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The motion of a free electron

2 the motion of a free electron is described by the Schr odinger equation,

—h? o
— V20 = ih—,
2m ot

2 the probability density of finding an electron at position » and time ¢ is

P(T7 t) — ‘\Ij(’m t)‘Qa

2 s W (r,t) is a solution os the Schrédinger equation so is
Wi (r,t) = V(r t)explix],

where x is an arbitrary constant phase,
9 the probability density P(r,t) would remain unaffected by an arbitrary choice of y,
9 the choice of the phase of the wave function ¥ (r,t) is completely arbitrary,

] 9 two functions differing only by a constant phase factor represent the same physical

/|
ng Hu
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Local gauge (phase) invariance

2 the motion of a free electron is described by the Schr odinger equation,

—h? o
— V20 = ih—,
2m ot

2 ifthe phase of the wave function is allowed to vary locally, i.e.

Wy(r,t) — W(r,t)explix(r,t)],

2 the probability P(r,t) remains unaffected but the Schrddinger equation is no
longer satisfied,

2 1o satisfy local gauge (phase) invariance, then the Schrédinger equation must be
modified by adding new terms,

— K2

o
{ 2m

vV — i%A(r, O +eU(r, D} = ih—,

where A(r,t) and U(r, t) are the vector and scalar potentials of the external field,
A+ % %s,.@-ectively,

Hational Teing Hua University
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Minimal-coupling Hamiltonian

2 1o satisfy local gauge (phase) invariance, then the Schrédinger equation must be
modified by adding new terms,

e |

Satio

Y
{—IV — iEA(r, t)]? + eU(r, 1)} = iha—,
m h ot

and

h
A(r,t) —  A(r,t)+ —Vx(rt),
e

h Ox(r,t
Uirt) = UG g - 2D,

where A(r,t) and U (r,t) are the vector and scalar potentials of the external field,

respectively,
2 A(r,t) and U(r,t) are the gauge-dependent potentials,
9 the gauge-independent quantities are the electric and magnetic fields,

OA
it E —VU — —,

_.:—:;:h :'F-f]_ -%‘ ‘ﬁ— I']:r' 8t
nal Tsing Hua U

miversily B — VA)
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Minimal-coupling Hamiltonian

9 an electron of charge e and mass m interacting with an external EM field is
described by the minimal-coupling Hamiltonian,

A 1
H=—[p—eA(r,t)]?> + eU(r,t),
2m
where p = —¢AV is the canonical momentum operator, A(r,t) and U(r, t) are the

vector and scalar potentials of the external field, respectively,
the electrons are described by the wave function ¥ (r,t),
the field is described by the vector and scalar potentials A and U,

2 inthis way, the photon has been 'derived’ from the Schrodinger equation plus the
local gauge invariance arguments,

9 the gauge field theory leads to the unification of the weak and the electromagnetic
interactions,

A FERE

Mational Teing Hua University
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Dipole approximation and r - E Hamiltonian

-,

ignal Tsing Hua University

if the entire atom is immersed in a plane EM wave,
A(ro +r,t) = A(t)explik - (ro +7)] = A(t)exp(ik - ro),
where r¢ is the location of the electron,
in this way, the dipole approximation, A(r,t) ~ A(rg, t),
and the minimal-coupling Hamiltonian becomes,

i - %[p — eA(ro, £)]% + eU(r, ) + V (1),

where V' (r) is the atomic binding potential,

in the radiation gauge, R-gauge,

U(r,t) =0, and V-A(r,t)=0,

the minimal-coupling Hamiltonian becomes,

N 2 A
=P —|—V(7°)—|—er-—8 (:?’t)

Y

I8
41T (042
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Dipole approximation and r - E Hamiltonian

2 inthe dipole approximation the minimal-coupling Hamiltonian becomes,

A

i = %[p — eA(ro, £)]% + eU(r, ) + V (1),

2 the wave function with a local phase,

W(rt) = &(r, t)exp[%A(m,t) 7,
then
. .ie  OA(ro,t) oY(r,t) ie . p? ie
zh[gr ' T%D(T, t) + 9 ]exp[EA r] = [% + V(T)]GXP[EA -7,

2 in terms of the gauge-independent field E, the Hamiltonian for W(r, t) is,

A p2 8A(r0,t)
A = —+V ro—
2m +Vir)+e ot
p° N7
L j%g% 3 = 5o V(r) —er-E(ro,t) = Ho + Hu,
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Dipole approximation and r - E Hamiltonian

2 inthe dipole approximation the minimal-coupling Hamiltonian becomes,

- p2 aA(T()?t)
H = - V r- ’
2m + V() +e ot
p* N
= ——|—V(T)—€I’-E(T0,t>=H0—|—H1,
2m

in terms of the gauge-independent field E and where

. p2

Hy = — + V(T),
2m

[:Il = —erl- E(To,t),

2 this Hamiltonian is for the atom-field interaction,
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p - A Hamiltonian

2 in the radiation gauge, R-gauge,
U(r,t) =0, and V- -A(r,t) =0,

the latter one implies [p, A] = 0, then

2 and the minimal-coupling Hamiltonian becomes,

A 1

H = —[p — 6A(To,t)]2 + V(T) = I:Io + I:IQ,
2m
where
. p2
Hy = — 4+ V(’I“),
2m
~ e 62 (&
Ho = ——p-A(m,t)—i——AQ(ro,t)%——p-A(TQ,t),
m 2m m

A FERE

Mational Teing Hua University

| I IPT5340, Fall '06 — p.9/55




Differences inr - E and p - A Hamiltonian

2 inr-E
IA{1 = —er - E(79,1),

2 in p - A Hamiltonian
T
m

P 'A(T07t>7

9 these two different Hamiltonian H, and H; give different physical results,

for example, consider a linearly polarized monochromatic plane-wave field,

1
E(ro =0,t) = Egcoswt, and A(ro=0,t) = —— Epsinwt,
w

2 the ratio of the matrix elements for the Hamiltonian £ and Hy is

(f|Ha2|i)

i _ (e/mw)(flpl7) - EO‘ _ Wi
(f|H1|)

e(fIrlz) - Eo Cw

Y

e > zjé}gr As was first pointed out by Lamb, this makes a difference in measurable quantities
g i o 3 I|_|$§f’[ransition rates,

Mational Tsing Hua U
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Interaction of a single two-level atom with a single-mode fie

consider the interaction of a single-mode radiation field of frequency v,
and a two-level atom with upper and lower level states |a) and |b),

the unperturbed part of the Hamiltonian Hy has the eigenvalues fiw, and fw;, for
the atom,

the wave function of a two-level atom can be written in the form,
|Wt) = Ca(t)|a) + Cp(t)]b),

the corresponding Schroédinger equation is

ma‘gf) — (Ho + H)W (1),
where
o = la)(al+15) (b)) Fola) (a] -+ b) (b)) = hwala) (al + vy b} B]
Hi = —er-E(t) = —e(aal + ) (b)r(|a)(a] + b) (B]E,

—(Papla) (bl + Ppala) (b)) E(2),
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Probability amplitude method

2 inthe dipole approximation,

Ho = hwala)(al + hws|b) (0],
Hi = —(Papla){] + ppala) (bE(?),

where p,, = pg, = e(alr[b),

2 fora single-mode field,
E(t) = Ep cosvt,

9 the equation of motion for the probability amplitude are

d .
&Ca = —iwaCq +10QR Cos(l/t)e_“be,
d .
&C’b = —iwpCy +10R COS(I/t)e_H(bCa,
9 where Qr |pab| 9 is the Rabi frequency which is proportional to the amplitude
of the classical fleld

|;-]. 7 ‘ gL

uanafgb is the phase of the dipole matrix element p_, = |p,,|€XP(i¢),
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Probability amplitude method

2 the equation of motion for the probability amplitude are
d : : —ig
ECG = —iwqCq + Qg cos(vt)e *PCY,
d .
&Cb = —iwbcb + ZQR COS(Vt)€+Z¢CCL7

2 define the slowly varying amplitudes,

Cq = Caeiwat7 and ch — Cbeiwbt,
then
d QR _ig s - Qr .y
aca = i_Re—wS[ez(w—V)t + ez(w+1/)t]cb ~ ,L-_He—zqsez(w—u)tcb7
Ecb — i%eiqﬁ[e—i(w—u)t + e—i(w+u)t]ca ~ i%ez’(be—z’(w—u)tca
dt 2 ;

where w = wq, — wy IS the atomic transition frequency,

T F 7 ?,j we@lso apply the rotating-wave approximation by neglecting terms with

et Tens e ST G () 4 )],
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Probability amplitude method

9 the equation of motion for the probability amplitude are
d Q :
—Cq = ,L_Re—zqﬁez(w—l/)tc ,
dt 2
d Q :
&Cb = 7;7R€’L¢e—’b(w—l/)tca7

2 the solutions are

calt) = {leos( o) — i sin( 2 )lea(0) + i sin( ) ey (0)}eI A2,
cp(t) = {[COS(%) + z% Sin(%)]cb(O) + iQ—Sf sin(%)ewcb(O)}e_iAt/Q,
where
= w —v, frequency detuning,
0 = \/or+a

IPT5340, Fall '06 — p.14/55




Rabi oscillation

9 itis easy to verify that
lca ()] + lep(B)]? =1

2 assume that the atom is initially in the excited state |a), i.e ¢, (0) = 1 and
cp(0) = 0, then the population inversion is

A2 — QR

Q Q
Oz sinQ(Et) —I—COSQ(Et)

W(t) = lea(®)” — e (t)]* =

9 the population oscillates with the frequency 2 = \/Q%2 + A2,

2 when the atom is at resonance with the incident field A = 0, we get 2 = Q g, and
W (t) = cos(QRrt),

the inversion oscillates between —1 and +1 at a frequency Q2 g,

A FERE

Mational Teing Hua University
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Rabi oscillation
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Interaction picture

2 Consider a system described by |W(¢)) evolving under the action of a hamiltonian

H(t) decomposable as,
H(t) = Ho + Hi (),

where 1% Is time-independent.

2 Define
(W (1)) = exp(iHot/h)|¥ (1)),

then |W;(t)) evolves accords to

m%mffa» N HOLZION

where

A

2 The evolution is in the interaction picture generated by Hp.

S P EY

Hi(t) = exp(iHot/R) Hy (t)exp(—iHot/h).

IPT5340, Fall '06 — p.17/55



Interaction picture

2 inthe dipole approximation,

Ho = hwala)(al + hwy|b){b],
Hi = —(papla) (b + Pyala)(b)E() = —Rr(e™*?[a)(b] + e'®|a)(b]) cos vt,

where p,;, = p;, = e{alr|b) and Qr = |pab|E°,
9 the interaction picture Hamiltonian is

Hi(t) = exp(iHot/h)Hy(t)exp(—iHot/HR),

=~ Dnle O lay{plei T 4 o1 ) (ale "

+ e " la)(ble’ T 4 e |b)(ale T W,

2 inthe rotating-wave approximation,

& h —1 1(w—v 7 —t(w—v
Hi(t) = =5 Qrle™""|a)(ble (@It e b (ale )T,
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Interaction picture

2 on resonance w — v = 0,

A1 (t) = — 5 Qnle™la) (o] + ¢ ]5) (],

2 the time-evolution operator in the interaction picture U7 (t) is

. t
<Texp[—;—i drHy(7)],

to

Ur(t)

Qpt

)(labdal + [8) (6] + sin(=E0) (e ]a) (o] + 7% ) (),

= cos(

2 if the atom is initially in the excited state |V (¢t = 0)) = |a), then

w(t) = Ur(®)la),

Qpt Qpt. |
— COS(TR)|a>+7;sm(TR)e@¢|b>,
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Density Operator

2 for the quantum mechanical description, if we know that the system is in state |v),
then an operator O has the expectation value,

(O)gm = (¥|O|¥),

2 but we typically do not know that we are in state |v), then an ensemble average
must be performed,

<<O>qm>ensemble — Z Py <¢|O|¢>a
Y

where the P, is the probability of being in the state |+») and we introduce a density
operator,

p= Pylv)(®l,
P

9 the expectation value of any operator O is given by,

(O))qm = Tr[p0],

§

.

e - i,
RS ERE
Mational Ts ng Hua Univers

Wh'ére T'r stands for trace.
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Equation of motion for the density matrix

2 density operator is defined as,

p= Pyl)(®l,
P

2 in the Schradiner picture,
mg\xm = H|D),
ot

then we have

0 N A N

th—p=Hp— pH = |H, p|,

5" p—p [H, p]

which is called the Liouville or Von Neumann equation of motion for the density

matrix,

2 using density operator instead of a specific state vector can give statistical as well
as quantum mechanical information,

T i i . : A AL
E 2Ok é’oﬁpared to the Heisenberg equation, ik A(t) = [A, H(t)]

Hational Tsing Hua Univer
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Decay processes in the density matrix

2 equation of motion for the density matrix,

9 the excited atomic levels can also decay due to spontaneous emission or collisions
and other phenomena,

9 the decay rates can be incorporated by a relaxation matrix I,
(n|Llm) = yndnm,

then the density matrix equation of motion becomes,

B, i 1
= ——[H. 5] — ={T. 5
577 h[ , P 2{ , P},

where {I', p} =T'p + pI,

9 the z‘jth matrix element is,

RS AL 5L

0 1
Mational Teing Hua University
—pij = —~ Y Hiwprj — pikHij) — = Cirprj + pirlij),
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Two-level atom
2 atwo-level atom with upper and lower level states |a) and |b),
[Wt) = Ca(t)|a) + Co(1)[D),

9 the density matrix operator is

p= |UN¥|=]|Cal?|la){al + CaCyla)(b] + CpCs|b){al + |Cy|?|b)(b|,
= paala){al + papla)(b] + ppa|b){al + pps|b) (D],

diagonal elements, p., and pyp, are the probabilities in the upper and lower states,

2 off-diagonal elements, p,; and py,, are the atomic polarizations,

2 from the equation of motion for the two-level atom 2 p = — 1 [H, p] — 1{T, p}, we
have
0 7
apaa = %[pabpra — C€.¢] — Yapaa;
0 = i p.,E c.c]
@ 5 5P = 7 [PapErba — CCl = Yopp,
Mational Teing Hua University a Z’ f)/a _|_ /yb

)pnh.

| _.0”;‘ — _ED LE(pnn — pkk) — (7/(4) +
Y, | A &b
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Inclusion of elastic collisions between atoms

9 the physical interpretation of the elements of the density matrix allows us to
include terms associated wither certain processes,

for example, one can have elastic collision between atoms in a gas,

during an atom-atom collision the energy levels experience random Stark shifts,

0

after integration,
t
pab = XPl— (i +7as)t — i [ AH'(t')]pan(0),
0

for a zero-mean random process, (dw(t)) = 0,

the variations in dw(t) are usually rapid compared to other changes which occur in
times like Yoh
(Ow(t)dw(t)) = 29pnd(t — t'),
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Inclusion of elastic collisions between atoms

2 assume that dw(t) is described by a Gaussian random process, then

t
(expl—i [ d'6w(t')]) = expl—pnt],
0
which gives for the average of p,p,
Pab = €XP[—(iw + Yab — Yph)t]Pasn(0),

2 for the process of atom-atom collisions,

0

1
ab — —i[t ab — T VMg E aa — 9
8tp b iliw + Y] pab hp »E(p Pbb)

where v = 745 + Ypn IS the new decay rate,
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Population matrix

9 fora single two-level atom, its density operator at time ¢ and position z is

tto)—Zpaﬁ £ t0)|er) (8],

where o, 3 = a, b and the atom starts interacting with the field at an initial time tg,
for a medium consists of two-level homogeneously broadened atoms,

2 the effect of all atoms which are pumped at the rate r,(z, tp) atoms per second
per unit volume is the population matrix,

t t
ﬁ(z,t):/ dtora(z,to)ﬁ(z,t,to)=2/ dtora (2, topas (2, to)|a) (8],

a,

where the excitation r,(z, tg) generally varies slowly and can be taken to be a
constant, i.e.

pA(Z7 t) = Z pozﬁ(z7 t)‘a> <B‘>
o,

-:rm-lg‘} S48

Hational Tsing Hua University
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Population matrix

2 the macroscopic polarization of the medium, P(z,t) is the ensemble of atoms that
arrive at z at time t, regardless of their time of excitation,

P(Z7t) — Tl'[ﬁ ' pA(Z7t)] — Z paﬁ(zat)pﬁay
o,

2 for a two-level atom, Papb = Poa = P
P(th) — p[pab('z?t) + pba(zvt)] - p[pab(zat) + C'C]7

9 the off-diagonal elements of the population matrix determine the macroscopic

polarization,
o )
aa — ~ [Ma E a — C.Cl — YapPaa,
5" h[p »EPb | —Yap
0 = i[ E c.C|
(%Pbb = 3 PavEPba : Yo Pbb
0 ) . Ya + Vb
— Pa = —=P.E(pPaa — — (tw + ——— ) pab,
57 Pab +Pab (p Pvb) — ( 5 )Pab

A FERE

Mational Teing Hua University
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Maxwell-Schrodinger equations

9 the equations for the two-level atomic medium coupled to the field E are

9, )

—~ Paa — —[Ma E a — C.Cl —YapPaa,

57" h[p »E0b | = Yap

0 = 7;[ E c.C|

atpbb = 3 PabEPba - YbPbb;

o 7 ) Ya + Vb

~, Pa — . E aa — - ab>
57 Pab PapE(Paa — pev) — (iw + )Pab

2 the condition of self-consistency requires that the equation of motion for the field E is
driven by the atomic population matrix elements,

2

9 the field is described by the Maxwell’'s equation,

OB
V.-D=0, VxE=—-—,
ot
oD
V-B=0, VxH=J4+—,
ot

A FERE
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Maxwell-Schrodinger equations

2 the field is described by the Maxwell’'s equation,

OE 9°E 9*P
V x (V x E o= —_ ,
( )—Hboaa +Hoco 55 vy

9 fora running wave polarized along z-direction,

1
E(r,t) = £§E(z, t)yexp[—i(vt — kz + ¢)] + c.c,
2 the response of the medium is assumed

P(r,t) = 2= P(z,t)exp[—i(vt — kz + ¢)] + c.C,

)
N | =

where E(z,t), ¢(z,t), and P(z,t) are all slowly varying function of position and

time, I.e.
OF OF 0 0
— K VvE, — <K kFE, — <KL v, — KLk,
s 2 . ot 0z ot 0z
R FHFEAY oP oP
v r} I Ts n: H-nfl.lm.cr:n-]: - << I/P - << kP

ot 0z

| | IPT5340, Fall '06 — p.29/55




Maxwell-Schrodinger equations

9 the response of the medium is assumed

P(r,t) = = P(z,t)exp[—i(vt — kz + ¢)] + c.C,

)
DN | =

in terms of the population matrix,
P(z,t) = 2Ppgpexpli(vt — kz + ¢)],

9 the Maxwell’s equation for the slowly varying envelope function is,

0,10, 9 10, OB 52 P
9z " cot’\ 9z ' cot HOT oy — HO g2

2 along with the equations of motion for the two-level atom,

0 )
apaa = %[pabpra — C.C] — Yapaa,
0 )
P = T [pabpra — C.C| — Vbbb,
A FERE 5 vty
Mat | Teing Hua University b
o, Pab — _—pabE(Paa - pbb) - (Zw + - )pab7

| * 2
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Jaynes-Cummings Hamiltonian

2 inthe dipole approximation, the semi-classical Hamiltonian is

Ho = hwala)(al + hwy|b) (0],
Hi = —(Papla){d] + ppala) (b)E(),

2 toinclude the guantized field,

H = I:IA+[:IF—GF-E,

= Zngzz‘i‘zhyk L&k‘i‘ )_ZPZJO-ZjZEk
_ M+Zm& i + =) hzzgg% . + ),

[\D

where

Is the coupling constant,

R HE ARG

Mational Teing Hua University
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Jaynes-Cummings Hamiltonian

2 toinclude the guantized field,

. 1 i A~ A .
H = hw;6;; + Z hl/k(&L&k + 5) + Z Z g,faij(ak + CLL)a
k

2 for a two-level atom, P,; = Py, we have g, = gt = g, then

) ) ) L 1 ) o
H = hwa6aa + hwppp + Z hvg (@, ar + ha) + hz 9k (Gab + Oba) Gk —I—a,z :
X k

2 define new operators,

o = a'aa_a'bb: |a><a|_|b><b|7
6+ = Oap = |a)(bl,
G- = Oba = |b){al,

and the new energy level

AL HEERY 1 1
Mational Teing Hua University hwaa-aa + mba-bb — ahwo/\-z _|_ 5 (wa _|_ wb>7
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Jaynes-Cummings Hamiltonian

2 the Hamiltonian for a two-level atom interaction with guantized fields becomes

A

1 1 R R R R
H=—hwo.+Y twplafar+ =)+ 7Y gr(64 +6-)(ax +a}),

2 k 2 k
where the atomic operators satisfy the spin-1/2 algebra of the Pauli matrices, i.e.
6_,64]=—6,, and [6_,6,] =20_,

2 inthe rotating-wave approximation, we drop terms a, 6 and &L&-i-’ then we have
Jaynes-Cummings Hamiltonian

A 1
Hzihw&z—kzhvk(ak + - )+hzgk(0+ak+ATA )
k

RS AL 5L

Mational Tsing Hua University
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Interaction of a single two-level atom with a single-mode fie

2 the Jaynes-Cummings Hamiltonian,

.1
H = ~hwé + wa'a+ hg(6La+alé_),

2 the interaction Hamiltonian is,

V = exp[iHot/hHiexp[—iHot/H],
= hg(61ae'®t +alfe_emiAY),

where A = w — v,

2 the equation of motion for the state | is
0 ~
th—|¥) = V|¥),
ot
where the state | W) is the superposition of

ity ‘.ﬁ' A .'%,fs V(1)) = ;[Ca,n(t)ma'w + ba,n(t)|b, n)],

Hational Teing Hua University
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Interaction of a single two-level atom with a single-mode fie

2 the interaction Hamiltonian IS,
V = hg(61ae’™t + a6 _e A,
which only cause transitions between the states |a,n) and |b,n 4+ 1), and
d : iAt
&ca,n = —gvn+le = cp iy,
d : —iAt
&cb,wrl = —gvn—+le Ca,n;
2 compared to the semi-classical equations,
d SR —i¢ i(w—r)t
—Cq = 1—E€ e Cp,
dt ¢ 2 ’
d Qr

—c :i—€i¢€_i(w_y)tc :
dt ? 9 ¢

A FEERE
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Interaction of a single two-level atom with a single-mode fie

2 for the initially excited state, cq,»(0) = cn(0) and ¢ ,+1(0) = 0, and here ¢, (0) is
the probability amplitude for the field along,

2 the solutions are

Can(t) = Cn(O)[COS(T) o sin(T)]e' :
cont1(t) =  —cn(0) 2igvn + 1 sin( Qnt) iAt/2

2 the Rabi frequency is Q, = A2 + 4¢g2(n + 1), which is proportional to the photon
number of the field,

9 the probability p(n) that there are n photons in the field at time ¢ is,

p(n) = lean® +lepn (@],
Qnt A Qpt 49> Qp_1t
= len(OFeos” (5) + () sin® (50 + len—1(O) (g ) sin® (==
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Interaction of a single two-level atom with a single-mode fie

2 forn photons in the field at time ¢ = 0 with a coherent state, |c,, (0)|? =

<n>ne—(n>

n!

A=0,(n)=2549gt=0 gt =3.0
0. 08} 0.1
0. 06l 0. 08|
0. 06/
0.04/
0.04/
0.02|
0.02|
10 20 30 40 50 10 20 30 40 50
0.14; 0.12!
0.12|
0.1
0.1/
0.08|
0.08|
0. 06/
0.06/
0. 04l 0.04!
0.02} 0.02;
h I m“‘ ,
10 20 30 40 50 10 20 30 40 50
' T - E i
A EERE
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Interaction of a single two-level atom with a single-mode fie

9 the population inversion,

A% 4g%(n+1)

W(t) = Z ‘Ca,n(t)‘Q - |Cb,n(t)‘2 = Z |CH(O)IZ[Q2 + 0?2
n 0 "

n

cos(Q2nt)],

*J oo ‘ ‘ Zb AVAVAVﬂan [J' VO ‘ VAVAV,\VAUAVI\"I\UHVAV”” ‘:‘ tuH HV%I%%A“AU
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Revival and Collapse of the population inversion

9 the population inversion,

o0 2 2 n
WO =Y lean® ~ e = 3 len(O)P55 + 25 cos(@p),
n 0 n n

each term in the summation represents Rabi oscillation for a definite value of n,

9 at the initial time t = 0, the atom is prepared in a definite state and therefore all the
terms in the summation are correlated,

2 astimes increases, the Rabi oscillations associated with different frequent
excitations have different frequencies and there fore become uncorrelated, leading to
a collapse of inversion,

2 as time is further increased, the correlation is restored and revival occurs,

9 in the semi-classical theory, the population inversion evolves with sinusoidal Rabi
oscillations, and collapses to zero when on resonance,

2 for the guantized fields, the collapse and revival of inversion is repeated with
increasing time, but the amplitude of Rabi oscillations decreasing and the time
R > s Y a. di, . . : : : :
v 5 200 4 duration in which revival takes place increasing,

Mational Teing Hua University

| ' IPT5340, Fall '06 — p.39/55




Vacuum Rabi Oscillation

2 the revivals occur only because of the quantized photon distribution,

for a continuous photon distribution, like a classical random field, there is only a
collapse but no revivals,

2 compared to Fourier transform and Discrete Fourier transform,

2 even for initial vacuum field, cn(0)|? = 0, the inversion is

W(t) = A? 4 442 cos(v/ A2 + 4g2t)],

A2 —1—492[

2 the Rabi oscillation take place due to the vacuum state,

2 the transition from the upper level to the lower level in the vacuum becomes possible
due to spontaneous emission,

A FERE
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Collective angular momentum operators

2 for a two-level atom, one can use Pauli spin operator to describe,

where

6z = |a)(a] =[0)(b], G4 =la)(b], G- =[b)(al,
6z = |a)(b]+|b){a], and &y = —i(la){d| —[b){al),

2 foran assembly of NV two-level atoms, the corresponding Hilbert space is spanned
by the set of 2V product states,

2 we can define the collective angular momentum operators,

= = - i T 1 ~
'ﬁ‘:’#'%]' -'-i’:-:‘-fl_-’%‘ﬁ'%’f? J,u = —Onu, (/’L:x7y7z)7
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Analogs between J and &, af

9 the analogies between the free-field quantization, & and af, and the free atom
guantization,

2 and the commutation relations,

J_,Ji]=—-2J. < J[a,a']=1,
J_,J.]=J- < la,n]=a,
[j—|-7jz]:_j—|- — [&Taﬁ]:_&T7
2 Wh%n all the atoms are in the ground state, the eigenvalue of .J, is —J = —%, the

ol .'.f— ??r_ - . ) ; T 7
& 2, i % g_-ggﬁmutatlon relation is reduced to a bosonlike one, [J_, J4+] = N « [4,af] = 1,

Mational Teing Hua Uny

|  1PT5340, Fall '06 — p.42/55




Angular momentum eigenstates (Dicke states)

2 the Dicke states are defined as the simultaneous eigenstates of the Hermitian
operators J, and J2, i.e.

J.|M,J)y=M|M,J), and ,J?|M,J)=J(J+1)|M,J),

where ( M = —-J,—J+1,...,J—1,J) and

Jy|M,J)=/JJ+1) = M(M+1)|M+1,J) atln) = vn+1|ln+1).
J_|M,J)y=+/JJ+1)—M(M—-1)|M—-1,J) aln) = /njn — 1),
J_|—J,Jy=0 < alo)=0,

!

!

—1/2
MJ)y= ——— J —JJ) = |n)= ——(ahH"0),
M, J) (MH)!<MH> P gy e ) = @)

2 the Dicke states is the counterpart of the Fock state, the state | M, J) denotes an
atomic ensemble where exactly J + M atoms are in the excited state out of
N = 2J atoms,

-:::rswr ,:-f-,,j;?“j‘r
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Interaction between N two-level atoms and a single-mode field

2 the Dicke states | — J, J) corresponds to the case in which all the atoms are in the
ground state, J = N/2,

2 the Dicke states | — J + 1, J) corresponds to the case in which only one atom is in
the excited state,

2 the Dicke states |J, J) corresponds to the case in which all the atom are in the
excited state,

2 the total Hamiltonian for N two-level atoms with a single-mode field is,

1. 1 L
H = §ﬁsz + hv(a'a + 5)—|—hg(J+a—|—a J_),

2 collective Rabi oscillation

TRAZLAEERS
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Spontaneous emission of a two-level atom

TR L

the interaction hamiltonian, in the rotating-wave approximation, for a two-level
atom is,

V= hY (gr(ro) 6 pape’ @™ 4 gy (ro)ajs e T,
k

where gi(r0) = grexp(—ik - ro) is the spatial dependent coupling coefficient,

assume at t = 0 the atom is in the excited state |a) and the field modes are in the
vacuum state |0),

[T (t)) = ca(t)|a,0) + > cblb, 1i),

k
with ¢, (0) = 1 and Cb,k(O) =0,
2 in the interaction picture, |¥(t)) = —%\\If(t)), we have
cat) = =i gi(ro)e’ @i, (1),
k
ep(t) = —igr(ro)e "WmrRlte (1),
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Welisskopf-Wigner theory of spontaneous emission

2 in the interaction picture, |¥(t)) = —%|\I/(t)), we have
cat) = =i gi(ro)e' @ i, (1),
k
. _ s —i(w—uk)t
e(t) = —igg(ro)e ca(l),

2 the exact solutions are
Cb(t) = —’Lgk; 0 / dt’e —i(w—vp)t’ (t,),

éa(t) — _Z ‘gk("“O)|2/ dt/ei(w—l/k)(t—t’)ca(t/),
k 0
2 assuming that the filed modes are closely spaced in frequency,

V 27 Tr - o0 5
Z — 2 3/ dqb/ d@sm@/ dkk~,
(2m)° Jo 0 0

k

‘“"‘”Iﬁf 3 Whére V' is the quantization volume,
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Welisskopf-Wigner theory of spontaneous emission

2 the exact solutions are

t ] ,
) = =Y lantro)f? [ dreiemm e, ),
k

9 the coupling coefficient,

P.E,

Py P2b cos? 0,

2=

2 pr—
9e(ro)|* = | T

where 6 is the angle between the atomic dipole moment P; and the electric field
polarization vector ¢, i.e. Ey(r,t) = é (h”k )1/2[a +al],

2 the equation for ¢, (t) becomes

2
éa(t) _ 4Pa,b / dl/k/ dt’ v 3 ’L(w v)(t—t )C (t/),
(27)26heqc3

where we have use k = v /c,
##Iﬁﬂ' ,- ‘?‘ I j}" ‘ﬁ
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Welisskopf-Wigner theory of spontaneous emission

2 the equation for ¢, (t) becomes

2
bult) = — 4Pz, / de;/ dt/ Bl @) (=) ¢ (¢,
(27T)26h€063

2 for most of the optical problems, v, varies little around the atomic transition
frequency w,

2 we can safely replace u;:’ by w3 and the lower limit in the v, integration by —oo,

then
4P2bw3 o0 t ) ,
2 (¢ _ a d d¢’ (w—rg)(t—t") u ¢ :
a(t) (27)26hepc3 /_ Vk/ ‘ ()
4P2, w
— dt’276(t — t')ca(t)),
(27T)26heoc3/ mo(t = t)ea(t)
r
= ——cqlt),
> Ca(t)
2 3
— 5 g vj}\fh%re I'= 124:20%’% = IS the decay rate of the excited state,
W R 2 s ,"
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Photonic Bandgap Crystals: two(high)-dimension
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Band diagram and Density of States
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Modeling DOS of PBCs

x10°
3
‘_'I =1
= 1 Isotropic
2=
2,
. z Anisotropic
0 15F 4 —
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anisotropic model: w, = w, + Alk — ki |?

D(w) = 1/ “5#0(w — w.)
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1. coupling constant:

1
2ﬁeoka

g = gu(d, o) — rdw d- B ()

2. memory functions:
G(r) = ) gl O(r)
k
> lgilPe 20 ()
k

3
o
/N
2

]

3. Markovian approximation:

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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photon-atom bound state
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S. John and H. Wang, Phys. Rev. Lett. 64, 2418 (1990).
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Hamiltonian of our system: Jaynes-Cummings model

h 0 . |
H = §wa0'z + hzk:wka};ak + §h(0_€ZWLt i O.+€—zth)

+ B (geosar + gralo-)
k

And we want to solve the generalized Bloch equations:

g_(t) = i%az(t)e_mt + /_ dt'G(t —to,(t)o_(t") + n_(t)
g, (t) = —i%az(t)ezm + / dt'G.(t —tho (t)o.(t) +ny(t)

HHHHHHHHHHHHHHHHHHHHHHHHHHH
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Fluorescence quadrature spectra near the band-edge
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