarization amplitude P��p� of the
pulsed laser field P��p�=N��21A2A1

�+�31A3A1
�� with N being

the electron density in the conduction band of the QW and
Rabi frequency �p=�21Ep / �2��, we can obtain the equation
of motion for �p

a b

1
Continuum(a)

1

Continuum

s��

p��
2

3

(b)

FIG. 1. �Color online� Conduction subband energy level dia-
gram for an asymmetric double quantum wells separated by a thin
tunneling barrier. �a� Subband �a� of the shallow well is resonant
with the second subband �b� of the deep well. �b� Due to the strong
coherent coupling via the thin barrier, the subbands split into a
doublet �2� and �3�, which are coupled to a continuum by a thin
tunneling barrier adjacent to the deep well. �s is the energy splitting
between the upper levels �2� and �3�, �p is the frequency of the
low-intensity pulsed laser field.
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��p

�z
+

1

c

��p

�t
= iB
A2 + ��31

�21
	�

A3�A1
�, �4�

where B=2	N�p��21�2 /�c is related to the frequently used
oscillator strength of the intersubband transition �1�↔ �2�. It
should be noted that the polarization amplitude P��p� is the
slow oscillating term of the induced polarization in both the
intersubband transitions �1�↔ �2� and �1�↔ �3�. Let us as-
sume that Aj =�kAj

�k� with Aj
�k� is the kth-order part of Aj in

terms �p. Within an adiabatic frame work it can be shown
that Aj

�0�=� j0 and A1
�1�=0. Considering the first order of the

field �p, we assume that the populations are initially in the
ground state �1�. Performing the Fourier transformations for
Eqs. �2�–�4�

Aj�t� =
1

�2	



−





� j���exp�− i�t�d�, j = 2,3, �5�

�p�t� =
1

�2	



−





�p���exp�− i�t�d� , �6�

where � is the Fourier-transform variable. We have

�2 = −
i���31

�21
� + �� + � −

�s

2 + i�3�
�� + � −

�s

2 + i�3��� + � +
�s

2 + i�2� + �2
�p, �7�

�3 = −
��31

�21
��� + � +

�s

2 + i�2� + i�

�� + � −
�s

2 + i�3��� + � +
�s

2 + i�2� + �2
�p, �8�

��p

�z
− i

�

c
�p = iB
�2 + ��31

�21
	�

�3� . �9�

Substituting Eqs. �7� and �8� into Eq. �9�, we then obtain the
solution for the pulsed laser field as follows:

�p�z,�� = �p�0,��exp�iK���z� , �10�

where the propagation constant K��� is denoted by

K��� =
�

c
− B
 i���31

�21
� + �� + � −

�s

2 + i�3�
�� + � −

�s

2 + i�3��� + � +
�s

2 + i�2� + �2

+ ��31

�21
	� ��31

�21
��� + � +

�s

2 + i�2� + i�

�� + � −
�s

2 + i�3��� + � +
�s

2 + i�2� + �2�
= K�0� + K��0�� +

1

2
K��0��2 + ¯ . �11�

The expressions of K�0�, K��0�, and K��0� are shown in Ap-
pendix A. The physical interpretation of Eq. �11� is rather
clear. K�0�=
+ i� describes the phase shift 
 per unit length
and absorption coefficient � of the pulsed laser field, K��0�
gives the group velocity Vg=Re�1 /K��0��, and K��0� repre-
sents the group-velocity dispersion that contributes to the
laser pulse’s shape change and the addition of the pulsed
laser field intensity. It should be emphasized that optical soli-
tons produced in this way generally travel with a group ve-
locity given by Vg=Re�1 /K��0��.

Following the method developed by Refs. �3,4,7�, we take

a trial function �p�z ,��= �̃p�z ,��exp�iK�0�z� and substitute
it into the wave equation

��p

�z
= iK����p �12�

we can obtain

exp�iK�0�z�
��̃P�z,��

�z

= i
K��0�� +
1

2
K��0��2��̃P�z,��exp�iK�0�z� .

�13�

Here we only kept terms up to order �2 in expanding the
propagation constant K���. In order to balance the interplay
between group velocity dispersion and nonlinear Kerr-effect
due to self-phase modulation �39�, it is necessary for us to
consider the terms on the right-hand side of Eq. �4� and to
analyze the nonlinear polarization of the pulsed laser field,
i.e.,

iB
Ã2
�1� + ��31

�21
	�

Ã3
�1���A1

�0��� = iB
A2
�1� + ��31

�21
	�

A3
�1�� + N ,

�14�

where N means the nonlinear terms given by N=−iB�A2
�1�

+ ��31 /�21��A3
�1����A2

�1��2+ �A3
�1��2�. For the explicit derivation

of Eq. �14�, see Appendix B.
Below we will derive the nonlinear evolution equation for

�p. Performing the inverse Fourier transformation for the
above evolution Eq. �13�

�̃p�z,t� =
1

�2	



−





exp�− i�t��̃p�z,��d� , �15�

associating with the nonlinear polarization terms, we can
straightforwardly obtain the following nonlinear evolution

equation for the slowly varying envelope �̃p�z , t�:

− i
��̃p�z,t�

�z
− iK��0�

��̃p�z,t�
�z

+
1

2
K��0�

�2�̃p�z,t�
�t2

= W exp�− 2�z���̃p�z,t��2�̃p�z,t� , �16�

where absorption coefficient �=Im�K�0�� and the nonlinear
coefficient W is given by

W =
B�� + �s/2�

��� + �s/2�2 + �2
2 + �2�2 − i

B��2 − �
�31

�21
�

��� + �s/2�2 + �2
2 + �2�2

+ ��31

�21
�2 B��� − �s/2� − i�3 + 2i�

�31

�21
�

��� + �s/2�2 + �2
2 + �2���� − �s/2�2 + �3

2 + �2�

+ ��31

�21
�2 B��� + �s/2� − i�2 − 2i�

�31

�21
�

��� + �s/2�2 + �2
2 + �2���� − �s/2�2 + �3

2 + �2�
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+ ��31

�21
�4B��� − �s/2� − i�3 + 2i�

�31

�21
�

��� − �s/2�2 + �3
2 + �2�2 . �17�

We define �=z, and �= t−K��0�z, according to � /�z�� /��
−K��0�� /�� and � /�t�� /��, the nonlinear evolution equa-
tion of Eq. �16� can be simplified as

i
��̃p

��
−

1

2
K��0�

�2�̃p

��2 = − W exp�− 2�����̃p�2�̃p. �18�

If the splitting between �2� and �3� can be controlled by ad-
justing the height and width of the tunneling barrier so that
the absorption of the pulsed laser field was largely sup-
pressed and thus we can neglect the collapse of the pulsed
laser field, i.e., the power transmission exp�−2���=1. We
can choose the reasonable and realistic set of parameters to
satisfy ��0, K��0�=Re�K��0��+Im�K��0���Re�K��0��,
and W=Re�W�+Im�W��Re�W�. Based on Eqs. �13� and
�14�, we can obtain the standard nonlinear Schrödinger equa-
tion governing the pulsed laser field evolution

i
��̃p

��
−

1

2
K��0�

�2�̃p

��2 = − Re�W���̃p�2�̃p, �19�

which admits solutions describing bright and dark solitons. It
is well known that whether the solutions to Eq. �19� are
bright solitons or dark solitons depends on the sign of prod-
uct Re�K��0��Re�W�, i.e., Re�K��0��Re�W��0 for bright
solitons and Re�K��0��Re�W��0 for dark solitons. If we can
adjust the tunneling barrier of QW so that the pulsed laser
field is resonant with the average frequency �0 ��=0�, and
the energy splitting between the levels �2� and �3� due to the
coherent coupling of the tunneling is much larger than the
population decay rates for subbands ��s�max��2 ,�3��, it is
straightforward to show that Re�K��0���−32B���21�2
+ ��31�2� /�s

4��21�2�0, Re�W��−8B���21�4− ��31�4� /�s
3��21�2,

and Vg��s
2��21�2 /4Bc���21�2+ ��31�2�. As a result, the solu-

tions of the Eq. �19� are closely associated with the value
��31 /�21�2, which corresponds to the ratio of the intersub-
band dipole moments �31 and �31 of the respect transitions.
In the case of ��31 /�21��1, bright solitons are produced; in
contrast, dark solitons occur. The form of a fundamental
bright soliton is given by

�p = �p0 sech��/��exp�i� Re�W���p0�2/2�exp�iK�0��� ,

�20�

where sech�� /�� is the hyperbolic secant function. Ampli-
tude �p0 and width � are arbitrary constants subjected only
to the constraint ��p0��=−Re�K��0�� /Re�W�.

We now present numerical examples to demonstrate the
existence of ultraslow bright and dark solitons in the system
studied through simulating Eq. �18�. We consider a system
where the population decay rates and the dephasing rates of
the subbands �2� and �3� are �2l=5.6, �3l=7.0, �21

dph=1.5, and
�31

dph=2.3 meV, respectively. From the above estimates, we
obtain �=0.77, which is close to the ideal value �=1 and
corresponds to a large tunneling efficiency leading a strong
Fano-type interference effect. We first consider the case of
dark solitons. Taking B=6 cm−1 meV, ��31 /�21�=1.2, �s

=50 meV, and �=0, we can obtain Vg /c�10−4, and the
standard nonlinear Schrödinger Eq. �19� with
Re�K��0��Re�W��0 is well characterized. Thus we have
demonstrated the existence of dark solitons that travel with
usltraslow group velocities in a semiconductor double quan-
tum well structure. For bright solitons, we take ��31 /�21�
=0.9 with all other parameters given above unchanged. In
this case we obtain Vg /c�10−4. As shown in Fig. 2, these
parameters and results again show that standard nonlinear
Schrödinger Eq. �19� with Re�K��0��Re�W��0, which is
well characterized and that the formation of bright solitons
occurs. In Fig. 2, the numerical simulation of Eq. �18� for the
bright soliton shows an excellent agreement with Eq. �20�. In
our calculations above, we have set the splitting on reso-
nance �coupling strength� �s as 50 meV. The parameters cho-
sen here can be realized in typical QW structures. For ex-
ample, one can consider the QW structure consisting of two
quantum wells: a 6.8-nm-thick Al0.15Ga0.85As shallow well
and a 7.0-nm-thick GaAs deep well separated by a 2.0-nm-
thick Al0.3Ga0.7As tunnel barrier, in which the barrier will
couple the excited state of the deep well with the ground
state of the shallow well to create a doublet states and split-
ting �15–18�. In fact, the coupling strength �s can vary in a
wide range �17� which in experiments can be controlled by
adjusting the height and width of the tunneling barrier ex-
perimentally through the bias voltage.

It is worth noting that the above-described parameter sets
also lead to negligible loss of the probe field for both the
bright and the dark solitons described, as can be seen in Fig.
2. In addition, we have used a one-dimensional model in the
calculation where the momentum-dependency of subband
energies has been ignored. According to the Ref. �32�, there
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FIG. 2. �Color online� Surface plot of the amplitude for the
generated fundamental bright soliton ��p /�p0�2exp�−2��� versus
dimensionless time � /� and distance � /L under the boundary con-
dition �p��=0,��=�p0 sech�� /�� by the numerical simulations.
Here, we have chosen the relative parameter �2l=5.6 meV, �3l

=7.0 meV, �21
dph=1.5 meV, �31

dph=2.3 meV, B=6 cm−1 meV, �s

=50 meV, ��31 /�21�=0.9, �=0, L=1.0 cm, and �=1.0�10−6 s.
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is no large discrepancy between the reduced one-dimensional
calculation and the full two-dimensional calculation. For de-
tails about two-dimensional calculations can be found in
Refs. �28,29�. In the present paper, we have set the param-
eters �ij

dph and �il to satisfy �ij
dph��il, a resonant probe can

propagate with little absorption. If the dephasing decay rates
�ij

dph is too large, the effect tunneling induced interference
will become less pronounced according to the factor �
=� /��2�3, and the probe will be more and more absorbed.

In summary, we have investigated the propagation of a
single pulsed laser field in a specific asymmetric double QW
structure via Fano-type interference from the Maxwell-
Schrödinger equations of the pulsed laser field across the
quantum wells, we have obtained a NLS Schrödinger equa-
tion governing the evolution of pulsed laser field. As a result,
we achieve the ultraslow optical bright and dark solitons in
the system, which is a scheme to achieve the generation of
solitons in semiconductor QW. The present investigation is

much more practical than its atomic counterpart due to its
flexible design and the controllable interference strength.
Such ultraslow optical solitons may provide a new possibil-
ity for designing high-fidelity optical delay lines and optical
buffers in semiconductor quantum wells structure.
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APPENDIX A

In Eq. �11�, the expressions of K�0�, K��0�, and K��0� are
written as follows:

K�0� = −
B��� + �s/2� + i�2 − i�

�31

�21
�

�� + �s/2�2 + �2
2 + �2 −

B��31

�21
�2��� − �s/2� + i�3 + i�

�31

�21
�

�� − �s/2�2 + �3
2 + �2 , �A1�

K��0� =
1

c
+

B��� + �s/2�2 − �2
2 − 2i�2�� + �s/2� − 2i�

�31

�21
�

��� + �s/2�2 + �2
2 + �2�2 +

B��31/�21�2��� − �s/2�2 − �3
2 − 2i�3�� − �s/2� + 2i�

�31

�21
�

��� − �s/2�2 + �3
2 + �2�2 ,

�A2�

K��0� = −
2B��� + �s/2�2 − �2

2 − 2i�2�� + �s/2� − 2i�
�31

�21
�

��� + �s/2�2 + �2
2 + �2�3 −

2B��31

�21
�2��� − �s/2�2 − �3

2 − 2i�2��s/2 − �� + 2i�
�31

�21
�

��� − �s/2�2 + �3
2 + �2�3 . �A3�

APPENDIX B

Considering the right side of Eq. �4� and analyzing the
nonlinear polarization of pulsed laser field, we can obtain

iB
Ã2
�1� + ��31

�21
	�

Ã3
�1���A1

�0��� = iB
A2
�1� + ��31

�21
	�

A3
�1���A1

�0��2.

�B1�

By using the relations:

�A1
�0��2 + �A2

�1��2 + �A3
�1��2 = 1, �B2�

A2
�1� = −

i�
�31

�21
+ �� −

�s

2 + i�3�
�� −

�s

2 + i�3��� +
�s

2 + i�2� + �2
�p, �B3�

A3
�1� = −

�31

�21
�� +

�s

2 + i�2� + i�

�� −
�s

2 + i�3��� +
�s

2 + i�2� + �2
�p, �B4�

we have

iB
Ã2
�1� + ��31

�21
	�

Ã3
�1���A1

�0���

= iB
A2
�1� + ��31

�21
	�

A3
�1���1 − �A2

�1��2 − �A3
�1��2�

= iB
A2
�1� + ��31

�21
	�

A3
�1�� − iB
A2

�1� + ��31

�21
	�

A3
�1��

���A2
�1��2 + �A3

�1��2� . �B5�

Thus N can be expressed as

N = − iB
A2
�1� + ��31

�21
	�

A3
�1����A2

�1��2 + �A3
�1��2� . �B6�
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