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The motion of a free electron

the motion of a free electron is described by the Schr odinger equation,

−~2

2m
∇2Ψ = i~

∂Ψ

∂t
,

the probability density of finding an electron at position r and time t is

P (r, t) = |Ψ(r, t)|2,

is Ψ(r, t) is a solution os the Schrödinger equation so is

Ψ1(r, t) = Ψ(r, t)exp[iχ],

where χ is an arbitrary constant phase,

the probability density P (r, t) would remain unaffected by an arbitrary choice of χ,

the choice of the phase of the wave function Ψ(r, t) is completely arbitrary,

two functions differing only by a constant phase factor represent the same physical
state,
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Local gauge (phase) invariance

the motion of a free electron is described by the Schr odinger equation,

−~2

2m
∇2Ψ = i~

∂Ψ

∂t
,

if the phase of the wave function is allowed to vary locally, i.e.

Ψ1(r, t)→ Ψ(r, t)exp[iχ(r, t)],

the probability P (r, t) remains unaffected but the Schrödinger equation is no
longer satisfied,

to satisfy local gauge (phase) invariance, then the Schrödinger equation must be
modified by adding new terms,

{−~2

2m
[∇− i e

~
A(r, t)]2 + eU(r, t)}Ψ = i~

∂Ψ

∂t
,

where A(r, t) and U(r, t) are the vector and scalar potentials of the external field,
respectively,
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Minimal-coupling Hamiltonian

to satisfy local gauge (phase) invariance, then the Schrödinger equation must be
modified by adding new terms,

{−~2

2m
[∇− i e

~
A(r, t)]2 + eU(r, t)}Ψ = i~

∂Ψ

∂t
,

and

A(r, t) → A(r, t) +
~

e
∇χ(r, t),

U(r, t) → U(r, t)− ~

e

∂χ(r, t)

∂t
,

where A(r, t) and U(r, t) are the vector and scalar potentials of the external field,
respectively,

A(r, t) and U(r, t) are the gauge-dependent potentials,

the gauge-independent quantities are the electric and magnetic fields,

E = −∇U− ∂A
∂t
,

B = ∇A,
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Minimal-coupling Hamiltonian

an electron of charge e and mass m interacting with an external EM field is
described by the minimal-coupling Hamiltonian,

Ĥ =
1

2m
[p − eA(r, t)]2 + eU(r, t),

where p = −i~∇ is the canonical momentum operator, A(r, t) and U(r, t) are the
vector and scalar potentials of the external field, respectively,

the electrons are described by the wave function Ψ(r, t),

the field is described by the vector and scalar potentials A and U,

in this way, the photon has been ’derived’ from the Schrödinger equation plus the
local gauge invariance arguments,

the gauge field theory leads to the unification of the weak and the electromagnetic
interactions,
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Dipole approximation and r · E Hamiltonian

if the entire atom is immersed in a plane EM wave,

A(r0 + r, t) = A(t)exp[ik · (r0 + r)] ≈ A(t)exp(ik · r0),

where r0 is the location of the electron,

in this way, the dipole approximation, A(r, t) ≈ A(r0, t),

and the minimal-coupling Hamiltonian becomes,

Ĥ =
1

2m
[p − eA(r0, t)]

2 + eU(r, t) + V (r),

where V (r) is the atomic binding potential,

in the radiation gauge, R-gauge,

U(r, t) = 0, and ∇ · A(r, t) = 0,

the minimal-coupling Hamiltonian becomes,

Ĥ =
p2

2m
+ V (r) + er · ∂A(r0, t)

∂t
,
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Dipole approximation and r · E Hamiltonian

in the dipole approximation the minimal-coupling Hamiltonian becomes,

Ĥ =
1

2m
[p − eA(r0, t)]

2 + eU(r, t) + V (r),

the wave function with a local phase,

Ψ(r, t) = Φ(r, t)exp[
ie

~
A(r0, t) · r],

then

i~[
ie

~
r · ∂A(r0, t)

∂t
ψ(r, t) +

∂ψ(r, t)

∂t
]exp[

ie

~
A · r] = [

p2

2m
+ V (r)]exp[

ie

~
A · r],

in terms of the gauge-independent field E, the Hamiltonian for Ψ(r, t) is,

Ĥ =
p2

2m
+ V (r) + er · ∂A(r0, t)

∂t
,

=
p2

2m
+ V (r)− er · E(r0, t) = Ĥ0 + Ĥ1,
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Dipole approximation and r · E Hamiltonian

in the dipole approximation the minimal-coupling Hamiltonian becomes,

Ĥ =
p2

2m
+ V (r) + er · ∂A(r0, t)

∂t
,

=
p2

2m
+ V (r)− er · E(r0, t) = Ĥ0 + Ĥ1,

in terms of the gauge-independent field E and where

Ĥ0 =
p2

2m
+ V (r),

Ĥ1 = −er · E(r0, t),

this Hamiltonian is for the atom-field interaction,
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p · A Hamiltonian

in the radiation gauge, R-gauge,

U(r, t) = 0, and ∇ · A(r, t) = 0,

the latter one implies [p,A] = 0, then

and the minimal-coupling Hamiltonian becomes,

Ĥ =
1

2m
[p − eA(r0, t)]

2 + V (r) = Ĥ0 + Ĥ2,

where

Ĥ0 =
p2

2m
+ V (r),

Ĥ2 = − e

m
p · A(r0, t) +

e2

2m
A2(r0, t) ≈ −

e

m
p · A(r0, t),
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Differences in r · E and p · A Hamiltonian

in r · E
Ĥ1 = −er · E(r0, t),

in p · A Hamiltonian

Ĥ2 = − e

m
p · A(r0, t),

these two different Hamiltonian Ĥ1 and Ĥ2 give different physical results,

for example, consider a linearly polarized monochromatic plane-wave field,

E(r0 = 0, t) = E0 cosωt, and A(r0 = 0, t) = − 1

ω
E0 sinωt,

the ratio of the matrix elements for the Hamiltonian Ĥ1 and Ĥ2 is

| 〈f |Ĥ2|i〉
〈f |Ĥ1|i〉

| = | − (e/mω)〈f |p|i〉 · E0

e〈f |r|i〉 · E0
| = ωfi

ω
,

As was first pointed out by Lamb, this makes a difference in measurable quantities
like transition rates,
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Interaction of a single two-level atom with a single-mode fie ld

consider the interaction of a single-mode radiation field of frequency ν,

and a two-level atom with upper and lower level states |a〉 and |b〉,

the unperturbed part of the Hamiltonian Ĥ0 has the eigenvalues ~ωa and ~ωb for
the atom,

the wave function of a two-level atom can be written in the form,

|Ψt〉 = Ca(t)|a〉+ Cb(t)|b〉,

the corresponding Schrödinger equation is

i~
∂Ψ(t)

∂t
= (Ĥ0 + Ĥ1)Ψ(t),

where

Ĥ0 = |a〉〈a|+ |b〉〈b|)Ĥ0|a〉〈a|+ |b〉〈b|) = ~ωa|a〉〈a|+ ~ωb|b〉〈b|,
Ĥ1 = −er · E(t) = −e(|a〉〈a|+ |b〉〈b|)r(|a〉〈a|+ |b〉〈b|)E,

= −(pab|a〉〈b|+ pba|a〉〈b|)E(t),
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Probability amplitude method

in the dipole approximation,

Ĥ0 = ~ωa|a〉〈a|+ ~ωb|b〉〈b|,
Ĥ1 = −(pab|a〉〈b|+ pba|a〉〈b|)E(t),

where pab = p∗
ba = e〈a|r|b〉,

for a single-mode field,

E(t) = E0 cos νt,

the equation of motion for the probability amplitude are

d
dt
Ca = −iωaCa + iΩR cos(νt)e−iφCb,

d
dt
Cb = −iωbCb + iΩR cos(νt)e+iφCa,

where ΩR =
|pab|E0

~
is the Rabi frequency which is proportional to the amplitude

of the classical field,

and φ is the phase of the dipole matrix element pab = |pab|exp(iφ),
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Probability amplitude method

the equation of motion for the probability amplitude are

d
dt
Ca = −iωaCa + iΩR cos(νt)e−iφCb,

d
dt
Cb = −iωbCb + iΩR cos(νt)e+iφCa,

define the slowly varying amplitudes,

ca = Cae
iωat, and cb = Cbe

iωbt,

then

d
dt
ca = i

ΩR

2
e−iφ[ei(ω−ν)t + ei(ω+ν)t]cb ≈ i

ΩR

2
e−iφei(ω−ν)tcb,

d
dt
cb = i

ΩR

2
eiφ[e−i(ω−ν)t + e−i(ω+ν)t]ca ≈ i

ΩR

2
eiφe−i(ω−ν)tca,

where ω = ωa − ωb is the atomic transition frequency,

we also apply the rotating-wave approximation by neglecting terms with
exp[±i(ω + ν)t],
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Probability amplitude method

the equation of motion for the probability amplitude are

d
dt
ca = i

ΩR

2
e−iφei(ω−ν)tcb,

d
dt
cb = i

ΩR

2
eiφe−i(ω−ν)tca,

the solutions are

ca(t) = {[cos(Ωt

2
)− i∆

Ω
sin(

Ωt

2
)]ca(0) + i

ΩR

Ω
sin(

Ωt

2
)e−iφcb(0)}ei∆t/2,

cb(t) = {[cos(Ωt

2
) + i

∆

Ω
sin(

Ωt

2
)]cb(0) + i

ΩR

Ω
sin(

Ωt

2
)eiφcb(0)}e−i∆t/2,

where

∆ = ω − ν, frequency detuning,

Ω =
√

Ω2
R + ∆2,
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Rabi oscillation

it is easy to verify that

|ca(t)|2 + |cb(t)|2 = 1

assume that the atom is initially in the excited state |a〉, i.e ca(0) = 1 and
cb(0) = 0, then the population inversion is

W (t) = |ca(t)|2 − |cb(t)|2 =
∆2 − ΩR2

Ω2
sin2(

Ω

2
t) + cos2(

Ω

2
t)

the population oscillates with the frequency Ω =
√

Ω2
R + ∆2,

when the atom is at resonance with the incident field ∆ = 0, we get Ω = ΩR, and

W (t) = cos(ΩRt),

the inversion oscillates between −1 and +1 at a frequency ΩR,
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Rabi oscillation
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2.5 5 7.5 10 12.5 15 17.5 20

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

2.5 5 7.5 10 12.5 15 17.5 20

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

2.5 5 7.5 10 12.5 15 17.5 20

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

2.5 5 7.5 10 12.5 15 17.5 20

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

ΩR = 1.0, ∆ = 1.0 ΩR = 3.0, ∆ = 5.0
IPT5340, Fall ’06 – p.16/55



Interaction picture

Consider a system described by |Ψ(t)〉 evolving under the action of a hamiltonian
Ĥ(t) decomposable as,

Ĥ(t) = Ĥ0 + Ĥ1(t),

where Ĥ0 is time-independent.

Define

|ΨI(t)〉 = exp(iĤ0t/~)|Ψ(t)〉,

then |ΨI(t)〉 evolves accords to

i~
d
dt
|ΨI(t)〉 = ĤI(t)|ΨI(t)〉,

where

ĤI(t) = exp(iĤ0t/~)Ĥ1(t)exp(−iĤ0t/~).

The evolution is in the interaction picture generated by Ĥ0.
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Interaction picture

in the dipole approximation,

Ĥ0 = ~ωa|a〉〈a|+ ~ωb|b〉〈b|,
Ĥ1 = −(pab|a〉〈b|+ pba|a〉〈b|)E(t) = −~ΩR(e−iφ|a〉〈b|+ eiφ|a〉〈b|) cos νt,

where pab = p∗
ba = e〈a|r|b〉 and ΩR =

|pab|E0

~
,

the interaction picture Hamiltonian is

ĤI (t) = exp(iĤ0t/~)Ĥ1(t)exp(−iĤ0t/~),

= −~

2
ΩR[e−iφ|a〉〈b|ei(ω−ν)t + eiφ|b〉〈a|e−i(ω−ν)t

+ e−iφ|a〉〈b|ei(ω+ν)t + eiφ|b〉〈a|e−i(ω+ν)t],

in the rotating-wave approximation,

ĤI(t) = −~

2
ΩR[e−iφ|a〉〈b|ei(ω−ν)t + eiφ|b〉〈a|e−i(ω−ν)t],
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Interaction picture

on resonance ω − ν = 0,

ĤI (t) = −~

2
ΩR[e−iφ|a〉〈b|+ eiφ|b〉〈a|],

the time-evolution operator in the interaction picture ÛI(t) is

ÛI(t) =
←−
T exp[− i

~

∫ t

t0

dτĤI (τ)],

= cos(
ΩRt

2
)(|a〉〈a|+ |b〉〈b|) + i sin(

ΩRt

2
)(e−iφ|a〉〈b|+ eiφ|b〉〈a|),

if the atom is initially in the excited state |Ψ(t = 0)〉 = |a〉, then

|Ψ(t)〉 = ÛI(t)|a〉,

= cos(
ΩRt

2
)|a〉+ i sin(

ΩRt

2
)eiφ|b〉,
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Density Operator

for the quantum mechanical description, if we know that the system is in state |ψ〉,
then an operator Ô has the expectation value,

〈Ô〉qm = 〈ψ|Ô|ψ〉,

but we typically do not know that we are in state |ψ〉, then an ensemble average
must be performed,

〈〈Ô〉qm〉ensemble =
∑

ψ

Pψ〈ψ|Ô|ψ〉,

where the Pψ is the probability of being in the state |ψ〉 and we introduce a density
operator,

ρ̂ =
∑

ψ

Pψ |ψ〉〈ψ|,

the expectation value of any operator Ô is given by,

〈Ô)〉qm = Tr[ρ̂Ô],

where Tr stands for trace.
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Equation of motion for the density matrix

density operator is defined as,

ρ̂ =
∑

ψ

Pψ |ψ〉〈ψ|,

in the Schrödiner picture,

i~
∂

∂t
|Ψ〉 = Ĥ|Ψ〉,

then we have

i~
∂

∂t
ρ̂ = Ĥρ̂− ρ̂Ĥ = [Ĥ, ρ̂],

which is called the Liouville or Von Neumann equation of motion for the density
matrix,

using density operator instead of a specific state vector can give statistical as well
as quantum mechanical information,

compared to the Heisenberg equation, i~ d
dt Â(t) = [Â, Ĥ(t)]
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Decay processes in the density matrix

equation of motion for the density matrix,

i~
∂

∂t
ρ̂ = [Ĥ, ρ̂],

the excited atomic levels can also decay due to spontaneous emission or collisions
and other phenomena,

the decay rates can be incorporated by a relaxation matrix Γ,

〈n|Γ|m〉 = γnδnm,

then the density matrix equation of motion becomes,

∂

∂t
ρ̂ = − i

~
[Ĥ, ρ̂]− 1

2
{Γ, ρ̂},

where {Γ, ρ̂} = Γρ̂+ ρ̂Γ,

the ijth matrix element is,

∂

∂t
ρij = − i

~

∑

k

(Hikρkj − ρikHkj)−
1

2

∑

k

(Γikρkj + ρikΓkj),
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Two-level atom

a two-level atom with upper and lower level states |a〉 and |b〉,

|Ψt〉 = Ca(t)|a〉+ Cb(t)|b〉,

the density matrix operator is

ρ̂ = |Ψ〉〈Ψ| = |Ca|2|a〉〈a|+ CaC
∗
b |a〉〈b|+ CbC

∗
a |b〉〈a|+ |Cb|2|b〉〈b|,

= ρaa|a〉〈a|+ ρab|a〉〈b|+ ρba|b〉〈a|+ ρbb|b〉〈b|,

diagonal elements, ρaa and ρbb, are the probabilities in the upper and lower states,

off-diagonal elements, ρab and ρba, are the atomic polarizations,

from the equation of motion for the two-level atom ∂
∂t
ρ̂ = − i

~
[Ĥ, ρ̂]− 1

2
{Γ, ρ̂}, we

have

∂

∂t
ρaa =

i

~
[pabEρba − c.c]− γaρaa,

∂

∂t
ρbb = − i

~
[pabEρba − c.c]− γbρbb,

∂

∂t
ρab = − i

~
pabE(ρaa − ρbb)− (iω +

γa + γb

2
)ρab,
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Inclusion of elastic collisions between atoms

the physical interpretation of the elements of the density matrix allows us to
include terms associated wither certain processes,

for example, one can have elastic collision between atoms in a gas,

during an atom-atom collision the energy levels experience random Stark shifts,

∂

∂t
ρab = −i[iω + iδω(t) + γab]ρab,

after integration,

ρab = exp[−(iω + γab)t− i
∫ t

0
dt′δω(t′)]ρab(0),

for a zero-mean random process, 〈δω(t)〉 = 0,

the variations in δω(t) are usually rapid compared to other changes which occur in
times like γph,

〈δω(t)δω(t′)〉 = 2γphδ(t− t′),
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Inclusion of elastic collisions between atoms

assume that δω(t) is described by a Gaussian random process, then

〈exp[−i
∫ t

0
dt′δω(t′)]〉 = exp[−γpht],

which gives for the average of ρab,

ρab = exp[−(iω + γab − γph)t]ρab(0),

for the process of atom-atom collisions,

∂

∂t
ρab = −i[iω + γ]ρab −

i

~
pabE(ρaa − ρbb),

where γ = γab + γph is the new decay rate,
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Population matrix

for a single two-level atom, its density operator at time t and position z is

ρ̂(z, t, t0) =
∑

α,β

ραβ(z, t, t0)|α〉〈β|,

where α, β = a, b and the atom starts interacting with the field at an initial time t0,

for a medium consists of two-level homogeneously broadened atoms,

the effect of all atoms which are pumped at the rate ra(z, t0) atoms per second
per unit volume is the population matrix,

ρ̂(z, t) =

∫ t

−∞
dt0ra(z, t0)ρ̂(z, t, t0) =

∑

α,β

∫ t

−∞
dt0ra(z, t0ραβ(z, t, t0)|α〉〈β|,

where the excitation ra(z, t0) generally varies slowly and can be taken to be a
constant, i.e.

ρ̂(z, t) =
∑

α,β

ραβ(z, t)|α〉〈β|,
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Population matrix

the macroscopic polarization of the medium, P (z, t) is the ensemble of atoms that
arrive at z at time t, regardless of their time of excitation,

P(z, t) = Tr[p̂ · ρ̂(z, t)] =
∑

α,β

ραβ(z, t)pβα,

for a two-level atom, pab = pba = p,

P(z, t) = p[ρab(z, t) + ρba(z, t)] = p[ρab(z, t) + c.c],

the off-diagonal elements of the population matrix determine the macroscopic
polarization,

∂

∂t
ρaa =

i

~
[pabEρba − c.c]− γaρaa,

∂

∂t
ρbb = − i

~
[pabEρba − c.c]− γbρbb,

∂

∂t
ρab = − i

~
pabE(ρaa − ρbb)− (iω +

γa + γb

2
)ρab,
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Maxwell-Schrödinger equations

the equations for the two-level atomic medium coupled to the field E are

∂

∂t
ρaa =

i

~
[pabEρba − c.c]− γaρaa,

∂

∂t
ρbb = − i

~
[pabEρba − c.c]− γbρbb,

∂

∂t
ρab = − i

~
pabE(ρaa − ρbb)− (iω +

γa + γb

2
)ρab,

the condition of self-consistency requires that the equation of motion for the field E is
driven by the atomic population matrix elements,

the field is described by the Maxwell’s equation,

∇ · D = 0, ∇× E = −∂B
∂t
,

∇ · B = 0, ∇× H = J +
∂D
∂t
,
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Maxwell-Schrödinger equations

the field is described by the Maxwell’s equation,

∇× (∇× E) + µ0σ
∂E
∂t

+ µ0ǫ0
∂2E
∂t2

= −µ0
∂2P
∂t2

,

for a running wave polarized along x-direction,

E(r, t) = x̂
1

2
E(z, t)exp[−i(νt− kz + φ)] + c.c,

the response of the medium is assumed

P(r, t) = x̂
1

2
P (z, t)exp[−i(νt− kz + φ)] + c.c,

where E(z, t), φ(z, t), and P (z, t) are all slowly varying function of position and
time, i.e.

∂E

∂t
≪ νE,

∂E

∂z
≪ kE,

∂

∂t
≪ ν,

∂

∂z
≪ k,

∂P

∂t
≪ νP,

∂P

∂z
≪ kP,
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Maxwell-Schrödinger equations

the response of the medium is assumed

P(r, t) = x̂
1

2
P (z, t)exp[−i(νt− kz + φ)] + c.c,

in terms of the population matrix,

P (z, t) = 2Pρabexp[i(νt− kz + φ)],

the Maxwell’s equation for the slowly varying envelope function is,

(
∂

∂z
+

1

c

∂

∂t
)(− ∂

∂z
+

1

c

∂

∂t
)E = −µ0σ

∂E

∂t
− µ0

∂2P

∂t2
,

along with the equations of motion for the two-level atom,

∂

∂t
ρaa =

i

~
[pabEρba − c.c]− γaρaa,

∂

∂t
ρbb = − i

~
[pabEρba − c.c]− γbρbb,

∂

∂t
ρab = − i

~
pabE(ρaa − ρbb)− (iω +

γa + γb

2
)ρab,
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Jaynes-Cummings Hamiltonian

in the dipole approximation, the semi-classical Hamiltonian is

Ĥ0 = ~ωa|a〉〈a|+ ~ωb|b〉〈b|,
Ĥ1 = −(pab|a〉〈b|+ pba|a〉〈b|)E(t),

to include the quantized field,

Ĥ = ĤA + ĤF − er · E,

=
∑

i

~ωiσ̂ii +
∑

k

~νk(â
†
kâk +

1

2
)−

∑

i,j

Pij σ̂ij
∑

k

Ek(âk + â†k),

= ~ωiσ̂ii +
∑

k

~νk(â
†
kâk +

1

2
) + ~

∑

i,j

∑

k

gijk σ̂ij(âk + â†k),

where

gijk = −Pij · Ek
~

is the coupling constant,
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Jaynes-Cummings Hamiltonian

to include the quantized field,

Ĥ = ~ωiσ̂ii +
∑

k

~νk(â
†
kâk +

1

2
) +

∑

i,j

∑

k

gijk σ̂ij(âk + â†k),

for a two-level atom, Pab = Pba, we have gk = gabk = gbak , then

Ĥ = ~ωaσ̂aa + ~ωbσ̂bb +
∑

k

~νk(â
†
kâk + ~

1

2
) + ~

∑

k

gk(σ̂ab + σ̂ba)(âk + â†k),

define new operators,

σ̂z = σ̂aa − σ̂bb = |a〉〈a| − |b〉〈b|,
σ̂+ = σ̂ab = |a〉〈b|,
σ̂− = σ̂ba = |b〉〈a|,

and the new energy level

~ωaσ̂aa + ~ωbσ̂bb =
1

2
~ωσ̂z +

1

2
(ωa + ωb),

where ,
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Jaynes-Cummings Hamiltonian

the Hamiltonian for a two-level atom interaction with quantized fields becomes

Ĥ =
1

2
~ωσ̂z +

∑

k

~νk(â
†
kâk +

1

2
) + ~

∑

k

gk(σ̂+ + σ̂−)(âk + â†k),

where the atomic operators satisfy the spin-1/2 algebra of the Pauli matrices, i.e.

[σ̂−, σ̂+] = −σ̂z, and [σ̂−, σ̂z ] = 2σ̂−,

in the rotating-wave approximation, we drop terms âkσ̂− and â†kσ̂+, then we have
Jaynes-Cummings Hamiltonian

Ĥ =
1

2
~ωσ̂z +

∑

k

~νk(â
†
kâk +

1

2
) + ~

∑

k

gk(σ̂+âk + â†kσ̂−),
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Interaction of a single two-level atom with a single-mode fie ld

the Jaynes-Cummings Hamiltonian,

Ĥ =
1

2
~ωσ̂z + ~νâ†â+ ~g(σ̂+â+ â†σ̂−),

the interaction Hamiltonian is,

V̂ = exp[iĤ0t/~]Ĥ1exp[−iĤ0t/~],

= ~g(σ̂+âe
i∆t + â†σ̂−e

−i∆t),

where ∆ = ω − ν,

the equation of motion for the state |Ψ is

i~
∂

∂t
|Ψ〉 = V̂ |Ψ〉,

where the state |Ψ〉 is the superposition of

|Ψ(t)〉 =
∑

n

[ca,n(t)|a, n〉+ ba,n(t)|b, n〉],
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Interaction of a single two-level atom with a single-mode fie ld

the interaction Hamiltonian is,

V̂ = ~g(σ̂+âe
i∆t + â†σ̂−e

−i∆t),

which only cause transitions between the states |a, n〉 and |b, n+ 1〉, and

d
dt
ca,n = −ig

√
n+ 1ei∆tcb,n+1,

d
dt
cb,n+1 = −ig

√
n+ 1e−i∆tca,n,

compared to the semi-classical equations,

d
dt
ca = i

ΩR

2
e−iφei(ω−ν)tcb,

d

dt
cb = i

ΩR

2
eiφe−i(ω−ν)tca,

IPT5340, Fall ’06 – p.35/55



Interaction of a single two-level atom with a single-mode fie ld

for the initially excited state, ca,n(0) = cn(0) and cb,n+1(0) = 0, and here cn(0) is
the probability amplitude for the field along,

the solutions are

ca,n(t) = cn(0)[cos(
Ωnt

2
)− i∆

Ωn
sin(

Ωnt

2
)]ei∆t/2,

cb,n+1(t) = −cn(0)
2ig
√
n+ 1

Ωn
sin(

Ωnt

2
)ei∆t/2,

the Rabi frequency is Ωn = ∆2 + 4g2(n+ 1), which is proportional to the photon
number of the field,

the probability p(n) that there are n photons in the field at time t is,

p(n) = |ca,n(t)|2 + |cb,n(t)|2,

= |cn(0)|2[cos2(
Ωnt

2
) + (

∆

Ωn
)2 sin2(

Ωnt

2
)] + |cn−1(0)|2(

4g2n

Ω2
n−1

) sin2(
Ωn−1t

2
)]
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Interaction of a single two-level atom with a single-mode fie ld

for n photons in the field at time t = 0 with a coherent state, |cn(0)|2 =
〈n〉ne−〈n〉

n!
,

∆ = 0, 〈n〉 = 25, gt = 0 gt = 3.0
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Interaction of a single two-level atom with a single-mode fie ld

the population inversion,

W (t) =
∑

n

|ca,n(t)|2 − |cb,n(t)|2 =
∞
∑

0

|cn(0)|2[∆
2

Ω2
n

+
4g2(n+ 1)

Ω2
n

cos(Ωnt)],

20 40 60 80 100
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1
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Revival and Collapse of the population inversion

the population inversion,

W (t) =
∑

n

|ca,n(t)|2 − |cb,n(t)|2 =
∞
∑

0

|cn(0)|2[∆
2

Ω2
n

+
4g2(n+ 1)

Ω2
n

cos(Ωnt)],

each term in the summation represents Rabi oscillation for a definite value of n,

at the initial time t = 0, the atom is prepared in a definite state and therefore all the
terms in the summation are correlated,

as times increases, the Rabi oscillations associated with different frequent
excitations have different frequencies and there fore become uncorrelated, leading to
a collapse of inversion,

as time is further increased, the correlation is restored and revival occurs,

in the semi-classical theory, the population inversion evolves with sinusoidal Rabi
oscillations, and collapses to zero when on resonance,

for the quantized fields, the collapse and revival of inversion is repeated with
increasing time, but the amplitude of Rabi oscillations decreasing and the time
duration in which revival takes place increasing,
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Vacuum Rabi Oscillation

the revivals occur only because of the quantized photon distribution,

for a continuous photon distribution, like a classical random field, there is only a
collapse but no revivals,

compared to Fourier transform and Discrete Fourier transform,

even for initial vacuum field, |cn(0)|2 = δn0, the inversion is

W (t) =
1

∆2 + 4g2
[∆2 + 4g2 cos(

√

∆2 + 4g2t)],

the Rabi oscillation take place due to the vacuum state,

the transition from the upper level to the lower level in the vacuum becomes possible
due to spontaneous emission,
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Collective angular momentum operators

for a two-level atom, one can use Pauli spin operator to describe,

ŝ =
1

2
~σ,

where

σ̂z = |a〉〈a| − |b〉〈b|, σ̂+ = |a〉〈b|, σ̂− = |b〉〈a|,
σ̂x = |a〉〈b|+ |b〉〈a|, and σ̂y = −i(|a〉〈b| − |b〉〈a|),

for an assembly of N two-level atoms, the corresponding Hilbert space is spanned
by the set of 2N product states,

|Φ〉 =
N
∏

n=1

|Ψn〉,

we can define the collective angular momentum operators,

Ĵµ =
1

2
σ̂nµ, (µ = x, y, z),
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Analogs between Ĵ and â, â†

the analogies between the free-field quantization, â and â†, and the free atom
quantization,

[Ĵx, Ĵy ] = iĴz ↔ [q̂, p̂] = i~,

Ĵ− = Ĵx − iĴy ↔ â =
1√
2~ω

(ωq̂ + ip̂),

Ĵ+ = Ĵx + iĴy ↔ â† =
1√
2~ω

(ωq̂ − ip̂),

Ĵz =
1

2
(Ĵ+Ĵ−Ĵ−Ĵ+) ↔ n̂ = â†â,

and the commutation relations,

[Ĵ−, Ĵ+] = −2Ĵz ↔ [â, â†] = 1,

[Ĵ−, Ĵz ] = Ĵ− ↔ [â, n̂] = â,

[Ĵ+, Ĵz ] = −Ĵ+ ↔ [â†, n̂] = −â†,

when all the atoms are in the ground state, the eigenvalue of Ĵz is −J = −N
2

, the

commutation relation is reduced to a bosonlike one, [Ĵ−, Ĵ+] = N ↔ [â, â†] = 1,
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Angular momentum eigenstates (Dicke states)

the Dicke states are defined as the simultaneous eigenstates of the Hermitian
operators Ĵz and Ĵ2, i.e.

Ĵz |M,J〉 = M |M,J〉, and , Ĵ2|M,J〉 = J(J + 1)|M,J〉,

where (M = −J,−J + 1, . . . , J − 1, J) and

Ĵ+|M,J〉 =
√

J(J + 1)−M(M + 1)|M + 1, J〉 ↔ â†|n〉 =
√
n+ 1|n+ 1〉,

Ĵ−|M,J〉 =
√

J(J + 1)−M(M − 1)|M − 1, J〉 ↔ â|n〉 =
√
n|n− 1〉,

Ĵ−| − J, J〉 = 0 ↔ â|0〉 = 0,

|M,J〉 =
1

(M + J)!





2J

M + J





−1/2

Ĵ
(M+J)
+ | − J, J〉 ↔ |n〉 = 1√

n!
(â†)n|0〉,

the Dicke states is the counterpart of the Fock state, the state |M,J〉 denotes an
atomic ensemble where exactly J +M atoms are in the excited state out of
N = 2J atoms,
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Interaction between N two-level atoms and a single-mode field

the Dicke states | − J, J〉 corresponds to the case in which all the atoms are in the
ground state, J = N/2,

the Dicke states | − J + 1, J〉 corresponds to the case in which only one atom is in
the excited state,

the Dicke states |J, J〉 corresponds to the case in which all the atom are in the
excited state,

the total Hamiltonian for N two-level atoms with a single-mode field is,

Ĥ =
1

2
~ωĴz + ~ν(â†â+

1

2
) + ~g(Ĵ+â+ â†Ĵ−),

collective Rabi oscillation
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Spontaneous emission of a two-level atom

the interaction hamiltonian, in the rotating-wave approximation, for a two-level
atom is,

V̂ = ~

∑

k

(gk(r0)
∗σ̂+âke

i(ω−νk)t + gk(r0)â
†
kσ̂−e

−i(ω−νk)t),

where gk(r0) = gkexp(−ik · r0) is the spatial dependent coupling coefficient,

assume at t = 0 the atom is in the excited state |a〉 and the field modes are in the
vacuum state |0〉,

|Ψ(t)〉 = ca(t)|a, 0〉+
∑

k

cb,k|b, 1k〉,

with ca(0) = 1 and cb,k(0) = 0,

in the interaction picture, |Ψ̇(t)〉 = − i
~
|Ψ(t)〉, we have

ċa(t) = −i
∑

k

g∗k(r0)e
i(ω−νk)tcb,k(t),

ċb(t) = −igk(r0)e−i(ω−νk)tca(t),
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Weisskopf-Wigner theory of spontaneous emission

in the interaction picture, |Ψ̇(t)〉 = − i
~
|Ψ(t)〉, we have

ċa(t) = −i
∑

k

g∗k(r0)e
i(ω−νk)tcb,k(t),

ċb(t) = −igk(r0)e−i(ω−νk)tca(t),

the exact solutions are

cb(t) = −igk(r0)

∫ t

0
dt′e−i(ω−νk)t′ca(t

′),

ċa(t) = −
∑

k

|gk(r0)|2
∫ t

0
dt′ei(ω−νk)(t−t′)ca(t

′),

assuming that the filed modes are closely spaced in frequency,

∑

k

→ 2
V

(2π)3

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ ∞

0
dkk2,

where V is the quantization volume,
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Weisskopf-Wigner theory of spontaneous emission

the exact solutions are

ċa(t) = −
∑

k

|gk(r0)|2
∫ t

0
dt′ei(ω−νk)(t−t′)ca(t

′),

the coupling coefficient,

|gk(r0)|2 = |P · Ek
~
|2 =

νk

2~ǫ0V
P2
ab cos2 θ,

where θ is the angle between the atomic dipole moment Pab and the electric field
polarization vector ǫ̂k, i.e. Êk(r, t) = ǫ̂k(

~νk

ǫ0V
)1/2[âk + â†k],

the equation for ca(t) becomes

ċa(t) = − 4P2
ab

(2π)26~ǫ0c3

∫ ∞

0
dνk

∫ t

0
dt′ν3

ke
i(ω−νk)(t−t′)ca(t

′),

where we have use k = νk/c,
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Weisskopf-Wigner theory of spontaneous emission

the equation for ca(t) becomes

ċa(t) = − 4P2
ab

(2π)26~ǫ0c3

∫ ∞

0
dνk

∫ t

0
dt′ν3

ke
i(ω−νk)(t−t′)ca(t

′),

for most of the optical problems, νk varies little around the atomic transition
frequency ω,

we can safely replace ν3
k by ω3 and the lower limit in the νk integration by −∞,

then

ċa(t) = − 4P2
abω

3

(2π)26~ǫ0c3

∫ ∞

−∞
dνk

∫ t

0
dt′ei(ω−νk)(t−t′)ca(t

′),

= − 4P2
abω

3

(2π)26~ǫ0c3

∫ t

0
dt′2πδ(t− t′)ca(t′),

≡ −Γ

2
ca(t),

where Γ =
4P2

ab
ω3

12π2~ǫ0c3
is the decay rate of the excited state,
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Photonic Bandgap Crystals: two(high)-dimension
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Band diagram and Density of States

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M Γ X M

F
re

q
u

e
n

c
y
 (

ω
d

/2
π
c
)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DOS (A.U.)

IPT5340, Fall ’06 – p.50/55



Modeling DOS of PBCs
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S. Y. Zhu, et al., Phys. Rev. Lett. 84, 2136 (2000).
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Remarks:

1. coupling constant:

gk ≡ gk(d̂,−→r 0) = |d|ωa

√

1

2~ǫ0ωkV
d̂ · E∗k(

−→r0 )

2. memory functions:

G(τ) ≡
∑

k

|gk|
2ei∆ktΘ(τ)

Gc(τ) ≡
∑

k

|gk|
2e−i∆ktΘ(τ)

3. Markovian approximation:

G(t) = Gc(t) = Γδ(t)
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photon-atom bound state
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S. John and H. Wang, Phys. Rev. Lett. 64, 2418 (1990).
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Hamiltonian of our system: Jaynes-Cummings model

H =
~

2
ωaσz + ~

∑

k

ωka
†
kak +

Ω

2
~(σ−e

iωLt + σ+e−iωLt)

+ ~

∑

k

(gkσ+ak + g∗ka
†
kσ−)

And we want to solve the generalized Bloch equations:

σ̇−(t) = i
Ω

2
σz(t)e

−i∆t +

∫ t

−∞
d t′G(t − t′)σz(t)σ−(t′) + n−(t)

σ̇+(t) = −i
Ω

2
σz(t)e

i∆t +

∫ t

−∞
d t′Gc(t − t′)σ+(t′)σz(t) + n+(t)

σ̇z(t) = iΩ(σ−(t)ei∆t − σ+(t)e−i∆t) + nz(t)

− 2

∫ t

−∞
d t′[G(t − t′)σ+(t)σ−(t′) + Gc(t − t′)σ+(t′)σ−(t)]
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Fluorescence quadrature spectra near the band-edge
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R.-K. Lee and Y. Lai, J. Opt. B, 6, S715 (Special Issue 2004).
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