Gap solitons in optical lattices: their classical and quantum properties

李瑞光 Ray-Kuang Lee[†]

國立清華大學電機工程學系暨光電工程研究所

Department of Electrical Engineering and Institute of Photonics Technologies

National Tsing-Hua University, Hsinchu, Taiwan

◆國立清華大學 National Tsing Hua University ⁺e-mail: rklee@ee.nthu.edu.tw

Ref: Ray-Kuang Lee and Yinchieh Lai, Phys. Rev. A 69, 021801(R) (2004);

e, E. A. Ostrovskaya, Yu. S. Kivshar, and Y. Lai, Phys. Rev. A 72, (Sep. 2005).

Outline

- 1. The great wave of translation
- 2. Bragg grating solitons
- 3. Gap solitons in optical lattices
- 4. Entangled solitons for quantum information
- 5. Conclusions

- Can pulse transmit the bandgap without using defect waveguides ?
- With Nonlinear photonic bandgap crystals, pulse can propagate without changing its shape.
- It's called Bragg/Gap solitons.

S. F. Mingaleev and Yu. S. Kivshar, Phys. Rev. Lett. 86, 5474 (2001).

The Great Wave of Translation

Scottish engineer John Scott Russell (1808-1882), fourteenth meeting of the British

Association for the Advancement of Science, York, September 1844 (London 1845).

The Great Wave of Translation

Scottish engineer John Scott Russell (1808-1882), fourteenth meeting of the British

Association for the Advancement of Science, York, September 1844 (London 1845).

Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-Watt University,

12 July 1995.

Tsunami

The Great Wave of Kanag'awa is an example of a soliton.

Hokusai, 1879, Japanese woodcut.

Solitons

A Universal phenomenon of self-trapped wave packets.

- EM waves in nonlinear optical materials;
- shallow- and deep-water waves;
- charge-density waves in plasmas;
- sound waves in liquid ³He;
- matter waves in Bose-Einstein condensates;
- excitations on DNA chains;

NTHU

- omain walls in supergravity, and
- Ibranes" at the end of open strings in superstring theory; to name only a few.

M. Segev, Optics & Photonics News, pp. 27 (Feb. 2002).

Wave-particle characteristics of solitons

Collision between solitons Y Y 1.00 0.94 0.87 0.80 0.74 0.67 50 0.60 0.54 40 0.47 0.40 0.33 0.27 0.20 0.13 0.07 Distance 20 10 Time 0 0 Time -5 5

Courtesy of T. Toedterneier

AMO, 30/08/05 - p.7/50

Nonlinear Schrödinger Equation:

$$iU_z(z,t) = -\frac{D}{2}U_{tt}(z,t) - |U(z,t)|^2 U(z,t)$$

Fundamental soliton:

Vector bound solitons

Coupled Nonlinear Schrödinger Equations:

AMO, 30/08/05 - p.9/50

Complex Ginzburg-Lanau Equation:

$$iU_{z} + \frac{D}{2}U_{tt} + |U|^{2}U = i\delta U + i\epsilon |U|^{2}U + i\beta U_{tt} + i\mu |U|^{4}U - v|U|^{4}U$$

E.NTHU N.N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, J. Opt. Soc. Am. B 15, 515

AMO99805 - p.10/50

Spatio-temporal solitons: light bullet

A. Malomed, D. Mihalache, F. Wise, and L. Torner, J. Op. B7, R53-R72 (2005).

AMO, 30/08/05 - p.11/50

Outline

- 1. The great wave of translation
- 2. Bragg grating solitons
- 3. Gap solitons in optical lattices
- 4. Entangled solitons for quantum information
- 5. Conclusions

Fiber Bragg grating solitons

Linear wave propagation in a 1-D periodic structure:

$$\frac{\partial^2 E}{\partial z^2} - \frac{n^2(z)}{c^2} \frac{\partial^2 E}{\partial t^2} = 0$$

where $n^2(z) = \bar{n}^2 + \tilde{\epsilon}(z)$ is a periodic structure.

For FBGs, we expand $\tilde{\epsilon}(z)$ by the Fourier series and only keep the phase-matching ± 1 order terms. Then decomposes the light field into the forward (U_a) and backward (U_b) propagation pulses, $E(z,t) = U_a(z,t)e^{-i(\omega t - k_0 z)} + U_b(z,t)e^{-i(\omega t + k_0 z)} + c.c.$:

$$\frac{1}{v_g} \frac{\partial}{\partial t} U_a(z,t) + \frac{\partial}{\partial z} U_a = i\delta U_a + i\kappa U_b$$
$$\frac{1}{v_g} \frac{\partial}{\partial t} U_b(z,t) - \frac{\partial}{\partial z} U_b = i\delta U_b + i\kappa U_a$$

where $v_q = \bar{n}/c$ is the group velocity of the pulses, $\delta = \omega - \omega_0$ is the wavelength detuning **E.NTHU** and $\kappa = \omega_0 \tilde{\epsilon}/2\bar{n}c$ is the coupling coefficient.

Dispersion relations for FBGs

Using the envelope functions, $E_{\pm}(z,t) = A_{\pm}e^{-i(\Omega t - Qz)}$, one can have

$$\begin{bmatrix} c\Omega/\bar{n} & \kappa \\ \kappa & c\Omega/\bar{n} + Q \end{bmatrix} \begin{bmatrix} A_+ \\ A_- \end{bmatrix} = 0,$$

with the dispersion relation, $c\Omega/\bar{n} = \pm \sqrt{\kappa^2 + Q^2}$.

Coupled mode theory: nonlinear case

Consider third-harmonic generation, χ_3 nonlinearity,

$$\frac{\partial^2 E}{\partial z^2} - \frac{n^2(z)}{c^2} \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 \mathcal{P}_{NL}}{\partial t^2},$$

then we have nonlinear coupled-mode theory:

$$\frac{1}{v_g}\frac{\partial}{\partial t}U_a(z,t) + \frac{\partial}{\partial z}U_a = i\delta U_a + i\kappa U_b + i\Gamma |U_a|^2 U_a + 2i\Gamma |U_b|^2 U_a$$
$$\frac{1}{v_g}\frac{\partial}{\partial t}U_b(z,t) - \frac{\partial}{\partial z}U_b = i\delta U_b + i\kappa U_a + i\Gamma |U_b|^2 U_b + 2i\Gamma |U_a|^2 U_b$$

Theory: A. Aceves and S. Wabnitz, *Phys. Lett. A* **141**, 37 (1986). Exp: B. J. Eggleton *et al.*, *Phys. Rev. Lett.* **76**, 1627 (1996).

Coherent and Squeezed States

Laser beam can be represented by

$$\hat{E}(t) = E_0[\hat{X}_1 \sin(\omega t) - \hat{X}_2 \cos(\omega t)]$$

where

 \hat{X}_1 = amplitude quadrature \hat{X}_2 = phase quadrature

Uncertainty Principle: $\Delta \hat{X}_1 \Delta \hat{X}_2 \ge 1$.

- 1. Coherent states: $\Delta \hat{X}_1 = \Delta \hat{X}_2 = 1$,
- 2. Amplitude squeezed states: $\Delta \hat{X}_1 < 1$,
- 3. Phase squeezed states: $\Delta \hat{X}_2 < 1$,
- 4. Quadrature squeezed states.

Generations of Squeezed States

Nonlinear optics:

Definition of Squeezing and Correlation

Squeezing Ratio

$$\hat{M} = M + \Delta \hat{M}$$
$$SR = \frac{\langle \Delta \hat{M}^2 \rangle}{\langle \Delta \hat{M}^2 \rangle c.s.}$$

SR < 1 : SqueezingSR > 1 : Anti - Squeezing

Correlation

$$C = \frac{\langle : \Delta \hat{A} \Delta \hat{B} : \rangle}{\sqrt{\langle \Delta \hat{A}^2 \rangle \langle \Delta \hat{B}^2 \rangle}}$$

$$0 \le C \le 1 \quad : \quad \text{Positive Correlation}$$

$$C = 0 \quad : \quad \text{No Correlation}$$

$$-1 \le C \le 0 \quad : \quad \text{Negative Correlation}$$

$$\text{AMO, 30/08/05 - p.19/50}$$

Quadrature Squeezing of Solitons

AMO, 30/08/05 - p.20/50

Generation and Detection of Squeezed Vacuum

- 1. Balanced Sagnac Loop (to cancel the mean field),
- 2. Homodyne Detection.

By asymmetric Sagnac Loop

Ch. Silberhorn, P. K. Lam, O. Weis, F. Konig, N. Korolkova, and G. Leuchs,

Phys. Rev. Lett. 86, 4267 (2001).

Quantum Nonlinear Coupled Mode Equations

$$\frac{1}{v_g}\frac{\partial}{\partial t}\hat{U}_a(z,t) + \frac{\partial}{\partial z}\hat{U}_a = i\delta\hat{U}_a + i\kappa\hat{U}_b + i\Gamma|\hat{U}_a|^2\hat{U}_a + 2i\Gamma|\hat{U}_b|^2\hat{U}_a$$
$$\frac{1}{v_g}\frac{\partial}{\partial t}\hat{U}_b(z,t) - \frac{\partial}{\partial z}\hat{U}_b = i\delta\hat{U}_b + i\kappa\hat{U}_a + i\Gamma|\hat{U}_b|^2\hat{U}_b + 2i\Gamma|\hat{U}_a|^2\hat{U}_b$$

where \hat{U}_a , \hat{U}_b represent forward/backward fields, satisfying Bosonic commutation relations:

$$\begin{split} \hat{[U}_{a}(z_{1},t), \hat{U}_{a}^{\dagger}(z_{2},t)] &= \delta(z_{1}-z_{2}), \quad [\hat{U}_{b}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] = \delta(z_{1}-z_{2}), \\ \hat{[U}_{a}(z_{1},t), \hat{U}_{a}(z_{2},t)] &= [\hat{U}_{a}^{\dagger}(z_{1},t), \hat{U}_{a}^{\dagger}(z_{2},t)] = [\hat{U}_{b}(z_{1},t), \hat{U}_{b}(z_{2},t)] = 0 \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] &= [\hat{U}_{a}(z_{1},t), \hat{U}_{b}(z_{2},t)] = [\hat{U}_{a}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] = 0 \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] &= [\hat{U}_{a}(z_{1},t), \hat{U}_{b}(z_{2},t)] = [\hat{U}_{a}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] = 0 \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] &= [\hat{U}_{a}(z_{1},t), \hat{U}_{b}(z_{2},t)] = [\hat{U}_{a}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] = 0 \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] &= [\hat{U}_{a}(z_{1},t), \hat{U}_{b}(z_{2},t)] = [\hat{U}_{a}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] = 0 \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] &= [\hat{U}_{a}(z_{1},t), \hat{U}_{b}(z_{2},t)] = [\hat{U}_{a}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] = 0 \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] &= 0 \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] \\ \hat{[U}_{b}^{\dagger}(z_{2},t)] &= 0 \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] \\ \hat{[U}_{b}^{\dagger}(z_{2},t)] &= 0 \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},t)] \\ \hat{[U}_{b}^{\dagger}(z_{1},t), \hat{U}_{b}^{\dagger}(z_{2},$$

國立浦

Linearization Approach

By setting $\hat{U}(x,t) = U_0(z,t) + \hat{u}(z,t)$, we can linearize the QNLCME as follows:

$$\frac{1}{v_g} \frac{\partial}{\partial t} \begin{pmatrix} \hat{u}_a \\ \hat{u}_b \end{pmatrix} = \begin{pmatrix} i\Gamma U_{a0}^2 & 2i\Gamma U_{a0}U_{b0} \\ 2i\Gamma U_{a0}U_{b0} & +i\Gamma U_{b0}^2 \end{pmatrix} \begin{pmatrix} \hat{u}_a^{\dagger} \\ \hat{u}_b^{\dagger} \end{pmatrix} + \\ \begin{pmatrix} -\frac{\partial}{\partial z} + i\delta + 2i\Gamma |U_{a0}|^2 + 2i\Gamma |U_{b0}|^2 & i\kappa + 2i\Gamma U_{a0}U_{b0}^* \\ +i\kappa + 2i\Gamma U_{a0}^*U_{b0} & \frac{\partial}{\partial z} + i\delta + 2i\Gamma |U_{a0}|^2 + 2i\Gamma |U_{b0}|^2 \end{pmatrix} \cdot \begin{pmatrix} \hat{u}_a \\ \hat{u}_b \end{pmatrix}$$

where the perturbation fields $\hat{u}_a(z,t)$ and $\hat{u}_b(z,t)$ also have to satisfy the same Bosonic commutation relations.

R.-K. Lee and Y. Lai, *Phys. Rev. A* 69, 021801(R) (2004).

Amp. Squeezing of FBG solitons

Apodized Fiber Bragg Gratings

We consider a nonuniform FBG which has a position dependent coupling coefficient described by

$$\kappa(z) = \kappa_0 + \alpha z$$

where κ_0 is the initial coupling coefficient and α is the slope of the coupling coefficient.

Tailor the Noise by Apodized Fiber Bragg Gratings

E.NTHU

Outline

- 1. The great wave of translation
- 2. Bragg grating solitons
- 3. Gap solitons in optical lattices
- 4. Entangled solitons for quantum information
- 5. Conclusions

Optical lattices

from: http://panda.unm.edu/

AMO, 30/08/05 - p.29/50

Gross-Pitaevskii equation with periodic potentials,

$$i\hbar\frac{\partial}{\partial t}\Phi = -\frac{1}{2}\nabla^2\Phi + V(t)\Phi + g|\phi|^2\phi$$

which has gap soliton solutions in 1D, 2D, and 3D.

NTHU

AMO, 30/08/05 – p.30/50

Mater-wave gap soliton in optical lattices

Exp: B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin,

and M. K. Oberthaler, Phys. Rev. Lett. 92, 230401 (2004).

1-D Gross-Pitaevskii equation,

$$i\hbar\frac{\partial}{\partial t}\Phi_0(t,x) = -\frac{1}{2}\frac{\partial^2}{\partial x^2}\Phi_0(t,x) + V(x)\Phi_0(t,x) + g_{1D}|\phi_0(t,x)|^2\phi_0(t,x)$$

which has gap soliton solutions.

Near the bottom edge of the gap, one can use envelope approximation for the gap solitons

AMO, 30/08/05 - p.33/50

NTHU

Squeezing ratio v.s. chemical potential

Squeezing effect is most profound in the depth of the gap

and reduced near the band edges.

Quantum correlation patterns v.s. chemical potential

x-domain

R.-K. Lee, E. A. Ostrovskaya, Yu. S. Kivshar, and Y. Lai, *Phys. Rev. A* 72 (Sep. 2005).

Spatial quantum noise interferometry with cold atom

Exp: Simon Fölling *et al.*, *Nature* **434**, 481 (2005).

Summaries of: Squeezed Bragg solitons and gap solitons

- 1. The Bragg grating acts like a spectral filter and cause Bragg solitons amplitude squeezed.
- Periodic potential makes the properties of gap solitons squeezing differ from the envelope solitons by NLS equation.
- Quantum correlation spectra of gap solitons in the spatial domain show the intra-soliton structure induced by the Bragg scattering in the periodic potential.

R.-K. Lee and Y. Lai, *Phys. Rev. A* **69**, 021801(R) (2004). R.-K. Lee and Y. Lai, *J. Opt. B*, **6**, S638 (2004).

E.NTHU R.-K. Lee, E. A. Ostrovskaya, Yu. S. Kivshar, and Y. Lai, Phys. Rev. A 72 (Sep. 2005).

Outline

- 1. The great wave of translation
- 2. Bragg grating solitons
- 3. Gap solitons in optical lattices
- 4. Entangled solitons for quantum information
- 5. Conclusions

- Gravitational Waves Detection
- Quantum Non-Demolition Measurement (QND)
- Super-Resolved Images (Quantum Images)
- Generation of EPR Pairs

Interference of Coherent States

AMO, 30/08/05 - p.40/50

Generation of Continuous Variables Entanglement

Preparation EPR pairs by Squeezed Sates

E.NTHU

AMO, 30/08/05 - p.41/50

Experiment of CV Teleportation

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble,

and E. S. Polzik, *Science* 282, 706 (1998).

AMO, 30/08/05 - p.42/50

(a)entanglement; (b)quantum dense coding;(c) teleportation; (d) entangle swapping.

Photon Number Correlation of 2-Solitons Interaction

Evolutions of Photon Number Correlation Spectra

 $Z = 2.0Z_0$,

 $Z = 4.0Z_0,$

 $Z = 6.0Z_0$.

 $Z = 30.0Z_0, \qquad Z = 50.0Z_0$ R.-K. Lee, Y. Lai, and B. A. Malomed, *Phys. Rev. A* **71**, 013816 (2005).

Bound gap solitons and high correlated EPR pairs

The noise fluctuations of bound gap soliton pairs are the same, but with different photon-number correlation parameter.

E. NTHU R. Rev. A 72 (Sep. 2005).

AMO, 30/08/05 - p.46/50

Entangled States by Time or Wavelength Slicing

AMO, 30/08/05 - p.48/50

Outline

- 1. The great wave of translation
- 2. Bragg grating solitons
- 3. Gap solitons in optical lattices
- 4. Entangled solitons for quantum information
- 5. Conclusions

- 1. Periodic potential offers a new way to stabilize optical/matter-wave solitons in high dimensions.
- 2. Quantum properties and theories of gap solitons are reviewed.
- 3. Possible applications of quantum optical solitons in quantum information are needed to be explored more.

