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Role of Quantum Optics

photons occupy an electromagnetic mode,
we will always refer to modes in quantum optics,
typically a plane wave;

the energy in a mode is not continuous but discrete in
quanta of ~ω;

the observables are just represented by probabilities
as usual in quantum mechanics;

there is a zero point energy inherent to each mode which
is equivalent with fluctuations of the electromagnetic
field in vacuum, due to uncertainty principle.
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Vacuum

vacuum is not just nothing, it is full of energy.
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Vacuum

spontaneous emission is actually stimulated by the vacuum fluctuation of the
electromagnetic field,

one can modify vacuum fluctuations by resonators and photonic crystals,

atomic stability : the electron does not crash into the core due to vacuum fluctuation
of the electromagnetic field,

gravity is not a fundamental force but a side effect matter modifies the vacuum
fluctuations, by Sakharov,

Casimir effect : two charged metal plates repel each other until Casimir effect
overcomes the repulsion,

Lamb shift : the energy level difference between 2S1/2 and 2P1/2 in hydrogen.

. . .
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Casimir effect
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Uncertainty relation

Non-commuting observable do not admit common eigenvectors.

Non-commuting observables can not have definite values simultaneously.

Simultaneous measurement of non-commuting observables to an arbitrary degree
of accuracy is thus incompatible.

variance: ∆Â2 = 〈Ψ|(Â− 〈Â〉)2|Ψ〉 = 〈Ψ|Â2|Ψ〉 − 〈Ψ|Â|Ψ〉2.

∆A2∆B2 ≥ 1

4
[〈F̂ 〉2 + 〈Ĉ〉2],

where

[Â, B̂] = iĈ, and F̂ = ÂB̂ + B̂Â− 2〈Â〉〈B̂〉.

Take the operators Â = q̂ (position) and B̂ = p̂ (momentum) for a free particle,

[q̂, p̂] = i~ → 〈∆q̂2〉〈∆p̂2〉 ≥ ~
2

4
.
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Uncertainty relation

Schwarz inequality: 〈φ|φ〉〈ψ|ψ〉 ≥ 〈φ|ψ〉〈ψ|φ〉.

Equality holds if and only if the two states are linear dependent, |ψ〉 = λ|φ〉, where λ
is a complex number.

uncertainty relation,

∆A2∆B2 ≥ 1

4
[〈F̂ 〉2 + 〈Ĉ〉2],

where

[Â, B̂] = iĈ, and F̂ = ÂB̂ + B̂Â− 2〈Â〉〈B̂〉.

the operator F̂ is a measure of correlations between Â andB̂.

define two states,

|ψ1〉 = [Â− 〈Â〉]|ψ〉, |ψ2〉 = [B̂ − 〈B̂〉]|ψ〉,

the uncertainty product is minimum, i.e. |ψ1〉 = −iλ|ψ2〉,

[Â+ iλB̂]|ψ〉 = [〈Â〉 + iλ〈B̂〉]|ψ〉 = z|ψ〉.

the state |ψ〉 is a minimum uncertainty state.
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Uncertainty relation

if Re(λ) = 0, Â+ iλB̂ is a normal operator, which have orthonormal eigenstates.

the variances,

∆Â2 = − iλ
2

[〈F̂ 〉 + i〈Ĉ〉], ∆B̂2 = − i

2λ
[〈F̂ 〉 − i〈Ĉ〉],

set λ = λr + iλi,

∆Â2 =
1

2
[λi〈F̂ 〉 + λr〈Ĉ〉], ∆B̂2 =

1

|λ|2 ∆Â2, λi〈Ĉ〉 − λr〈F̂ 〉 = 0.

if |λ| = 1, then ∆Â2 = ∆B̂2, equal variance minimum uncertainty states.

if |λ| = 1 along with λi = 0, then ∆Â2 = ∆B̂2 and 〈F̂ 〉 = 0, uncorrelated equal

variance minimum uncertainty states.

if λr 6= 0, then 〈F̂ 〉 = λi
λr

〈Ĉ〉, ∆Â2 =
|λ|2
2λr

〈Ĉ〉, ∆B̂2 = 1
2λr

〈Ĉ〉.
If Ĉ is a positive operator then the minimum uncertainty states exist only if λr > 0.
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Minimum Uncertainty State

(q̂ − 〈q̂〉)|ψ〉 = −iλ(p̂− 〈p̂〉)|ψ〉

if we define λ = e−2r , then

(er q̂ + ie−r p̂)|ψ〉 = (er〈q̂〉 + ie−r〈p̂〉)|ψ〉,

the minimum uncertainty state is defined as an eigenstate of a non-Hermitian
operator er q̂ + ie−r p̂ with a c-number eigenvalue er〈q̂〉 + ie−r〈p̂〉.

the variances of q̂ and p̂ are

〈∆q̂2〉 =
~

2
e−2r, 〈∆p̂2〉 =

~

2
e2r.

here r is referred as the squeezing parameter.
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Quantization of EM fields

the Hamiltonian for EM fields becomes: Ĥ =
∑

j ~ωj(â
†
j âj + 1

2
),

the electric and magnetic fields become,

Êx(z, t) =
∑

j

(
~ωj

ǫ0V
)1/2[âje

−iωjt + â†je
iωjt] sin(kjz),

=
∑

j

cj [â1j cosωjt+ â2j sinωjt]uj(r),

IPT5340, Fall ’06 – p.10/85



Phase diagram for EM waves

Electromagnetic waves can be represented by

Ê(t) = E0[X̂1 sin(ωt) − X̂2 cos(ωt)]

where

X̂1 = amplitude quadrature

X̂2 = phase quadrature

IPT5340, Fall ’06 – p.11/85



Quadrature operators

the electric and magnetic fields become,

Êx(z, t) =
∑

j

(
~ωj

ǫ0V
)1/2[âje

−iωjt + â†je
iωjt] sin(kjz),

=
∑

j

cj [â1j cosωjt+ â2j sinωjt]uj(r),

note that â and â† are not hermitian operators, but (â†)† = â.

â1 = 1
2
(â+ â†) and â2 = 1

2i
(â− â†) are two Hermitian (quadrature) operators.

the commutation relation for â and â† is [â, â†] = 1,

the commutation relation for â and â† is [â1, â2] = i
2

,

and 〈∆â2
1〉〈∆â2

2〉 ≥ 1
16

.
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Minimum Uncertainty State

(â1 − 〈â1〉)|ψ〉 = −iλ(â2 − 〈â2〉)|ψ〉

if we define λ = e−2r , then (erâ1 + ie−r â2)|ψ〉 = (er〈â1〉 + ie−r〈â2〉)|ψ〉,

the minimum uncertainty state is defined as an eigenstate of a non-Hermitian
operator er â1 + ie−r â2 with a c-number eigenvalue er〈â1〉 + ie−r〈â2〉.

the variances of â1 and â2 are

〈∆â2
1〉 =

1

4
e−2r, 〈∆â2

2〉 =
1

4
e2r.

here r is referred as the squeezing parameter.

when r = 0, the two quadrature amplitudes have identical variances,

〈∆â2
1〉 = 〈∆â2

2〉 =
1

4
,

in this case, the non-Hermitian operator, erâ1 + ie−r â2 = â1 + iâ2 = â, and this
minimum uncertainty state is termed a coherent state of the electromagnetic field, an
eigenstate of the annihilation operator, â|α〉 = α|α〉.
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Coherent States

in this case, the non-Hermitian operator, erâ1 + ie−r â2 = â1 + iâ2 = â, and this
minimum uncertainty state is termed a coherent state of the electromagnetic field, an
eigenstate of the annihilation operator,

â|α〉 = α|α〉.

expand the coherent states in the basis of number states,

|α〉 =
∑

n

|n〉〈n|α〉 =
∑

n

|n〉〈0| â
n

√
n!

|α〉 =
∑

n

αn√
n!

〈0|α〉|n〉,

imposing the normalization condition, 〈α|α〉 = 1, we obtain,

1 = 〈α|α〉 =
∑

n

∑

m

〈m|n〉 (α
∗)mαn√
m!

√
n!

= e|α|
2 |〈0|α〉|2,

we have

|α〉 = e−
1

2
|α|2

∞
∑

n=0

αn√
n!

|n〉,

IPT5340, Fall ’06 – p.14/85



Properties of Coherent States

the coherent state can be expressed using the photon number eigenstates,

|α〉 = e−
1

2
|α|2

∞
∑

n=0

αn√
n!

|n〉,

the probability of finding the photon number n for the coherent state obeys the
Poisson distribution,

P (n) ≡ |〈n|α〉|2 =
e−|α|2 |α|2n

n!
,

the mean and variance of the photon number for the coherent state |α〉 are,

〈n̂〉 =
∑

n

nP (n) = |α|2,

〈∆n̂2〉 = 〈n̂2〉 − 〈n̂〉2 = |α|2 = 〈n̂〉,
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Poisson distribution
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Photon number statistics

For photons are independent of each other, the probability of occurrence of n
photons, or photoelectrons in a time interval T is random. Divide T into N
intervals, the probability to find one photon per interval is, p = n̄/N ,

the probability to find no photon per interval is, 1 − p,

the probability to find n photons per interval is,

P (n) =
N !

n!(N − n)!
pn(1 − p)N−n,

which is a binomial distribution.

when N → ∞,

P (n) =
n̄nexp(−n̄)

n!
,

this is the Poisson distribution and the characteristics of coherent light.
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Real life Poisson distribution
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Displacement operator

coherent states are generated by translating the vacuum state |0〉 to have a finite
excitation amplitude α,

|α〉 = e−
1

2
|α|2

∞
∑

n=0

αn√
n!

|n〉 = e−
1

2
|α|2

∞
∑

n=0

(αâ†)n

n!
|0〉,

= e−
1

2
|α|2eαâ

† |0〉,

since â|0〉 = 0, we have e−α
∗â|0〉 = 0 and

|α〉 = e−
1

2
|α|2eαâ

†

e−α
∗â|0〉,

any two noncommuting operators Â and B̂ satisfy the Baker-Hausdorff relation,

eÂ+B̂ = eÂeB̂e−
1

2
[Â,B̂], provided [Â, [Â, B̂]] = 0,

using Â = αâ†, B̂ = −α∗â, and [Â, B̂] = |α|2, we have,

|α〉 = D̂(α)|0〉 = e−αâ
†−α∗â|0〉,

where D̂(α) is the displacement operator, which is physically realized by a classical
oscillating current.
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Displacement operator

the coherent state is the displaced form of the harmonic oscillator ground state,

|α〉 = D̂(α)|0〉 = e−αâ
†−α∗â|0〉,

where D̂(α) is the displacement operator, which is physically realized by a classical
oscillating current,

the displacement operator D̂(α) is a unitary operator, i.e.

D̂†(α) = D̂(−α) = [D̂(α)]−1,

D̂(α) acts as a displacement operator upon the amplitudes â and â†, i.e.

D̂−1(α)âD̂(α) = â+ α,

D̂−1(α)â†D̂(α) = â† + α∗,

IPT5340, Fall ’06 – p.20/85



Radiation from a classical current

the Hamiltonian (p · A) that describes the interaction between the field and the
current is given by

V =

∫

J(r, t) · Â(r, t)d3r,

where J(r, t) is the classical current and Â(r, t) is quantized vector potential,

Â(r, t) = −i
∑

k

1

ωk
Ekâke

−iωkt+ik·r + H.c.,

the interaction picture Schrödinger equation obeys,

d
dt

|Ψ(t)〉 = − i

~
V|Ψ(t)〉,

the solution is |Ψ(t)〉 =
∏

k exp[αkâ
† − α∗

kâk]|0〉k, where

αk = 1
~ωk

Ek
∫ t
0 dt′

∫

drJ(r, t)eiωt
′−ik·r ,

this state of radiation field is called a coherent state,

|α〉 = (αâ† − α∗â)|0〉.
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Properties of Coherent States

the probability of finding n photons in |α〉 is given by a Poisson distribution,

the coherent state is a minimum-uncertainty states,

the set of all coherent states |α〉 is a complete set,

∫

|α〉〈α|d2α = π
∑

n

|n〉〈n|, or
1

π

∫

|α〉〈α|d2α = 1,

two coherent states corresponding to different eigenstates α and β are not
orthogonal,

〈α|β〉 = exp(−1

2
|α|2 + α∗β − 1

2
|β|2) = exp(−1

2
|α− β|2),

coherent states are approximately orthogonal only in the limit of large separation of
the two eigenvalues, |α− β| → ∞,
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Properties of Coherent States

therefore, any coherent state can be expanded using other coherent state,

|α〉 =
1

π

∫

d2β|β〉〈β|α〉 =
1

π

∫

d2βe−
1

2
|β−α|2 |β〉,

this means that a coherent state forms an overcomplete set,

the simultaneous measurement of â1 and â2, represented by the projection
operator |α〉〈α|, is not an exact measurement but instead an approximate
measurement with a finite measurement error.
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q-representation of the coherent state

coherent state is defined as the eigenstate of the annihilation operator,

â|α〉 = α|α〉,

where â = 1√
2~ω

(ωq̂ + ip̂),

the q-representation of the coherent state is,

(ωq + ~
∂

∂q
)〈q|α〉 =

√
2~ωα〈q|α〉,

with the solution,

〈q|α〉 = (
ω

π~
)1/4exp[− ω

2~
(q − 〈q〉)2 + i

〈p〉
~
q + iθ],

where θ is an arbitrary real phase,

IPT5340, Fall ’06 – p.24/85



Expectation value of the electric field

for a single mode electric field, polarized in the x-direction,

Êx = E0[â(t) + â†(t)] sin kz,

the expectation value of the electric field operator,

〈α|Ê(t)|α〉 = E0[αe−iωt + α∗eiωt] sin kz = 2E0|α| cos(ωt+ φ) sin kz,

similar,

〈α|Ê(t)2|α〉 = E2
0 [4|α|2 cos2(ωt+ φ) + 1] sin2 kz,

the root-mean-square deviation int the electric field is,

〈∆Ê(t)2〉1/2 =

√

~ω

2ǫ0V
| sin kz|,

〈∆Ê(t)2〉1/2 is independent of the field strength |α|,

quantum noise becomes less important as |α|2 increases, or why a highly excited
coherent state |α| ≫ 1 can be treated as a classical EM field.
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Phase diagram for coherent states
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Generation of Coherent States

In classical mechanics we can excite a SHO into motion by, e.g. stretching the
spring to a new equilibrium position,

Ĥ =
p2

2m
+

1

2
kx2 − eE0x,

=
p2

2m
+

1

2
k(x− eE0

k
)2 − 1

2
(
eE0

k
)2,

upon turning off the dc field, i.e. E0 = 0, we will have a coherent state |α〉 which
oscillates without changing its shape,

applying the dc field to the SHO is mathematically equivalent to applying the
displacement operator to the state |0〉.

IPT5340, Fall ’06 – p.27/85



Generation of Coherent States

a classical external force f(t) couples linearly to the generalized coordinate of the
harmonic oscillator,

Ĥ = ~ω(ââ† +
1

2
) + ~[f(t)â+ f∗(t)â†],

for the initial state |Ψ(0)〉 = |0〉, the solution is

|Ψ(t)〉 = exp[A(t) + C(t)â†]|0〉,

where

A(t) = −
∫ t

0
dt”f(t”)

∫ t”

0
dt′eiω(t′−t”)f(t′), C(t) = −i

∫ t

0
dt′eiω(t′−t)f∗(t′),

When the classical driving force f(t) is resonant with the harmonic oscillator,
f(t) = f0eiωt, we have

C(t) = −ie−iωtf0t ≡ α, A(t) = −1

2
(f0t)

2 = −|α|2
2
, and |Ψ(t)〉 = |α〉.
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Attenuation of Coherent States

Glauber showed that a classical oscillating current in free space produces a
multimode coherent state of light.

The quantum noise of a laser operating at far above threshold is close to that of a
coherent state.

A coherent state does not change its quantum noise properties if it is attenuated,

a beam splitter with inputs combined by a coherent state and a vacuum state |0〉,

ĤI = ~κ(â†b̂+ âb̂†), interaction Hamiltonian

where κ is a coupling constant between two modes,

the output state is, with β =
√
Tα and γ =

√
1 − Tα,

|Ψ〉out = Û |α〉a|0〉b = |β〉a|γ〉b, with Û = exp[iκ(â†b̂+ âb̂†)t],

The reservoirs consisting of ground state harmonic oscillators inject the vacuum
fluctuation and partially replace the original quantum noise of the coherent state.

Since the vacuum state is also a coherent state, the overall noise is unchanged.
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Coherent and Squeezed States

Uncertainty Principle: ∆X̂1∆X̂2 ≥ 1.

1. Coherent states: ∆X̂1 = ∆X̂2 = 1,

2. Amplitude squeezed states: ∆X̂1 < 1,

3. Phase squeezed states: ∆X̂2 < 1,

4. Quadrature squeezed states.
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Squeezed States and SHO

Suppose we again apply a dc field to SHO but with a wall which limits the SHO to a
finite region,

in such a case, it would be expected that the wave packet would be deformed or
’squeezed’ when it is pushed against the barrier.

Similarly the quadratic displacement potential would be expected to produce a
squeezed wave packet,

Ĥ =
p2

2m
+

1

2
kx2 − eE0(ax− bx2),

where the ax term will displace the oscillator and the bx2 is added in order to give
us a barrier,

Ĥ =
p2

2m
+

1

2
(k + 2ebE0)x2 − eaE0x,

We again have a displaced ground state, but with the larger effective spring
constant k′ = k + 2ebE0.
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Squeezed Operator

To generate squeezed state, we need quadratic terms in x, i.e. terms of the form
(â+ â†)2,

for the degenerate parametric process, i.e. two-photon, its Hamiltonian is

Ĥ = i~(gâ†2 − g∗â2),

where g is a coupling constant.

the state of the field generated by this Hamiltonian is

|Ψ(t)〉 = exp[(gâ†2 − g∗â2)t]|0〉,

define the unitary squeeze operator

Ŝ(ξ) = exp[
1

2
ξ∗â2 − 1

2
ξâ†2]

where ξ = rexp(iθ) is an arbitrary complex number.
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Properties of Squeezed Operator

define the unitary squeeze operator

Ŝ(ξ) = exp[
1

2
ξ∗â2 − 1

2
ξâ†2]

where ξ = rexp(iθ) is an arbitrary complex number.

squeeze operator is unitary, Ŝ†(ξ) = Ŝ−1(ξ) = Ŝ(−ξ) ,and the unitary
transformation of the squeeze operator,

Ŝ†(ξ)âŜ(ξ) = â cosh r − â†eiθ sinh r,

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh r − âe−iθ sinh r,

with the formula eÂB̂e−Â = B̂ + [Â, B̂] + 1
2!

[Â, [Â, B̂]], . . .

A squeezed coherent state |α, ξ〉 is obtained by first acting with the displacement
operator D̂(α) on the vacuum followed by the squeezed operator Ŝ(ξ), i.e.

|α, ξ〉 = Ŝ(ξ)D̂(α)|0〉,

with α = |α|exp(iψ).
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Uncertainty relation

if Re(λ) = 0, Â+ iλB̂ is a normal operator, which have orthonormal eigenstates.

the variances,

∆Â2 = − iλ
2

[〈F̂ 〉 + i〈Ĉ〉], ∆B̂2 = − i

2λ
[〈F̂ 〉 − i〈Ĉ〉],

set λ = λr + iλi,

∆Â2 =
1

2
[λi〈F̂ 〉 + λr〈Ĉ〉], ∆B̂2 =

1

|λ|2 ∆Â2, λi〈Ĉ〉 − λr〈F̂ 〉 = 0.

if |λ| = 1, then ∆Â2 = ∆B̂2, equal variance minimum uncertainty states.

if |λ| = 1 along with λi = 0, then ∆Â2 = ∆B̂2 and 〈F̂ 〉 = 0, uncorrelated equal

variance minimum uncertainty states.

if λr 6= 0, then 〈F̂ 〉 = λi
λr

〈Ĉ〉, ∆Â2 =
|λ|2
2λr

〈Ĉ〉, ∆B̂2 = 1
2λr

〈Ĉ〉.
If Ĉ is a positive operator then the minimum uncertainty states exist only if λr > 0.
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Minimum Uncertainty State

(â1 − 〈â1〉)|ψ〉 = −iλ(â2 − 〈â2〉)|ψ〉

if we define λ = e−2r , then

(er â1 + ie−r â2)|ψ〉 = (er〈â1〉 + ie−r〈â2〉)|ψ〉,

the minimum uncertainty state is defined as an eigenstate of a non-Hermitian
operator er â1 + ie−r â2 with a c-number eigenvalue er〈â1〉 + ie−r〈â2〉.

the variances of â1 and â2 are

〈∆â2
1〉 =

1

4
e−2r, 〈∆â2

2〉 =
1

4
e2r.
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Squeezed State

define the squeezed state as

|Ψs〉 = Ŝ(ξ)|Ψ〉,

where the unitary squeeze operator

Ŝ(ξ) = exp[
1

2
ξ∗â2 − 1

2
ξâ†2]

where ξ = rexp(iθ) is an arbitrary complex number.

squeeze operator is unitary, Ŝ†(ξ) = Ŝ−1(ξ) = Ŝ(−ξ) ,and the unitary
transformation of the squeeze operator,

Ŝ†(ξ)âŜ(ξ) = â cosh r − â†eiθ sinh r,

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh r − âe−iθ sinh r,

for |Ψ〉 is the vacuum state |0〉, the |Ψs〉 state is the squeezed vacuum,

|ξ〉 = Ŝ(ξ)|0〉,
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Squeezed Vacuum State

for |Ψ〉 is the vacuum state |0〉, the |Ψs〉 state is the squeezed vacuum,

|ξ〉 = Ŝ(ξ)|0〉,

the variances for squeezed vacuum are

∆â2
1 =

1

4
[cosh2 r + sinh2 r − 2 sinh r cosh r cos θ],

∆â2
2 =

1

4
[cosh2 r + sinh2 r + 2 sinh r cosh r cos θ],

for θ = 0, we have

∆â2
1 =

1

4
e−2r , and ∆â2

2 =
1

4
e+2r,

and squeezing exists in the â1 quadrature.

for θ = π, the squeezing will appear in the â2 quadrature.
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Quadrature Operators

define a rotated complex amplitude at an angle θ/2

Ŷ1 + iŶ2 = (â1 + iâ2)e
−iθ/2 = âe−iθ/2,

where





Ŷ1

Ŷ2



 =





cos θ/2 sin θ/2

− sin θ/2 cos θ/2









â1

â2





then Ŝ†(ξ)(Ŷ1 + iŶ2)Ŝ(ξ) = Ŷ1e−r + iŶ2er ,

the quadrature variance

∆Ŷ 2
1 =

1

4
e−2r, ∆Ŷ 2

2 =
1

4
e+2r, and ∆Ŷ1∆Ŷ2 =

1

4
,

in the complex amplitude plane the coherent state error circle is squeezed into an
error ellipse of the same area,

the degree of squeezing is determined by r = |ξ| which is called the squeezed
parameter.
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Vacuum, Coherent, and Squeezed states

vacuum coherent squeezed-vacuum

amp-squeezed phase-squeezed quad-squeezed
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Squeezed Coherent State

A squeezed coherent state |α, ξ〉 is obtained by first acting with the displacement
operator D̂(α) on the vacuum followed by the squeezed operator Ŝ(ξ), i.e.

|α, ξ〉 = D̂(α)Ŝ(ξ)|0〉,

where Ŝ(ξ) = exp[ 1
2
ξ∗â2 − 1

2
ξâ†2],

for ξ = 0, we obtain just a coherent state.

the expectation values,

〈α, ξ|â|α, ξ〉 = α, 〈â2〉 = α2 − eiθ sinh r cosh r, and 〈â†â〉 = |α|2 + sinh2 r,

with helps of D̂†(α)âD̂(α) = â+ α and D̂†(α)â†D̂(α) = â† + α∗,

for r → 0 we have coherent state, and α→ 0 we have squeezed vacuum.

furthermore

〈α, ξ|Ŷ1 + iŶ2|α, ξ〉 = αe−iθ/2, 〈∆Ŷ 2
1 〉 =

1

4
e−2r, and 〈∆Ŷ 2

2 〉 =
1

4
e+2r,
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Squeezed State

from the vacuum state â|0〉 = 0, we have

Ŝ(ξ)âŜ†(ξ)Ŝ(ξ)|0〉 = 0, or Ŝ(ξ)âŜ†(ξ)|ξ〉 = 0,

since Ŝ(ξ)âŜ†(ξ) = â cosh r + â†eiθ sinh r ≡ µâ+ νâ†, we have,

(µâ+ νâ†)|ξ〉 = 0,

the squeezed vacuum state is an eigenstate of the operator µâ+ νâ† with
eigenvalue zero.

similarly,

D̂(α)Ŝ(ξ)âŜ†(ξ)D̂†(α)D̂(α)|ξ〉 = 0,

with the relation D̂(α)âD̂†(α) = â− α, we have

(µâ+ νâ†)|α, ξ〉 = (α cosh r + α∗ sinh r)|α, ξ〉 ≡ γ|α, ξ〉,
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Squeezed State and Minimum Uncertainty State

write the eigenvalue problem for the squeezed state

(µâ+ νâ†)|α, ξ〉 = (α cosh r + α∗ sinh r)|α, ξ〉 ≡ γ|α, ξ〉,

in terms of in terms of â = (Ŷ1 + iŶ2)eiθ/2 we have

(Ŷ1 + ie−2rŶ2)|α, ξ〉 = β1|α, ξ〉,

where

β1 = γe−re−iθ/2 = 〈Ŷ1〉 + i〈Ŷ2〉e−2r ,

in terms of â1 and â2 we have

(â1 + iλâ†2)|α, ξ〉 = β2|α, ξ〉,

where

λ =
µ− ν

µ+ ν
, and β2 =

γ

µ+ ν
,
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Squeezed State in the basis of Number states

consider squeezed vacuum state first,

|ξ〉 =
∞
∑

n=0

Cn|n〉,

with the operator of (µâ+ νâ†)|ξ〉 = 0, we have

Cn+1 = − ν

µ
(

n

n+ 1
)1/2Cn−1,

only the even photon states have the solutions,

C2m(−1)m(eiθ tanh r)m[
(2m− 1)!!

(2m)!!
]1/2C0,

where C0 can be determined from the normalization, i.e. C0 =
√

cosh r,

the squeezed vacuum state is

|ξ〉 =
1√

cosh r

∞
∑

m=0

(−1)m
√

(2m)!

2mm!
eimθ tanhm r|2m〉,
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Squeezed State in the basis of Number states

the squeezed vacuum state is

|ξ〉 =
1√

cosh r

∞
∑

m=0

(−1)m
√

(2m)!

2mm!
eimθ tanhm r|2m〉,

the probability of detecting 2m photons in the field is

P2m = |〈2m|ξ〉|2 =
(2m)!

22m(m!)2
tanh2m r

cosh r
,

for detecting 2m+ 1 states P2m+1 = 0,

the photon probability distribution for a squeezed vacuum state is oscillatory,
vanishing for all odd photon numbers,

the shape of the squeezed vacuum state resembles that of thermal radiation.

IPT5340, Fall ’06 – p.44/85



Number distribution of the Squeezed State

n

P
n

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
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Number distribution of the Squeezed Coherent State

For a squeezed coherent state,

Pn = |〈n|α, ξ〉|2 =
( 1
2

tanh r)n

n! cosh r
exp[−|α|2−1

2
(α∗2eiθ+α2e−iθ) tanh r]H2

n(γ(eiθ sinh(2r))−1/2)

30 40 50 60 70 80

0.02

0.04

0.06

0.08

0.1

Ref:

Ch. 5, 7 in ”Introductory Quantum Optics,” by C. Gerry and P. Knight.
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Number distribution of the Squeezed Coherent State

A squeezed coherent state |α, ξ〉 is obtained by first acting with the displacement
operator D̂(α) on the vacuum followed by the squeezed operator Ŝ(ξ), i.e.

|α, ξ〉 = D̂(α)Ŝ(ξ)|0〉,

the expectation values,

〈â†â〉 = |α|2 + sinh2 r,

50 100 150 200

0.02

0.04

0.06

0.08

50 100 150 200

0.002

0.004

0.006

0.008

0.01

0.012

|α|2 = 50, θ = 0, r = 0.5 |α|2 = 50, θ = 0, r = 4.0
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Generations of Squeezed States

Generation of quadrature squeezed light are based on some sort of parametric

process utilizing various types of nonlinear optical devices.

for degenerate parametric down-conversion, the nonlinear medium is pumped by a
field of frequency ωp and that field are converted into pairs of identical photons, of
frequency ω = ωp/2 each,

Ĥ = ~ωâ†â+ ~ωpb̂
†b̂+ i~χ(2)(â2b̂† − â†2b̂),

where b is the pump mode and a is the signal mode.

assume that the field is in a coherent state |βe−iωpt〉 and approximate the
operators b̂ and b̂† by classical amplitude βe−iωpt and β∗eiωpt, respectively,

we have the interaction Hamiltonian for degenerate parametric down-conversion,

ĤI = i~(η∗â2 − ηâ†2),

where η = χ(2)β.
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Generations of Squeezed States

we have the interaction Hamiltonian for degenerate parametric down-conversion,

ĤI = i~(η∗â2 − ηâ†2),

where η = χ(2)β, and the associated evolution operator,

ÛI(t) = exp[−iĤI t/̄] = exp[(η∗â2 − ηâ†2)t] ≡ Ŝ(ξ),

with ξ = 2ηt.

for degenerate four-wave mixing, in which two pump photons are converted into
two signal photons of the same frequency,

Ĥ = ~ωâ†â+ ~ωb̂†b̂+ i~χ(3)(â2b̂†2 − â†2b̂2),

the associated evolution operator,

ÛI(t) = exp[(η∗â2 − ηâ†2)t] ≡ Ŝ(ξ),

with ξ = 2χ(3)β2t.
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Generations of Squeezed States

Nonlinear optics:

Courtesy of P. K. Lam
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Generation and Detection of Squeezed Vacuum

1. Balanced Sagnac Loop (to cancel the mean field),

2. Homodyne Detection.

M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153(1991).
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Beam Splitters

Wrong picture of beam splitters,

â2 = râ1, â3 = tâ1,

where r and t are the complex reflectance and transmittance respectively which
require that |r|2 + |t|2 = 1.

in this case,

[â2, â
†
2] = |r|2[â2, â

†
2] = |r|2, [â3, â

†
3] = |t|2[â2, â

†
2] = |t|2, and [â2, â

†
3] = rt∗ 6= 0,

this kind of the transformations do not preserve the commutation relations.

Correct transformations of beam splitters,





â2

â3



 =





r jt

jt r









â0

â1



 ,
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Homodyne detection

the detectors measure the intensities Ic = 〈ĉ†ĉ〉 and Id = 〈d̂†d̂〉, and the
difference in these intensities is,

Ic − Id = 〈n̂cd〉 = 〈ĉ†ĉ− d̂†d̂〉 = i〈â†b̂− âb̂†〉,

assuming the b mode to be in the coherent state |βe−iωt〉, where β = |β|e−iψ , we
have

〈n̂cd〉 = |β|{âeiωte−iθ + â†e−iωteiθ},

where θ = ψ + π/2,

assume that a mode light is also of frequency ω (in practice both the a and b
modes derive from the same laser), i.e. â = â0e−iωt, we have

〈n̂cd〉 = 2|β|〈X̂(θ)〉,

where X̂(θ) = 1
2
(â0e−iθ + â†0e

iθ) is the field quadrature operator at the angle θ,

by changing the phase ψ of the local oscillator, we can measure an arbitrary
quadrature of the signal field.
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Detection of Squeezed States

mode a contains the single field that is possibly squeezed,

mode b contains a strong coherent classical field, local oscillator, which may be taken
as coherent state of amplitude β,

for a balanced homodyne detection, 50 : 50 beam splitter,

the relation between input (â, b̂) and output (ĉ, d̂) is,

ĉ =
1√
2
(â+ ib̂), d̂ =

1√
2
(b̂+ iâ),

the detectors measure the intensities Ic = 〈ĉ†ĉ〉 and Id = 〈d̂†d̂〉, and the
difference in these intensities is,

Ic − Id = 〈n̂cd〉 = 〈ĉ†ĉ− d̂†d̂〉 = i〈â†b̂− âb̂†〉,
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Squeezed States in Quantum Optics

Generation of squeezed states:

nonlinear optics: χ(2) or χ(3) processes,

cavity-QED,

photon-atom interaction,

photonic crystals,

. . .

Applications of squeezed states:

Gravitational Waves Detection

Quantum Non-Demolition Measurement (QND)

Super-Resolved Images (Quantum Images)

Generation of EPR Pairs
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Syllabus

1. A brief review about Quantum Mechanics,

2. Quantum theory of Radiation,

3. Coherent and Squeezed States,

4. Quantum Distribution Theory,

5. Atom-field interaction, semi-classical and quantum theories,

6. Quantum theory of Fluorescence,

7. Cavity Quantum ElectroDynamics (Cavity-QED),

8. Quantum theory of Lasers,

9. Quantum theory of Nonlinear Optics,

10. Quantum Non-demolition Measurement (QND),

11. Quantum theory for Nonlinear Pulse Propagation,

12. Entangled source generation and Quantum Information,

13. Bose-Einstein Condensates (BEC) and Atom Optics,

14. Quantum optical test of Complementarity of Quantum Mechanics,

15. Quantum optics in Semiconductors,

16. Semester reports, Jan. 3, 5
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Experiment of CV Teleportation

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble,

and E. S. Polzik, Science 282, 706 (1998).
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Interference of Coherent States

Coherent States

Es

Ec

1

2

3

4

Es

Ec

Es

Ec

Es

Ec
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Generation of Continuous Variables Entanglement

Preparation EPR pairs by Squeezed Sates

Es

Ec

1

2

3

4

Es

Ec

Es

Ec

Es

Ec

δn̂3 = −δn̂4, δθ̂3 = δθ̂4.
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Photon-Atom Interaction in PhCs

Reservoir Theory

ω-ωa

S
(ω

)
[A

.U
.]

-1 -0.5 0 0.5 1

10

20

30

40

50

60

70

80

90

100

ΩΩ
.
.
.

.

.

.

|n-1>|1>

|2>

|0>

|n+1>Ω

.

.

.

.

.

.

interaction
reservoir

ωa

system

|n>

?|1>

|2>Ω

interaction
reservoir

ωa

system

IPT5340, Fall ’06 – p.60/85



Hamiltonian of our system: Jaynes-Cummings model

H =
~

2
ωaσz + ~

∑

k

ωka
†
kak +

Ω

2
~(σ−e

iωLt + σ+e
−iωLt)

+ ~

∑

k

(gkσ+ak + g∗ka
†
kσ−)

And we want to solve the generalized Bloch equations:

σ̇−(t) = i
Ω

2
σz(t)e

−i∆t +

∫ t

−∞
d t′G(t− t′)σz(t)σ−(t′) + n−(t)

σ̇+(t) = −iΩ
2
σz(t)e

i∆t +

∫ t

−∞
d t′Gc(t− t′)σ+(t′)σz(t) + n+(t)

σ̇z(t) = iΩ(σ−(t)ei∆t − σ+(t)e−i∆t) + nz(t)

− 2

∫ t

−∞
d t′[G(t− t′)σ+(t)σ−(t′) +Gc(t− t′)σ+(t′)σ−(t)]

IPT5340, Fall ’06 – p.61/85



Fluorescence quadrature spectra near the band-edge
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R.-K. Lee and Y. Lai, J. Opt. B, 6, S715 (Special Issue 2004).
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Solitons in optical fibers

Classical nonlinear Schrödinger Equation

iUz(z, t) = −D
2
Utt(z, t) − |U(z, t)|2U(z, t)

Fundamental soliton:

U(z, t) =
n0

2
exp[i

n2
0

8
z + iθ0]sech[

n0

2
t]
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1D Quantum nonlinear Schrödinger equation

Quantum nonlinear Schrödinger equation

i
∂

∂t
φ̂(t, x) = − ∂2

∂x2
φ̂(t, x) + 2 cφ̂†(t, x)φ̂(t, x)φ̂(t, x)

where φ̂(t, x) and φ̂†(t, x) are annihilation and creation field
operators and satisfy Bosonic commutation relations:

[φ̂(t, x′), φ̂†(t, x)] = δ(x− x′)

[φ̂(t, x′), φ̂(t, x)] = [φ̂†(t, x′), φ̂†(t, x)] = 0

and in classical (mean-field) solution, i.e. φ̂→ φ,
for attractive case (as < 0), c < 0, bright soliton exists;

for repulsive case (as > 0), c > 0,dark soliton exists.
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1-D Bose gas with δ-interaction

Expand the quantum state in Fock space

|ψ >=
∑

n

an

∫

d nx
1√
n!
fn(x1, . . . , xn, t)φ̂

†(x1) . . . φ̂
†(xn)|0 >

then, QNLSE corresponds to 1-D Bosons with δ-interaction

i
d

dt
fn(x1, . . . , xn, t) = [−

n
∑

j=1

∂2

∂x2
j

+2c
∑

1≤i<j≤n
δ(xj−xi)]fn(x1, . . . , xn, t)

and can be solved by

1. Bethe’s ansatz (exact solution);

2. Hatree approximation (N is large);

3. Quantum inverse scattering method (exact solution).
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Quadrature Squeezing of Solitons

For N = 1 soliton:

U(z, t) =
n0

2
exp[i

n2
0

8
z + iθ0]sech[

n0

2
t]

∆n̂(z) = ∆n̂(0)

∆θ̂(z) = ∆θ̂(0) +
n0

4
z∆n̂(0)

∆X̂θ(z) = α1∆n̂(z) + α2∆θ̂(z)
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Y. Lai and H. A. Haus, Phys. Rev. A 40, 844 (1989); ibid 40, 854 (1989).
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Generation and Detection of Squeezed Vacuum

1. Balanced Sagnac Loop (to cancel the mean field),

2. Homodyne Detection.

M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153(1991).
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Amplitude Squeezing of FBG solitons
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R.-K. Lee and Y. Lai, Phys. Rev. A 69, 021801(R) (2004).
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Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas

C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen, G. N. Price, and M. G. Raizen,
The University of Texas at Austin, USA, Phys. Rev. Lett. 95, 260403 (2005)

Abstract:
We report the direct observation of sub-Poissonian number fluctuation for a degenerate
Bose gas confined in an optical trap. Reduction of number fluctuations below the
Poissonian limit is observed for average numbers that range from 300 to 60 atoms.
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Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas
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Classical coherence functions

for Young’s two-slit interference,

I(r) = 〈|E(r, t)|2〉 = 〈|K1E(r1, t1) +K2E(r2, t2)|2〉,

where 〈f(t)〉 = limT→∞
1
T

∫ T
0 f(t)dt, then for a stationary average,

I(r) = I1 + I2 + 2
√

I1I2Re[K1K2γ
(1)(x1, x2)],

where I1 = |K1|2〈|E(r1, t1)|2〉, I2 = |K2|2〈|E(r2, t2)|2〉,

and the mutual coherence function, with xi = ri, ti,

γ(1)(x1, x2) =
〈E∗(x1)E(x2)〉

√

〈|E(x1)|2〉〈|E(x2)|2〉
,

degree of coherence

|γ(1)(x1, x2)| = 1, complete coherence,

0 < |γ(1)(x1, x2)| < 1, partial coherence,

|γ(1)(x1, x2)| = 0, complete incoherence,
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Quantum coherence functions

the single-atom detector couples to the quantized field through the dipole
interaction,

ĤI = −d̂ · Ê(r, t),

assume the atom is initially in the some ground state |g〉 and the field is in some
state |ß〉,

upon the absorption of radiation, the atom makes a transition to state |e〉 and the
field to the state |f〉, then

〈f |〈e|ĤI |g〉|i〉 ∝ −〈e|d̂|g〉〈f |â|i〉,

where Ê(r, t) =
∑

j cj [âj(t) + â†j(t)] = Ê(+)(r, t) + Ê(−)(r, t),

the probability that the detector measures all the possible final states,

∑

f

|〈f |â|i〉|2 = 〈i|Ê(−)(r, t) · Ê(+)(r, t)|i〉, ,
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First-order quantum coherence function

the probability that the detector measures all the possible final states,

∑

f

|〈f |â|i〉|2 = 〈i|Ê(−)(r, t) · Ê(+)(r, t)|i〉,

define a density operator,

ρ̂ =
∑

i

Pi|i〉〈i|,

the expectation value can be replaced by the ensemble average,

Tr{ρ̂Ê(−)(r, t) · Ê(+)(r, t)} =
∑

i

Pi〈i|Ê(−)(r, t) · Ê(+)(r, t)|i〉,

define the normalized first-order quantum coherence function,

g(1)(x1, x2) =
G(1)(x1, x2)

[G(1)(x1, x1)G(1)(x2, x2)]1/2
,

where G(1)(x1, x2) = Tr{ρ̂Ê(−)(x1) · Ê(+)(x2)},
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First-order quantum coherence function

define the normalized first-order quantum coherence function,

g(1)(x1, x2) =
G(1)(x1, x2)

[G(1)(x1, x1)G(1)(x2, x2)]1/2
,

where G(1)(x1, x2) = Tr{ρ̂Ê(−)(x1) · Ê(+)(x2)},

degree of coherence

|g(1)(x1, x2)| = 1, complete coherence,

0 < |g(1)(x1, x2)| < 1, partial coherence,

|g(1)(x1, x2)| = 0, complete incoherence,
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First-order quantum coherence function

assume Ê(+)(x) = iKâei(k·r−ωt), a single mode plane wave,

if the field is in a number state |n〉, then

G(1)(x, x) = K2n, G(1)(x1, x2) = K2nei[k(r1−r2)−ω(t1−t@)],

and

|g(1)(x1, x2)| = 1,

if the field is a coherent state |α〉, then

G(1)(x, x) = K2|α|2, G(1)(x1, x2) = K2|α|2ei[k(r1−r2)−ω(t1−t2)],

and

|g(1)(x1, x2)| = 1,

as in the classical case, the key to first-order quantum coherence is that
factorization of the expectation value of the correlation functions,

G(1)(x1, x2) = 〈Ê(−)(x1) · Ê(+)(x2)〉 = 〈Ê(−)(x1)〉〈Ê(+)(x2)〉,
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Classical Second-order coherence function

the classical second-order coherence function,

γ(2)(τ) =
〈I(t)I(t+ τ)〉

〈I(t)〉2 =
〈E∗(t)E∗(t+ τ)E(t+ τ)E(t)〉

〈E∗(t)E(t)〉2 ,

if the detectors are at different distances from the beam splitter,

γ(2)(x1, x2) =
〈I(x1)I(x2)〉
〈I(x1)〉〈I(x2)〉 =

〈E∗(x1)E∗(x2)E(x2)E(x1)〉
〈|E(x1)|2〉〈|E(x2)|2〉 ,

the field is said to be classical coherence to second order if |γ(1)(x1, x2)| = 1 and
γ(2)(x1, x2) = 1, with the factorization,

〈E∗(x1)E∗(x2)E(x2)E(x1)〉 = 〈|E(x1)|2〉〈|E(x2)|2〉,
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Classical Second-order coherence function

for zero time-delay coherence function

γ(2)(0) =
〈I(t)2〉
〈I(t)〉2 ,

for a sequence of N measurements taken at times t1, t2, . . . , tN ,

〈I(t)〉 =
I(t1) + I(t2) + · · · I(tN )

N
, and 〈I(t)2〉 =

I(t1)2 + I(t2)2 + · · · I(tN )2

N
,

from Cauchy’s inequality,

2I(t1)I(t2) ≤ I(t1)2I(t2)2,

we have

〈I(t)2〉 ≥ 〈I(t)〉2, or 1 ≤ γ(2)(0) < ∞,
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Classical Second-order coherence function

for non-zero delay, we have

[I(t1)I(t1+τ)+· · · I(tN )I(tn+τ)]2 ≤ [I(t1)
2+· · · I(tN )2][I(t1+τ)

2+· · · I(tN+τ)2],

then

〈I(t)I(t+ τ)〉 ≤ 〈I(t)〉2, or 1 ≤ γ(2)(τ) ≤ γ(2)(0),

where 1 ≤ γ(2)(0) < ∞,

for a light source containing a large number of independently photons,

γ(2)(τ) = 1 + |γ(1)(τ)|2,

a relation for all kinds of chaotic light,

since 0 ≤ |γ(1)(τ)|2 ≤ 2, it follows that

1 ≤ γ(2)(τ) ≤ 2,

Ch. 6 in ”The Quantum Theory of Light,” by R. Loudon.
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Photon Bunching: HBT experiment

for all kinds of chaotic light,

1 ≤ γ(2)(τ) ≤ 2,

for source with Lorentzian spectra,

γ(2)(τ) = 1 + e−2|τ |/τ0 ,

for τ → ∞, γ(2)(τ) → 1,

for zero delay, τ → 0, γ(2)(τ) → 2,

Hanbury Brown and Twiss experiment shows that if the photon are emitted
independently by the source, then the photons arrive in pairs at zero time delay,
photon bunching effect.
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Quantum Second-order correlation function

define the normalized first-order quantum coherence function,

g(1)(x1, x2) =
G(1)(x1, x2)

[G(1)(x1, x1)G(1)(x2, x2)]1/2
,

where G(1)(x1, x2) = Tr{ρ̂Ê(−)(x1) · Ê(+)(x2)},

define the second-order quantum coherence function as,

g(2)(x1, x2) =
G(2)(x1, x2)

[G(1)(x1, x1)G(1)(x2, x2)]
,

where g(2)(x1, x2), is the joint probability of detecting one photon at (r1, t1) and
(r2, t2),

at a fixed position, g(2) depends only on the time difference,

g(2)(τ) =
〈Ê(−)(t)Ê(−)(t+ τ)Ê(+)(t+ τ)Ê(+)(t)〉
〈Ê(−)(t)Ê(−)(t)〉〈Ê(−)(t+ τ)Ê(−)(t+ τ)〉

,
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Quantum Second-order correlation function

for a single-mode field,

g(2)(τ) =
〈â†â†ââ〉
〈â†â〉2

=
〈n̂(n̂− 1)〉

〈n̂〉2
= 1 +

〈∆n̂2〉 − 〈n̂〉
〈n̂〉2

,

for a coherent state |α〉,
g(2)(τ) = 1,

which has a Poisson distribution, i.e. ∆n̂2〉 = 〈n̂〉,

for a single-mode thermal state, ρ̂th = 1
Z

∑

exp(−En/kBT )|n〉〈n|,

g(2)(τ) = 2,

for a non-classical state, with sub-Poisson photon number distribution,i.e.
〈∆n̂2〉 < 〈n̂〉,

g(2)(τ) = g(2)(0) < 1,
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Photon-antibunching and single photon source

for a single-mode field,

g(2)(τ) =
〈â†â†ââ〉
〈â†â〉2

=
〈n̂(n̂− 1)〉

〈n̂〉2
= 1 +

〈∆n̂2〉 − 〈n̂〉
〈n̂〉2

,

for a Fock state |n〉,

g(2)(0) = 1 − 1

n
,

for a single photon source, n = 1, g(2)(0) = 0,
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Single photon source in QD micro-disk
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STIRAP
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Spatial quantum noise interferometry with cold atom

Exp: Simon Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and I. Bloch,

Nature 434, 481 (2005).
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