3, Coherent and Squeezed States

- 1. Coherent states
- 2. Squeezed states
- 3. Field Correlation Functions
- 4. Hanbury Brown and Twiss experiment
- 5. Photon Antibunching
- 6. Quantum Phenomena in Simple Nonlinear Optics

Ref:

- Ch. 2, 4, 16 in "Quantum Optics," by M. Scully and M. Zubairy.
- Ch. 3, 4 in "Mesoscopic Quantum Optics," by Y. Yamamoto and A. Imamoglu.
- **Ch. 6** in *"The Quantum Theory of Light,"* by R. Loudon.
- Ch. 5, 7 in "Introductory Quantum Optics," by C. Gerry and P. Knight.
- Ch. 5, 8 in "Quantum Optics," by D. Wall and G. Milburn.

- photons occupy an *electromagnetic mode*, we will always refer to modes in quantum optics, typically a plane wave;
- the energy in a mode is not continuous but discrete in quanta of $\hbar\omega$;
- the observables are just represented by probabilities as usual in quantum mechanics;
- there is a zero point energy inherent to each mode which is equivalent with fluctuations of the electromagnetic field in vacuum, due to uncertainty principle.

Vacuum

vacuum is not just nothing, it is full of energy.

Vacuum

- spontaneous emission is actually stimulated by the vacuum fluctuation of the electromagnetic field,
- one can modify vacuum fluctuations by resonators and photonic crystals,
- atomic stability: the electron does not crash into the core due to vacuum fluctuation of the electromagnetic field,
- gravity is not a fundamental force but a side effect matter modifies the vacuum fluctuations, by Sakharov,
- Casimir effect: two charged metal plates repel each other until Casimir effect overcomes the repulsion,
- **2** Lamb shift: the energy level difference between $2S_{1/2}$ and $2P_{1/2}$ in hydrogen.

Э

Casimir effect

Hendrik Casimir (1909-2000)

there is a force between two metal slabs if brought in close vicinity

5

National

force is due to vacuum fluctuations of the electromagnetic field

S. K. Lamoreaux, "Demonstration of the Casimir Force in the 0.6 to 6 µm Range" Phys. Rev. Lett. 78, 5–8 (1997)

important for micromechanical devices (MEMS)

http://physicsweb.org/articles/world/15/9/6

- Non-commuting observable do not admit common eigenvectors.
- Non-commuting observables can not have definite values simultaneously.
- Simultaneous measurement of non-commuting observables to an arbitrary degree of accuracy is thus *incompatible*.
- ³ variance: $\Delta \hat{A}^2 = \langle \Psi | (\hat{A} \langle \hat{A} \rangle)^2 | \Psi \rangle = \langle \Psi | \hat{A}^2 | \Psi \rangle \langle \Psi | \hat{A} | \Psi \rangle^2$.

$$\Delta A^2 \Delta B^2 \ge \frac{1}{4} [\langle \hat{F} \rangle^2 + \langle \hat{C} \rangle^2],$$

where

$$[\hat{A}, \hat{B}] = i\hat{C},$$
 and $\hat{F} = \hat{A}\hat{B} + \hat{B}\hat{A} - 2\langle\hat{A}\rangle\langle\hat{B}\rangle.$

Take the operators $\hat{A} = \hat{q}$ (position) and $\hat{B} = \hat{p}$ (momentum) for a free particle,

$$[\hat{q}, \hat{p}] = i\hbar \to \langle \Delta \hat{q}^2 \rangle \langle \Delta \hat{p}^2 \rangle \ge \frac{\hbar^2}{4}.$$

- Schwarz inequality: $\langle \phi | \phi \rangle \langle \psi | \psi \rangle \ge \langle \phi | \psi \rangle \langle \psi | \phi \rangle$.
- ² Equality holds if and only if the two states are *linear dependent*, $|\psi\rangle = \lambda |\phi\rangle$, where λ is a complex number.
- uncertainty relation,

$$\Delta A^2 \Delta B^2 \ge \frac{1}{4} [\langle \hat{F} \rangle^2 + \langle \hat{C} \rangle^2],$$

where

方清華

$$[\hat{A}, \hat{B}] = i\hat{C},$$
 and $\hat{F} = \hat{A}\hat{B} + \hat{B}\hat{A} - 2\langle\hat{A}\rangle\langle\hat{B}\rangle.$

- the operator \hat{F} is a measure of correlations between \hat{A} and \hat{B} .
- define two states,

$$|\psi_1\rangle = [\hat{A} - \langle \hat{A} \rangle] |\psi\rangle, \qquad |\psi_2\rangle = [\hat{B} - \langle \hat{B} \rangle] |\psi\rangle,$$

the uncertainty product is minimum, i.e. $|\psi_1\rangle = -i\lambda |\psi_2\rangle$,

$$[\hat{A} + i\lambda\hat{B}]|\psi\rangle = [\langle\hat{A}\rangle + i\lambda\langle\hat{B}\rangle]|\psi\rangle = z|\psi\rangle.$$

the state $|\psi\rangle$ is a minimum uncertainty state.

if $Re(\lambda) = 0$, $\hat{A} + i\lambda\hat{B}$ is a normal operator, which have orthonormal eigenstates.

the variances,

$$\Delta \hat{A}^2 = -\frac{i\lambda}{2} [\langle \hat{F} \rangle + i \langle \hat{C} \rangle], \qquad \Delta \hat{B}^2 = -\frac{i}{2\lambda} [\langle \hat{F} \rangle - i \langle \hat{C} \rangle],$$

 \Im set $\lambda = \lambda_r + i\lambda_i$,

$$\Delta \hat{A}^2 = \frac{1}{2} [\lambda_i \langle \hat{F} \rangle + \lambda_r \langle \hat{C} \rangle], \qquad \Delta \hat{B}^2 = \frac{1}{|\lambda|^2} \Delta \hat{A}^2, \qquad \lambda_i \langle \hat{C} \rangle - \lambda_r \langle \hat{F} \rangle = 0.$$

- $\hat{\bullet}$ if $|\lambda| = 1$, then $\Delta \hat{A}^2 = \Delta \hat{B}^2$, equal variance minimum uncertainty states.
- if $|\lambda| = 1$ along with $\lambda_i = 0$, then $\Delta \hat{A}^2 = \Delta \hat{B}^2$ and $\langle \hat{F} \rangle = 0$, uncorrelated equal variance minimum uncertainty states.
- if $\lambda_r \neq 0$, then $\langle \hat{F} \rangle = \frac{\lambda_i}{\lambda_r} \langle \hat{C} \rangle$, $\Delta \hat{A}^2 = \frac{|\lambda|^2}{2\lambda_r} \langle \hat{C} \rangle$, $\Delta \hat{B}^2 = \frac{1}{2\lambda_r} \langle \hat{C} \rangle$. If \hat{C} is a positive operator then the minimum uncertainty states exist only if $\lambda_r > 0$.

Minimum Uncertainty State

$$(\hat{q} - \langle \hat{q} \rangle) |\psi\rangle = -i\lambda(\hat{p} - \langle \hat{p} \rangle) |\psi\rangle$$

$${f O}$$
 if we define $\lambda=e^{-2r}$, then

$$(e^{r}\hat{q} + ie^{-r}\hat{p})|\psi\rangle = (e^{r}\langle\hat{q}\rangle + ie^{-r}\langle\hat{p}\rangle)|\psi\rangle,$$

- the minimum uncertainty state is defined as an *eigenstate* of a non-Hermitian operator $e^r \hat{q} + i e^{-r} \hat{p}$ with a c-number eigenvalue $e^r \langle \hat{q} \rangle + i e^{-r} \langle \hat{p} \rangle$.
- **?** the variances of \hat{q} and \hat{p} are

$$\langle \Delta \hat{q}^2 \rangle = \frac{\hbar}{2} e^{-2r}, \qquad \langle \Delta \hat{p}^2 \rangle = \frac{\hbar}{2} e^{2r}.$$

Quantization of EM fields

• the Hamiltonian for EM fields becomes: $\hat{H} = \sum_{j} \hbar \omega_{j} (\hat{a}_{j}^{\dagger} \hat{a}_{j} + \frac{1}{2}),$

the electric and magnetic fields become,

$$\hat{E}_x(z,t) = \sum_j \left(\frac{\hbar\omega_j}{\epsilon_0 V}\right)^{1/2} [\hat{a}_j e^{-i\omega_j t} + \hat{a}_j^{\dagger} e^{i\omega_j t}] \sin(k_j z),$$
$$= \sum_j c_j [\hat{a}_{1j} \cos\omega_j t + \hat{a}_{2j} \sin\omega_j t] u_j(r),$$

Phase diagram for EM waves

Electromagnetic waves can be represented by

$$\hat{E}(t) = E_0[\hat{X}_1 \sin(\omega t) - \hat{X}_2 \cos(\omega t)]$$

where

 \hat{X}_1 = amplitude quadrature \hat{X}_2 = phase quadrature

the electric and magnetic fields become,

$$\hat{E}_x(z,t) = \sum_j \left(\frac{\hbar\omega_j}{\epsilon_0 V}\right)^{1/2} [\hat{a}_j e^{-i\omega_j t} + \hat{a}_j^{\dagger} e^{i\omega_j t}] \sin(k_j z),$$
$$= \sum_j c_j [\hat{a}_{1j} \cos \omega_j t + \hat{a}_{2j} \sin \omega_j t] u_j(r),$$

? note that \hat{a} and \hat{a}^{\dagger} are not hermitian operators, but $(\hat{a}^{\dagger})^{\dagger} = \hat{a}$.

- $\hat{a}_1 = \frac{1}{2}(\hat{a} + \hat{a}^{\dagger})$ and $\hat{a}_2 = \frac{1}{2i}(\hat{a} \hat{a}^{\dagger})$ are two Hermitian (quadrature) operators.
- the commutation relation for \hat{a} and \hat{a}^{\dagger} is $[\hat{a}, \hat{a}^{\dagger}] = 1$,
- the commutation relation for \hat{a} and \hat{a}^{\dagger} is $[\hat{a}_1, \hat{a}_2] = \frac{i}{2}$,

and
$$\langle \Delta \hat{a}_1^2 \rangle \langle \Delta \hat{a}_2^2 \rangle \geq \frac{1}{16}.$$

Minimum Uncertainty State

$$(\hat{a}_1 - \langle \hat{a}_1 \rangle) |\psi\rangle = -i\lambda(\hat{a}_2 - \langle \hat{a}_2 \rangle) |\psi\rangle$$

- if we define $\lambda = e^{-2r}$, then $(e^r \hat{a}_1 + i e^{-r} \hat{a}_2) |\psi\rangle = (e^r \langle \hat{a}_1 \rangle + i e^{-r} \langle \hat{a}_2 \rangle) |\psi\rangle$,
- the minimum uncertainty state is defined as an *eigenstate* of a non-Hermitian operator $e^r \hat{a}_1 + i e^{-r} \hat{a}_2$ with a c-number eigenvalue $e^r \langle \hat{a}_1 \rangle + i e^{-r} \langle \hat{a}_2 \rangle$.
- the variances of \hat{a}_1 and \hat{a}_2 are

$$\langle \Delta \hat{a}_1^2 \rangle = \frac{1}{4} e^{-2r}, \qquad \langle \Delta \hat{a}_2^2 \rangle = \frac{1}{4} e^{2r}.$$

- here r is referred as the squeezing parameter.
- when r = 0, the two quadrature amplitudes have identical variances,

$$\langle \Delta \hat{a}_1^2 \rangle = \langle \Delta \hat{a}_2^2 \rangle = \frac{1}{4},$$

in this case, the non-Hermitian operator, $e^r \hat{a}_1 + ie^{-r} \hat{a}_2 = \hat{a}_1 + i\hat{a}_2 = \hat{a}$, and this minimum uncertainty state is termed a *coherent state* of the electromagnetic field, an $\hat{a} \neq \hat{a}_1 + \hat{a}_2 = \hat{a}_1 + \hat{a}_2 + \hat{a}_$

Coherent States

in this case, the non-Hermitian operator, $e^r \hat{a}_1 + i e^{-r} \hat{a}_2 = \hat{a}_1 + i \hat{a}_2 = \hat{a}$, and this minimum uncertainty state is termed a *coherent state* of the electromagnetic field, an eigenstate of the annihilation operator,

$$\hat{a}|\alpha\rangle = \alpha |\alpha\rangle.$$

expand the coherent states in the basis of number states,

$$|\alpha\rangle = \sum_{n} |n\rangle \langle n|\alpha\rangle = \sum_{n} |n\rangle \langle 0|\frac{\hat{a}^{n}}{\sqrt{n!}}|\alpha\rangle = \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}} \langle 0|\alpha\rangle |n\rangle,$$

imposing the normalization condition, $\langle \alpha | \alpha \rangle = 1$, we obtain,

$$1 = \langle \alpha | \alpha \rangle = \sum_{n} \sum_{m} \langle m | n \rangle \frac{(\alpha^*)^m \alpha^n}{\sqrt{m!} \sqrt{n!}} = e^{|\alpha|^2} |\langle 0 | \alpha \rangle|^2,$$

ational Tsing

$$|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle,$$

Properties of Coherent States

the coherent state can be expressed using the photon number eigenstates,

$$|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle,$$

the probability of finding the photon number n for the coherent state obeys the *Poisson distribution*,

$$P(n) \equiv |\langle n | \alpha \rangle|^2 = \frac{e^{-|\alpha|^2} |\alpha|^{2n}}{n!},$$

the mean and variance of the photon number for the coherent state |lpha
angle are,

$$\langle \hat{n} \rangle = \sum_{n} n P(n) = |\alpha|^{2},$$

$$\langle \Delta \hat{n}^{2} \rangle = \langle \hat{n}^{2} \rangle - \langle \hat{n} \rangle^{2} = |\alpha|^{2} = \langle \hat{n} \rangle,$$

Poisson distribution

Photon number statistics

- For photons are independent of each other, the probability of occurrence of n photons, or photoelectrons in a time interval T is random. Divide T into N intervals, the probability to find one photon per interval is, $p = \bar{n}/N$,
- the probability to find no photon per interval is, 1 p,
- \circ the probability to find *n* photons per interval is,

$$P(n) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n},$$

which is a binomial distribution.

when $N
ightarrow \infty$,

Э

$$P(n) = \frac{\bar{n}^n \exp(-\bar{n})}{n!},$$

National Taing Hua uthis is the Poisson distribution and the characteristics of coherent light.

Real life Poisson distribution

IPT5340, Fall '06 - p.18/85

Displacement operator

Coherent states are generated by translating the vacuum state $|0\rangle$ to have a finite excitation amplitude α ,

$$\begin{aligned} |\alpha\rangle &= e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{(\alpha \hat{a}^{\dagger})^n}{n!} |0\rangle, \\ &= e^{-\frac{1}{2}|\alpha|^2} e^{\alpha \hat{a}^{\dagger}} |0\rangle, \end{aligned}$$

since
$$\hat{a}|0
angle=0$$
, we have $e^{-lpha^{*}\hat{a}}|0
angle=0$ and

0

$$|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} e^{\alpha \hat{a}^{\dagger}} e^{-\alpha^* \hat{a}} |0\rangle,$$

- any two noncommuting operators \hat{A} and \hat{B} satisfy the Baker-Hausdorff relation, $e^{\hat{A}+\hat{B}} = e^{\hat{A}}e^{\hat{B}}e^{-\frac{1}{2}[\hat{A},\hat{B}]}$, provided $[\hat{A}, [\hat{A}, \hat{B}]] = 0$,
- \Im using $\hat{A} = \alpha \hat{a}^{\dagger}$, $\hat{B} = -\alpha^* \hat{a}$, and $[\hat{A}, \hat{B}] = |\alpha|^2$, we have,

$$|\alpha\rangle = \hat{D}(\alpha)|0\rangle = e^{-\alpha \hat{a}^{\dagger} - \alpha^{*}\hat{a}}|0\rangle,$$

where $\hat{D}(\alpha)$ is the *displacement operator*, which is physically realized by a classical <u>oscillating current</u>.

the coherent state is the displaced form of the harmonic oscillator ground state,

$$|\alpha\rangle = \hat{D}(\alpha)|0\rangle = e^{-\alpha \hat{a}^{\dagger} - \alpha^{*}\hat{a}}|0\rangle,$$

where $\hat{D}(\alpha)$ is the *displacement operator*, which is physically realized by a classical oscillating current,

the displacement operator $\hat{D}(\alpha)$ is a unitary operator, i.e.

$$\hat{D}^{\dagger}(\alpha) = \hat{D}(-\alpha) = [\hat{D}(\alpha)]^{-1},$$

 $\hat{D}(\alpha)$ acts as a displacement operator upon the amplitudes \hat{a} and \hat{a}^{\dagger} , i.e.

$$\hat{D}^{-1}(\alpha)\hat{a}\hat{D}(\alpha) = \hat{a} + \alpha,$$

$$\hat{D}^{-1}(\alpha)\hat{a}^{\dagger}\hat{D}(\alpha) = \hat{a}^{\dagger} + \alpha^{*},$$

Radiation from a classical current

the Hamiltonian (p · A) that describes the interaction between the field and the current is given by

$$\mathbf{V} = \int \mathbf{J}(r,t) \cdot \hat{A}(r,t) \mathrm{d}^3 r,$$

where $\mathbf{J}(r,t)$ is the classical current and $\hat{A}(r,t)$ is quantized vector potential,

$$\hat{A}(r,t) = -i\sum_k \frac{1}{\omega_k} E_k \hat{a}_k e^{-i\omega_k t + ik\cdot r} + \text{H.c.},$$

the interaction picture Schrödinger equation obeys,

$$\frac{\mathrm{d}}{\mathrm{d}t}|\Psi(t)\rangle = -\frac{i}{\hbar}\mathbf{V}|\Psi(t)\rangle,$$

? the solution is
$$|\Psi(t)\rangle = \prod_k \exp[\alpha_k \hat{a}^{\dagger} - \alpha_k^* \hat{a}_k]|0\rangle_k$$
, where $\alpha_k = \frac{1}{\hbar\omega_k} E_k \int_0^t dt' \int dr \mathbf{J}(r,t) e^{i\omega t' - ik \cdot r}$,

this state of radiation field is called a coherent state,

 $|\alpha\rangle = (\alpha \hat{a}^{\dagger} - \alpha^* \hat{a})|0\rangle.$

Properties of Coherent States

- The probability of finding n photons in $|\alpha\rangle$ is given by a Poisson distribution,
- the coherent state is a minimum-uncertainty states,
- **?** the set of all coherent states $|\alpha\rangle$ is a complete set,

$$\int |\alpha\rangle \langle \alpha | \mathsf{d}^2 \alpha = \pi \sum_n |n\rangle \langle n|, \quad \text{or} \quad \frac{1}{\pi} \int |\alpha\rangle \langle \alpha | \mathsf{d}^2 \alpha = 1,$$

two coherent states corresponding to different eigenstates α and β are not orthogonal,

$$\langle \alpha | \beta \rangle = \exp(-\frac{1}{2} |\alpha|^2 + \alpha^*\beta - \frac{1}{2} |\beta|^2) = \exp(-\frac{1}{2} |\alpha - \beta|^2),$$

• coherent states are *approximately* orthogonal only in the limit of large separation of the two eigenvalues, $|\alpha - \beta| \rightarrow \infty$,

Properties of Coherent States

therefore, any coherent state can be expanded using other coherent state,

$$|\alpha\rangle = \frac{1}{\pi} \int \mathrm{d}^2\beta |\beta\rangle \langle\beta|\alpha\rangle = \frac{1}{\pi} \int \mathrm{d}^2\beta e^{-\frac{1}{2}|\beta-\alpha|^2} |\beta\rangle,$$

- this means that a coherent state forms an overcomplete set,
- the simultaneous measurement of \hat{a}_1 and \hat{a}_2 , represented by the projection operator $|\alpha\rangle\langle\alpha|$, is not an exact measurement but instead an approximate measurement with a finite measurement error.

q-representation of the coherent state

coherent state is defined as the eigenstate of the annihilation operator,

$$\hat{a}|\alpha\rangle = \alpha |\alpha\rangle,$$

where
$$\hat{a}=rac{1}{\sqrt{2\hbar\omega}}(\omega\hat{q}+i\hat{p})_{z}$$

 \circ the *q*-representation of the coherent state is,

$$(\omega q + \hbar \frac{\partial}{\partial q}) \langle q | \alpha \rangle = \sqrt{2\hbar\omega} \alpha \langle q | \alpha \rangle,$$

with the solution,

$$\langle q | \alpha \rangle = (\frac{\omega}{\pi \hbar})^{1/4} \exp[-\frac{\omega}{2\hbar} (q - \langle q \rangle)^2 + i \frac{\langle p \rangle}{\hbar} q + i\theta],$$

where θ is an arbitrary real phase,

Expectation value of the electric field

 \circ for a single mode electric field, polarized in the x-direction,

$$\hat{E}_x = E_0[\hat{a}(t) + \hat{a}^{\dagger}(t)]\sin kz,$$

the expectation value of the electric field operator,

$$\langle \alpha | \hat{E}(t) | \alpha \rangle = E_0 [\alpha e^{-i\omega t} + \alpha^* e^{i\omega t}] \sin kz = 2E_0 |\alpha| \cos(\omega t + \phi) \sin kz,$$

similar,

$$\langle \alpha | \hat{E}(t)^2 | \alpha \rangle = E_0^2 [4|\alpha|^2 \cos^2(\omega t + \phi) + 1] \sin^2 kz,$$

the root-mean-square deviation int the electric field is,

$$\langle \Delta \hat{E}(t)^2 \rangle^{1/2} = \sqrt{\frac{\hbar\omega}{2\epsilon_0 V}} |\sin kz|,$$

 $\hat{\bullet}$ $\langle \Delta \hat{E}(t)^2 \rangle^{1/2}$ is independent of the field strength $|\alpha|$,

The state $|\alpha| \gg 1$ can be treated as a *classical* EM field.

Phase diagram for coherent states

Generation of Coherent States

In classical mechanics we can excite a SHO into motion by, e.g. stretching the spring to a new equilibrium position,

$$\hat{H} = \frac{p^2}{2m} + \frac{1}{2}kx^2 - eE_0x,$$

= $\frac{p^2}{2m} + \frac{1}{2}k(x - \frac{eE_0}{k})^2 - \frac{1}{2}(\frac{eE_0}{k})^2,$

- ³ upon turning off the dc field, i.e. $E_0 = 0$, we will have a coherent state $|\alpha\rangle$ which oscillates without changing its shape,
- applying the dc field to the SHO is mathematically equivalent to applying the displacement operator to the state $|0\rangle$.

Generation of Coherent States

a classical external force f(t) couples linearly to the generalized coordinate of the harmonic oscillator,

$$\hat{H} = \hbar\omega(\hat{a}\hat{a}^{\dagger} + \frac{1}{2}) + \hbar[f(t)\hat{a} + f^{*}(t)\hat{a}^{\dagger}],$$

for the initial state $|\Psi(0)\rangle = |0\rangle$, the solution is

$$|\Psi(t)\rangle = \exp[A(t) + C(t)\hat{a}^{\dagger}]|0\rangle,$$

where

$$A(t) = -\int_0^t \mathrm{d}t \, f(t'') \int_0^{t''} \mathrm{d}t' e^{i\omega(t'-t'')} f(t'), \qquad C(t) = -i \int_0^t \mathrm{d}t' e^{i\omega(t'-t)} f^*(t'),$$

When the classical driving force f(t) is resonant with the harmonic oscillator, $f(t) = f_0 e^{i\omega t}$, we have

$$C(t) = -ie^{-i\omega t} f_0 t \equiv \alpha, \quad A(t) = -\frac{1}{2} (f_0 t)^2 = -\frac{|\alpha|^2}{2}, \quad \text{and} \quad |\Psi(t)\rangle = |\alpha\rangle.$$
National Tsing Hua University

Attenuation of Coherent States

- Glauber showed that a classical oscillating current in free space produces a multimode coherent state of light.
- The quantum noise of a laser operating at far above threshold is close to that of a coherent state.
- A coherent state does not change its quantum noise properties if it is attenuated,
- a beam splitter with inputs combined by a coherent state and a vacuum state $|0\rangle$,

 $\hat{H}_I = \hbar \kappa (\hat{a}^{\dagger} \hat{b} + \hat{a} \hat{b}^{\dagger}),$ interaction Hamiltonian

where κ is a coupling constant between two modes,

? the output state is, with $\beta = \sqrt{T}\alpha$ and $\gamma = \sqrt{1 - T}\alpha$,

 $|\Psi\rangle_{\text{out}} = \hat{U}|\alpha\rangle_a |0\rangle_b = |\beta\rangle_a |\gamma\rangle_b, \quad \text{with} \quad \hat{U} = \exp[i\kappa(\hat{a}^{\dagger}\hat{b} + \hat{a}\hat{b}^{\dagger})t],$

The reservoirs consisting of ground state harmonic oscillators inject the vacuum fluctuation and partially replace the original quantum noise of the coherent state.

المعند المعن

Uncertainty Principle: $\Delta \hat{X}_1 \Delta \hat{X}_2 \ge 1$.

- 1. Coherent states: $\Delta \hat{X}_1 = \Delta \hat{X}_2 = 1$,
- 2. Amplitude squeezed states: $\Delta \hat{X}_1 < 1$,
- 3. Phase squeezed states: $\Delta \hat{X}_2 < 1$,
- 4. Quadrature squeezed states.

Squeezed States and SHO

- Suppose we again apply a dc field to SHO but with a *wall* which limits the SHO to a finite region,
- in such a case, it would be expected that the wave packet would be deformed or 'squeezed' when it is pushed against the barrier.
- Similarly the quadratic displacement potential would be expected to produce a squeezed wave packet,

$$\hat{H} = \frac{p^2}{2m} + \frac{1}{2}kx^2 - eE_0(ax - bx^2),$$

where the ax term will displace the oscillator and the bx^2 is added in order to give us a barrier,

$$\hat{H} = \frac{p^2}{2m} + \frac{1}{2}(k + 2ebE_0)x^2 - eaE_0x,$$

We again have a displaced ground state, but with the larger effective spring constant $k' = k + 2ebE_0$.

Squeezed Operator

- To generate squeezed state, we need quadratic terms in x, i.e. terms of the form $(\hat{a} + \hat{a}^{\dagger})^2$,
- for the degenerate parametric process, i.e. two-photon, its Hamiltonian is

$$\hat{H} = i\hbar(g\hat{a}^{\dagger 2} - g^*\hat{a}^2),$$

where g is a coupling constant.

the state of the field generated by this Hamiltonian is

$$|\Psi(t)\rangle = \exp[(g\hat{a}^{\dagger 2} - g^{*}\hat{a}^{2})t]|0\rangle,$$

$$\hat{S}(\xi) = \exp[\frac{1}{2}\xi^* \hat{a}^2 - \frac{1}{2}\xi \hat{a}^{\dagger 2}]$$

where $\xi = r \exp(i\theta)$ is an arbitrary complex number.

Properties of Squeezed Operator

define the unitary squeeze operator

$$\hat{S}(\xi) = \exp[\frac{1}{2}\xi^* \hat{a}^2 - \frac{1}{2}\xi \hat{a}^{\dagger 2}]$$

where $\xi = r \exp(i\theta)$ is an arbitrary complex number.

squeeze operator is unitary, $\hat{S}^{\dagger}(\xi) = \hat{S}^{-1}(\xi) = \hat{S}(-\xi)$,and the unitary transformation of the squeeze operator,

$$\hat{S}^{\dagger}(\xi)\hat{a}\hat{S}(\xi) = \hat{a}\cosh r - \hat{a}^{\dagger}e^{i\theta}\sinh r,$$
$$\hat{S}^{\dagger}(\xi)\hat{a}^{\dagger}\hat{S}(\xi) = \hat{a}^{\dagger}\cosh r - \hat{a}e^{-i\theta}\sinh r,$$

with the formula $e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + [\hat{A}, \hat{B}] + \frac{1}{2!}[\hat{A}, [\hat{A}, \hat{B}]], \dots$

A squeezed coherent state $|\alpha, \xi\rangle$ is obtained by first acting with the displacement operator $\hat{D}(\alpha)$ on the vacuum followed by the squeezed operator $\hat{S}(\xi)$, i.e.

$$|\alpha,\xi\rangle = \hat{S}(\xi)\hat{D}(\alpha)|0\rangle,$$

译國这清華城標 $\alpha = |\alpha|\exp(i\psi).$

if $Re(\lambda) = 0$, $\hat{A} + i\lambda\hat{B}$ is a normal operator, which have orthonormal eigenstates.

the variances,

$$\Delta \hat{A}^2 = -\frac{i\lambda}{2} [\langle \hat{F} \rangle + i \langle \hat{C} \rangle], \qquad \Delta \hat{B}^2 = -\frac{i}{2\lambda} [\langle \hat{F} \rangle - i \langle \hat{C} \rangle],$$

 \Im set $\lambda = \lambda_r + i\lambda_i$,

$$\Delta \hat{A}^2 = \frac{1}{2} [\lambda_i \langle \hat{F} \rangle + \lambda_r \langle \hat{C} \rangle], \qquad \Delta \hat{B}^2 = \frac{1}{|\lambda|^2} \Delta \hat{A}^2, \qquad \lambda_i \langle \hat{C} \rangle - \lambda_r \langle \hat{F} \rangle = 0.$$

- $\hat{\bullet}$ if $|\lambda| = 1$, then $\Delta \hat{A}^2 = \Delta \hat{B}^2$, equal variance minimum uncertainty states.
- if $|\lambda| = 1$ along with $\lambda_i = 0$, then $\Delta \hat{A}^2 = \Delta \hat{B}^2$ and $\langle \hat{F} \rangle = 0$, uncorrelated equal variance minimum uncertainty states.
- if $\lambda_r \neq 0$, then $\langle \hat{F} \rangle = \frac{\lambda_i}{\lambda_r} \langle \hat{C} \rangle$, $\Delta \hat{A}^2 = \frac{|\lambda|^2}{2\lambda_r} \langle \hat{C} \rangle$, $\Delta \hat{B}^2 = \frac{1}{2\lambda_r} \langle \hat{C} \rangle$. If \hat{C} is a positive operator then the minimum uncertainty states exist only if $\lambda_r > 0$.

Minimum Uncertainty State

$$(\hat{a}_1 - \langle \hat{a}_1 \rangle) |\psi\rangle = -i\lambda(\hat{a}_2 - \langle \hat{a}_2 \rangle) |\psi\rangle$$

if we define $\lambda = e^{-2r}$, then

$$(e^r \hat{a}_1 + i e^{-r} \hat{a}_2) |\psi\rangle = (e^r \langle \hat{a}_1 \rangle + i e^{-r} \langle \hat{a}_2 \rangle) |\psi\rangle,$$

- the minimum uncertainty state is defined as an *eigenstate* of a non-Hermitian operator $e^r \hat{a}_1 + i e^{-r} \hat{a}_2$ with a c-number eigenvalue $e^r \langle \hat{a}_1 \rangle + i e^{-r} \langle \hat{a}_2 \rangle$.
- **?** the variances of \hat{a}_1 and \hat{a}_2 are

$$\langle \Delta \hat{a}_1^2 \rangle = \frac{1}{4} e^{-2r}, \qquad \langle \Delta \hat{a}_2^2 \rangle = \frac{1}{4} e^{2r}.$$

Squeezed State

define the squeezed state as

lational Tsing

$$|\Psi_s\rangle = \hat{S}(\xi)|\Psi\rangle,$$

where the unitary squeeze operator

$$\hat{S}(\xi) = \exp[\frac{1}{2}\xi^* \hat{a}^2 - \frac{1}{2}\xi \hat{a}^{\dagger 2}]$$

where $\xi = r \exp(i\theta)$ is an arbitrary complex number.

Squeeze operator is unitary, $\hat{S}^{\dagger}(\xi) = \hat{S}^{-1}(\xi) = \hat{S}(-\xi)$, and the unitary transformation of the squeeze operator,

$$\hat{S}^{\dagger}(\xi)\hat{a}\hat{S}(\xi) = \hat{a}\cosh r - \hat{a}^{\dagger}e^{i\theta}\sinh r,$$
$$\hat{S}^{\dagger}(\xi)\hat{a}^{\dagger}\hat{S}(\xi) = \hat{a}^{\dagger}\cosh r - \hat{a}e^{-i\theta}\sinh r,$$

for $|\Psi\rangle$ is the vacuum state $|0\rangle$, the $|\Psi_s\rangle$ state is the squeezed vacuum,

$$|\xi\rangle = \hat{S}(\xi)|0\rangle,$$
Squeezed Vacuum State

• for $|\Psi\rangle$ is the vacuum state $|0\rangle$, the $|\Psi_s\rangle$ state is the squeezed vacuum,

$$|\xi\rangle = \hat{S}(\xi)|0\rangle,$$

the variances for squeezed vacuum are

$$\Delta \hat{a}_1^2 = \frac{1}{4} [\cosh^2 r + \sinh^2 r - 2\sinh r \cosh r \cos \theta],$$

$$\Delta \hat{a}_2^2 = \frac{1}{4} [\cosh^2 r + \sinh^2 r + 2\sinh r \cosh r \cos \theta],$$

for $\theta = 0$, we have

$$\Delta \hat{a}_1^2 = \frac{1}{4} e^{-2r}, \quad \text{and} \quad \Delta \hat{a}_2^2 = \frac{1}{4} e^{+2r},$$

and squeezing exists in the \hat{a}_1 quadrature.

for $\theta = \pi$, the squeezing will appear in the \hat{a}_2 quadrature.

◆國立清華大學 National Tsing Hua University

Quadrature Operators

 \circ define a rotated complex amplitude at an angle $\theta/2$

$$\hat{Y}_1 + i\hat{Y}_2 = (\hat{a}_1 + i\hat{a}_2)e^{-i\theta/2} = \hat{a}e^{-i\theta/2},$$

where

$$\begin{pmatrix} \hat{Y}_1 \\ \hat{Y}_2 \end{pmatrix} = \begin{pmatrix} \cos\theta/2 & \sin\theta/2 \\ -\sin\theta/2 & \cos\theta/2 \end{pmatrix} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix}$$

then
$$\hat{S}^{\dagger}(\xi)(\hat{Y}_1 + i\hat{Y}_2)\hat{S}(\xi) = \hat{Y}_1e^{-r} + i\hat{Y}_2e^r$$
,

the quadrature variance

$$\Delta \hat{Y}_1^2 = \frac{1}{4}e^{-2r}, \quad \Delta \hat{Y}_2^2 = \frac{1}{4}e^{+2r}, \quad \text{and} \quad \Delta \hat{Y}_1 \Delta \hat{Y}_2 = \frac{1}{4},$$

in the complex amplitude plane the coherent state error circle is squeezed into an error ellipse of the same area,

The degree of squeezing is determined by $r = |\xi|$ which is called the squeezed parameter.

Vacuum, Coherent, and Squeezed states

quad-squeezed

phase-squeezed

「「國立清單P大SQUEEZEd
National Tsing Hua University

Squeezed Coherent State

A squeezed coherent state $|\alpha, \xi\rangle$ is obtained by first acting with the displacement operator $\hat{D}(\alpha)$ on the vacuum followed by the squeezed operator $\hat{S}(\xi)$, i.e.

$$|\alpha,\xi\rangle = \hat{D}(\alpha)\hat{S}(\xi)|0\rangle,$$

where $\hat{S}(\xi) = \exp[\frac{1}{2}\xi^{*}\hat{a}^{2} - \frac{1}{2}\xi\hat{a}^{\dagger 2}]$,

- for $\xi = 0$, we obtain just a coherent state.
- the expectation values,

 $\langle \alpha, \xi | \hat{a} | \alpha, \xi \rangle = \alpha, \quad \langle \hat{a}^2 \rangle = \alpha^2 - e^{i\theta} \sinh r \cosh r, \quad \text{and} \quad \langle \hat{a}^{\dagger} \hat{a} \rangle = |\alpha|^2 + \sinh^2 r,$

with helps of $\hat{D}^{\dagger}(\alpha)\hat{a}\hat{D}(\alpha) = \hat{a} + \alpha$ and $\hat{D}^{\dagger}(\alpha)\hat{a}^{\dagger}\hat{D}(\alpha) = \hat{a}^{\dagger} + \alpha^{*}$,

- for $r \to 0$ we have coherent state, and $\alpha \to 0$ we have squeezed vacuum.
- **o** furthermore

$$\langle \alpha, \xi | \hat{Y}_1 + i \hat{Y}_2 | \alpha, \xi \rangle = \alpha e^{-i\theta/2}, \quad \langle \Delta \hat{Y}_1^2 \rangle = \frac{1}{4} e^{-2r}, \quad \text{and} \qquad \langle \Delta \hat{Y}_2^2 \rangle = \frac{1}{4} e^{+2r},$$

Squeezed State

? from the vacuum state
$$\hat{a}|0\rangle = 0$$
, we have

$$\hat{S}(\xi)\hat{a}\hat{S}^{\dagger}(\xi)\hat{S}(\xi)|0\rangle = 0, \quad \text{or} \quad \hat{S}(\xi)\hat{a}\hat{S}^{\dagger}(\xi)|\xi\rangle = 0,$$

since
$$\hat{S}(\xi)\hat{a}\hat{S}^{\dagger}(\xi) = \hat{a}\cosh r + \hat{a}^{\dagger}e^{i\theta}\sinh r \equiv \mu\hat{a} + \nu\hat{a}^{\dagger}$$
, we have,

$$(\mu \hat{a} + \nu \hat{a}^{\dagger}) |\xi\rangle = 0,$$

the squeezed vacuum state is an eigenstate of the operator $\mu \hat{a} + \nu \hat{a}^{\dagger}$ with eigenvalue zero.

$$\hat{D}(\alpha)\hat{S}(\xi)\hat{a}\hat{S}^{\dagger}(\xi)\hat{D}^{\dagger}(\alpha)\hat{D}(\alpha)|\xi\rangle = 0,$$

with the relation $\hat{D}(\alpha)\hat{a}\hat{D}^{\dagger}(\alpha) = \hat{a} - \alpha$, we have

 $(\mu \hat{a} + \nu \hat{a}^{\dagger}) |\alpha, \xi\rangle = (\alpha \cosh r + \alpha^* \sinh r) |\alpha, \xi\rangle \equiv \gamma |\alpha, \xi\rangle,$

Squeezed State and Minimum Uncertainty State

write the eigenvalue problem for the squeezed state

$$(\mu \hat{a} + \nu \hat{a}^{\dagger}) |\alpha, \xi\rangle = (\alpha \cosh r + \alpha^* \sinh r) |\alpha, \xi\rangle \equiv \gamma |\alpha, \xi\rangle,$$

in terms of in terms of $\hat{a} = (\hat{Y}_1 + i\hat{Y}_2)e^{i\theta/2}$ we have

$$(\hat{Y}_1 + ie^{-2r}\hat{Y}_2)|\alpha,\xi\rangle = \beta_1|\alpha,\xi\rangle,$$

where

$$\beta_1 = \gamma e^{-r} e^{-i\theta/2} = \langle \hat{Y}_1 \rangle + i \langle \hat{Y}_2 \rangle e^{-2r},$$

 \circ in terms of \hat{a}_1 and \hat{a}_2 we have

$$(\hat{a}_1 + i\lambda\hat{a}_2^{\dagger})|\alpha,\xi\rangle = \beta_2|\alpha,\xi\rangle,$$

where

$$\lambda = rac{\mu -
u}{\mu +
u}, \quad ext{and} \quad eta_2 = rac{\gamma}{\mu +
u},$$

Squeezed State in the basis of Number states

consider squeezed vacuum state first,

$$\xi\rangle = \sum_{n=0}^{\infty} C_n |n\rangle,$$

with the operator of $(\mu \hat{a} + \nu \hat{a}^{\dagger}) |\xi\rangle = 0$, we have

$$C_{n+1} = -\frac{\nu}{\mu} (\frac{n}{n+1})^{1/2} C_{n-1},$$

only the even photon states have the solutions,

$$C_{2m}(-1)^m (e^{i\theta} \tanh r)^m [\frac{(2m-1)!!}{(2m)!!}]^{1/2} C_0,$$

where C_0 can be determined from the normalization, i.e. $C_0 = \sqrt{\cosh r}$,

the squeezed vacuum state is

lational Tsing Hua

$$|\xi\rangle = \frac{1}{\sqrt{\cosh r}} \sum_{m=0}^{\infty} (-1)^m \frac{\sqrt{(2m)!}}{2^m m!} e^{im\theta} \tanh^m r |2m\rangle,$$

Squeezed State in the basis of Number states

the squeezed vacuum state is

$$|\xi\rangle = \frac{1}{\sqrt{\cosh r}} \sum_{m=0}^{\infty} (-1)^m \frac{\sqrt{(2m)!}}{2^m m!} e^{im\theta} \tanh^m r |2m\rangle,$$

The probability of detecting 2m photons in the field is

$$P_{2m} = |\langle 2m|\xi\rangle|^2 = \frac{(2m)!}{2^{2m}(m!)^2} \frac{\tanh^{2m} r}{\cosh r},$$

? for detecting
$$2m + 1$$
 states $P_{2m+1} = 0$,

- the photon probability distribution for a squeezed vacuum state is oscillatory, vanishing for all odd photon numbers,
- the shape of the squeezed vacuum state resembles that of thermal radiation.

Number distribution of the Squeezed State

Number distribution of the Squeezed Coherent State

For a squeezed coherent state,

$$P_n = |\langle n | \alpha, \xi \rangle|^2 = \frac{(\frac{1}{2} \tanh r)^n}{n! \cosh r} \exp[-|\alpha|^2 - \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) \tanh r] \mathsf{H}_n^2 (\gamma (e^{i\theta} \sinh(2r))^{-1/2}) + \frac{1}{2} (\alpha^{*2} e^{i\theta} + \alpha^2 e^{-i\theta}) + \frac{1}{2} (\alpha^{*2} e^{-i$$

Number distribution of the Squeezed Coherent State

A squeezed coherent state $|\alpha, \xi\rangle$ is obtained by first acting with the displacement operator $\hat{D}(\alpha)$ on the vacuum followed by the squeezed operator $\hat{S}(\xi)$, i.e.

$$|\alpha,\xi\rangle = \hat{D}(\alpha)\hat{S}(\xi)|0\rangle,$$

the expectation values,

 $\langle \hat{a}^{\dagger} \hat{a} \rangle = |\alpha|^2 + \sinh^2 r,$

Generations of Squeezed States

- Generation of quadrature squeezed light are based on some sort of *parametric* process utilizing various types of nonlinear optical devices.
- for degenerate parametric down-conversion, the nonlinear medium is pumped by a field of frequency ω_p and that field are converted into pairs of identical photons, of frequency $\omega = \omega_p/2$ each,

$$\hat{H} = \hbar \omega \hat{a}^{\dagger} \hat{a} + \hbar \omega_p \hat{b}^{\dagger} \hat{b} + i\hbar \chi^{(2)} (\hat{a}^2 \hat{b}^{\dagger} - \hat{a}^{\dagger 2} \hat{b}),$$

where b is the pump mode and a is the signal mode.

- assume that the field is in a coherent state $|\beta e^{-i\omega_p t}\rangle$ and approximate the operators \hat{b} and \hat{b}^{\dagger} by classical amplitude $\beta e^{-i\omega_p t}$ and $\beta^* e^{i\omega_p t}$, respectively,
- we have the interaction Hamiltonian for degenerate parametric down-conversion,

$$\hat{H}_I = i\hbar(\eta^* \hat{a}^2 - \eta \hat{a}^{\dagger 2}),$$

where $\eta = \chi^{(2)}\beta$.

Generations of Squeezed States

we have the interaction Hamiltonian for degenerate parametric down-conversion,

$$\hat{H}_I = i\hbar(\eta^*\hat{a}^2 - \eta\hat{a}^{\dagger 2}),$$

where $\eta = \chi^{(2)}\beta$, and the associated evolution operator,

$$\hat{U}_{I}(t) = \exp[-i\hat{H}_{I}t/\bar{]} = \exp[(\eta^{*}\hat{a}^{2} - \eta\hat{a}^{\dagger 2})t] \equiv \hat{S}(\xi),$$

with $\xi = 2\eta t$.

for degenerate four-wave mixing, in which two pump photons are converted into two signal photons of the same frequency,

$$\hat{H} = \hbar \omega \hat{a}^{\dagger} \hat{a} + \hbar \omega \hat{b}^{\dagger} \hat{b} + i\hbar \chi^{(3)} (\hat{a}^{2} \hat{b}^{\dagger 2} - \hat{a}^{\dagger 2} \hat{b}^{2}),$$

the associated evolution operator,

$$\hat{U}_I(t) = \exp[(\eta^* \hat{a}^2 - \eta \hat{a}^{\dagger 2})t] \equiv \hat{S}(\xi),$$

『四 点清華城博 $\xi = 2\chi^{(3)}\beta^2 t$. National Tsing Hua University

Generations of Squeezed States

Nonlinear optics:

Generation and Detection of Squeezed Vacuum

- 1. Balanced Sagnac Loop (to cancel the mean field),
- 2. Homodyne Detection.

Beam Splitters

Wrong picture of beam splitters,

$$\hat{a}_2 = r\hat{a}_1, \qquad \hat{a}_3 = t\hat{a}_1,$$

where r and t are the complex reflectance and transmittance respectively which require that $|r|^2 + |t|^2 = 1$.

in this case,

 $[\hat{a}_2, \hat{a}_2^{\dagger}] = |r|^2 [\hat{a}_2, \hat{a}_2^{\dagger}] = |r|^2, \quad [\hat{a}_3, \hat{a}_3^{\dagger}] = |t|^2 [\hat{a}_2, \hat{a}_2^{\dagger}] = |t|^2, \quad \text{and} \quad [\hat{a}_2, \hat{a}_3^{\dagger}] = rt^* \neq 0,$

this kind of the transformations do not preserve the commutation relations.

Correct transformations of beam splitters,

$$\left(\begin{array}{c} \hat{a}_2\\ \hat{a}_3\end{array}\right) = \left(\begin{array}{cc} r & jt\\ jt & r\end{array}\right) \left(\begin{array}{c} \hat{a}_0\\ \hat{a}_1\end{array}\right),$$

Homodyne detection

the detectors measure the intensities $I_c = \langle \hat{c}^{\dagger} \hat{c} \rangle$ and $I_d = \langle \hat{d}^{\dagger} \hat{d} \rangle$, and the difference in these intensities is,

$$I_c - I_d = \langle \hat{n}_{cd} \rangle = \langle \hat{c}^{\dagger} \hat{c} - \hat{d}^{\dagger} \hat{d} \rangle = i \langle \hat{a}^{\dagger} \hat{b} - \hat{a} \hat{b}^{\dagger} \rangle,$$

assuming the b mode to be in the coherent state $|\beta e^{-i\omega t}\rangle$, where $\beta = |\beta|e^{-i\psi}$, we have

$$\langle \hat{n}_{cd} \rangle = |\beta| \{ \hat{a} e^{i\omega t} e^{-i\theta} + \hat{a}^{\dagger} e^{-i\omega t} e^{i\theta} \},$$

where $\theta = \psi + \pi/2$,

assume that *a* mode light is also of frequency ω (in practice both the *a* and *b* modes derive from the same laser), i.e. $\hat{a} = \hat{a}_0 e^{-i\omega t}$, we have

$$\langle \hat{n}_{cd} \rangle = 2|\beta| \langle \hat{X}(\theta) \rangle,$$

where $\hat{X}(\theta) = \frac{1}{2}(\hat{a}_0 e^{-i\theta} + \hat{a}_0^{\dagger} e^{i\theta})$ is the field quadrature operator at the angle θ ,

by changing the phase ψ of the local oscillator, we can measure an arbitrary ψ and ψ of the signal field.

Detection of Squeezed States

- \circ mode *a* contains the single field that is possibly squeezed,
- **a** mode *b* contains a strong coherent classical field, *local oscillator*, which may be taken as coherent state of amplitude β ,
- \circ for a balanced homodyne detection, 50:50 beam splitter,
- The relation between input (\hat{a}, \hat{b}) and output (\hat{c}, \hat{d}) is,

$$\hat{c} = \frac{1}{\sqrt{2}}(\hat{a} + i\hat{b}), \qquad \hat{d} = \frac{1}{\sqrt{2}}(\hat{b} + i\hat{a}),$$

the detectors measure the intensities $I_c = \langle \hat{c}^{\dagger} \hat{c} \rangle$ and $I_d = \langle \hat{d}^{\dagger} \hat{d} \rangle$, and the difference in these intensities is,

$$I_c - I_d = \langle \hat{n}_{cd} \rangle = \langle \hat{c}^{\dagger} \hat{c} - \hat{d}^{\dagger} \hat{d} \rangle = i \langle \hat{a}^{\dagger} \hat{b} - \hat{a} \hat{b}^{\dagger} \rangle,$$

Squeezed States in Quantum Optics

- Generation of squeezed states:
 - nonlinear optics: $\chi^{(2)}$ or $\chi^{(3)}$ processes,
 - cavity-QED,
 - photon-atom interaction,
 - photonic crystals,
 - э...
- Applications of squeezed states:
 - Gravitational Waves Detection
 - Quantum Non-Demolition Measurement (QND)
 - Super-Resolved Images (Quantum Images)

☞國立清華,學學Generation of EPR Pairs

Syllabus

- 1. A brief review about Quantum Mechanics,
- 2. Quantum theory of Radiation,
- 3. Coherent and Squeezed States,
- 4. Quantum Distribution Theory,
- 5. Atom-field interaction, semi-classical and quantum theories,
- 6. Quantum theory of Fluorescence,
- 7. Cavity Quantum ElectroDynamics (Cavity-QED),
- 8. Quantum theory of Lasers,
- 9. Quantum theory of Nonlinear Optics,
- 10. Quantum Non-demolition Measurement (QND),
- 11. Quantum theory for Nonlinear Pulse Propagation,
- 12. Entangled source generation and Quantum Information,
- 13. Bose-Einstein Condensates (BEC) and Atom Optics,
- 14. Quantum optical test of Complementarity of Quantum Mechanics,

☞國 支 清5華 Quentum optics in Semiconductors,

lational Tsing Hua University

16. Semester reports, Jan. 3, 5

Experiment of CV Teleportation

National Tsing Hua University

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble,

and E. S. Polzik, *Science* 282, 706 (1998).

IPT5340, Fall '06 – p.57/85

Generation of Continuous Variables Entanglement

Preparation EPR pairs by Squeezed Sates

IPT5340, Fall '06 – p.59/85

Reservoir Theory

Hamiltonian of our system: Jaynes-Cummings model

$$H = \frac{\hbar}{2}\omega_a \sigma_z + \hbar \sum_k \omega_k a_k^{\dagger} a_k + \frac{\Omega}{2}\hbar(\sigma_- e^{i\omega_L t} + \sigma_+ e^{-i\omega_L t})$$

+
$$\hbar \sum_k (g_k \sigma_+ a_k + g_k^* a_k^{\dagger} \sigma_-)$$

And we want to solve the generalized Bloch equations:

$$\begin{split} \dot{\sigma}_{-}(t) &= i\frac{\Omega}{2}\sigma_{z}(t)e^{-i\Delta t} + \int_{-\infty}^{t} dt'G(t-t')\sigma_{z}(t)\sigma_{-}(t') + n_{-}(t) \\ \dot{\sigma}_{+}(t) &= -i\frac{\Omega}{2}\sigma_{z}(t)e^{i\Delta t} + \int_{-\infty}^{t} dt'G_{c}(t-t')\sigma_{+}(t')\sigma_{z}(t) + n_{+}(t) \\ \dot{\sigma}_{z}(t) &= i\Omega(\sigma_{-}(t)e^{i\Delta t} - \sigma_{+}(t)e^{-i\Delta t}) + n_{z}(t) \\ \dot{\sigma}_{z}(t) &= 2\int_{-\infty}^{t} dt'[G(t-t')\sigma_{+}(t)\sigma_{-}(t') + G_{c}(t-t')\sigma_{+}(t')\sigma_{-}(t)] \\ \dot{\sigma}_{z}(t) &= 2\int_{-\infty}^{t} dt'[G(t-t')\sigma_{+}(t)\sigma_{-}(t')\sigma_{-}(t') + G_{c}(t-t')\sigma_{+}(t')\sigma_{-}(t)] \\ \dot{\sigma}_{z}(t) &= 2\int_{-\infty}^{t} dt'[G(t-t')\sigma_{+}(t)\sigma_{-}(t')\sigma_{-}$$

20

Fluorescence quadrature spectra near the band-edge

R.-K. Lee and Y. Lai, J. Opt. B, 6, S715 (Special Issue 2004).

Solitons in optical fibers

Classical nonlinear Schrödinger Equation

$$iU_z(z,t) = -\frac{D}{2}U_{tt}(z,t) - |U(z,t)|^2 U(z,t)$$

Fundamental soliton:

Quantum nonlinear Schrödinger equation

$$i\frac{\partial}{\partial t}\hat{\phi}(t,x) = -\frac{\partial^2}{\partial x^2}\hat{\phi}(t,x) + 2c\hat{\phi}^{\dagger}(t,x)\hat{\phi}(t,x)\hat{\phi}(t,x)$$

where $\hat{\phi}(t, x)$ and $\hat{\phi}^{\dagger}(t, x)$ are annihilation and creation field operators and satisfy Bosonic commutation relations:

$$\begin{aligned} &[\hat{\phi}(t,x'),\hat{\phi}^{\dagger}(t,x)] = \delta(x-x')\\ &[\hat{\phi}(t,x'),\hat{\phi}(t,x)] = [\hat{\phi}^{\dagger}(t,x'),\hat{\phi}^{\dagger}(t,x)] = 0 \end{aligned}$$

and in classical (mean-field) solution, i.e. $\hat{\phi} \rightarrow \phi$, for attractive case ($a_s < 0$), c < 0, bright soliton exists;

The pulsive case ($a_s > 0$), c > 0, dark soliton exists.

Expand the quantum state in Fock space

$$|\psi\rangle = \sum_{n} a_n \int d^n x \frac{1}{\sqrt{n!}} f_n(x_1, \dots, x_n, t) \hat{\phi}^{\dagger}(x_1) \dots \hat{\phi}^{\dagger}(x_n) |0\rangle$$

then, QNLSE corresponds to 1-D Bosons with δ -interaction

$$i\frac{d}{dt}f_n(x_1,\ldots,x_n,t) = \left[-\sum_{j=1}^n \frac{\partial^2}{\partial x_j^2} + 2c\sum_{1\le i< j\le n} \delta(x_j-x_i)\right]f_n(x_1,\ldots,x_n)$$

and can be solved by

- 1. Bethe's ansatz (exact solution);
- 2. Hatree approximation (N is large);

¹ A 3[#] Quantum inverse scattering method (exact solution).

Quadrature Squeezing of Solitons

IPT5340, Fall '06 - p.66/85

Generation and Detection of Squeezed Vacuum

- 1. Balanced Sagnac Loop (to cancel the mean field),
- 2. Homodyne Detection.

Amplitude Squeezing of FBG solitons

C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen, G. N. Price, and M. G. Raizen, The University of Texas at Austin, USA, *Phys. Rev. Lett.* **95**, 260403 (2005)

Abstract:

We report the direct observation of sub-Poissonian number fluctuation for a degenerate Bose gas confined in an optical trap. Reduction of number fluctuations below the Poissonian limit is observed for average numbers that range from 300 to 60 atoms.

◆國立清華大學 National Tsing Hua University for Young's two-slit interference,

$$I(r) = \langle |E(r,t)|^2 \rangle = \langle |K_1 E(r_1, t_1) + K_2 E(r_2, t_2)|^2 \rangle,$$

where $\langle f(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) dt$, then for a stationary average,

$$I(r) = I_1 + I_2 + 2\sqrt{I_1 I_2} \mathsf{Re}[K_1 K_2 \gamma^{(1)}(x_1, x_2)],$$

where $I_1 = |K_1|^2 \langle |E(r_1, t_1)|^2 \rangle$, $I_2 = |K_2|^2 \langle |E(r_2, t_2)|^2 \rangle$,

and the mutual coherence function, with $x_i = r_i, t_i$,

$$\gamma^{(1)}(x_1, x_2) = \frac{\langle E^*(x_1) E(x_2) \rangle}{\sqrt{\langle |E(x_1)|^2 \rangle \langle |E(x_2)|^2 \rangle}},$$

degree of coherence

$$\begin{split} |\gamma^{(1)}(x_1,x_2)| &= 1, & \text{complete coherence,} \\ 0 < |\gamma^{(1)}(x_1,x_2)| < 1, & \text{partial coherence,} \\ |\gamma^{(1)}(x_1,x_2)| &= 0, & \text{complete incoherence,} \end{split}$$

] IPT5340, Fall '06 – p.71/85

Quantum coherence functions

the single-atom detector couples to the quantized field through the dipole interaction,

$$\hat{H}_I = -\hat{d} \cdot \hat{E}(r,t),$$

- assume the atom is initially in the some ground state $|g\rangle$ and the field is in some state $|\beta\rangle$,
- ² upon the absorption of radiation, the atom makes a transition to state $|e\rangle$ and the field to the state $|f\rangle$, then

$$\langle f|\langle e|\hat{H}_{I}|g\rangle|i\rangle \propto -\langle e|\hat{d}|g\rangle\langle f|\hat{a}|i\rangle,$$

where $\hat{E}(r,t) = \sum_{j} c_{j} [\hat{a}_{j}(t) + \hat{a}_{j}^{\dagger}(t)] = \hat{E}^{(+)}(r,t) + \hat{E}^{(-)}(r,t),$

the probability that the detector measures all the possible final states,

$$\sum_{f} |\langle f|\hat{a}|i\rangle|^2 = \langle i|\hat{E}^{(-)}(r,t)\cdot\hat{E}^{(+)}(r,t)|i\rangle,,$$

First-order quantum coherence function

the probability that the detector measures all the possible final states,

$$\sum_{f} |\langle f|\hat{a}|i\rangle|^2 = \langle i|\hat{E}^{(-)}(r,t)\cdot\hat{E}^{(+)}(r,t)|i\rangle,$$

define a density operator,

$$\hat{
ho} = \sum_{i} P_{i} |i\rangle \langle i|,$$

the expectation value can be replaced by the ensemble average,

$$\operatorname{Tr}\{\hat{\rho}\hat{E}^{(-)}(r,t)\cdot\hat{E}^{(+)}(r,t)\} = \sum_{i} P_{i}\langle i|\hat{E}^{(-)}(r,t)\cdot\hat{E}^{(+)}(r,t)|i\rangle,$$

define the normalized first-order quantum coherence function,

$$g^{(1)}(x_1, x_2) = \frac{G^{(1)}(x_1, x_2)}{[G^{(1)}(x_1, x_1)G^{(1)}(x_2, x_2)]^{1/2}},$$

* I $\hat{z} = \hat{k} = \hat{k} + \hat{k$

First-order quantum coherence function

define the normalized first-order quantum coherence function,

$$g^{(1)}(x_1, x_2) = \frac{G^{(1)}(x_1, x_2)}{[G^{(1)}(x_1, x_1)G^{(1)}(x_2, x_2)]^{1/2}},$$

where $G^{(1)}(x_1, x_2) = \text{Tr}\{\hat{\rho}\hat{E}^{(-)}(x_1) \cdot \hat{E}^{(+)}(x_2)\}$,

degree of coherence

$$ert g^{(1)}(x_1, x_2) ert = 1,$$
 complete coherence,
 $0 < ert g^{(1)}(x_1, x_2) ert < 1,$ partial coherence,
 $ert g^{(1)}(x_1, x_2) ert = 0,$ complete incoherence,

First-order quantum coherence function

- assume $\hat{E}^{(+)}(x) = i K \hat{a} e^{i(k \cdot r \omega t)}$, a single mode plane wave,
- if the field is in a number state $|n\rangle$, then

$$G^{(1)}(x,x) = K^2 n, \quad G^{(1)}(x_1,x_2) = K^2 n e^{i[k(r_1 - r_2) - \omega(t_1 - t_0)]},$$

and

$$|g^{(1)}(x_1, x_2)| = 1,$$

 \circ if the field is a coherent state $|\alpha\rangle$, then

$$G^{(1)}(x,x) = K^2 |\alpha|^2$$
, $G^{(1)}(x_1,x_2) = K^2 |\alpha|^2 e^{i[k(r_1-r_2)-\omega(t_1-t_2)]}$,

and

$$|g^{(1)}(x_1, x_2)| = 1,$$

as in the classical case, the key to first-order quantum coherence is that factorization of the expectation value of the correlation functions,

國 这 清 華 大 學
$$G^{(1)}(x_1, x_2) = \langle \hat{E}^{(-)}(x_1) \cdot \hat{E}^{(+)}(x_2) \rangle = \langle \hat{E}^{(-)}(x_1) \rangle \langle \hat{E}^{(+)}(x_2) \rangle,$$

Classical Second-order coherence function

the classical second-order coherence function,

$$\gamma^{(2)}(\tau) = \frac{\langle I(t)I(t+\tau)\rangle}{\langle I(t)\rangle^2} = \frac{\langle E^*(t)E^*(t+\tau)E(t+\tau)E(t)\rangle}{\langle E^*(t)E(t)\rangle^2},$$

if the detectors are at different distances from the beam splitter,

$$\gamma^{(2)}(x_1, x_2) = \frac{\langle I(x_1)I(x_2)\rangle}{\langle I(x_1)\rangle\langle I(x_2)\rangle} = \frac{\langle E^*(x_1)E^*(x_2)E(x_2)E(x_1)\rangle}{\langle |E(x_1)|^2\rangle\langle |E(x_2)|^2\rangle},$$

the field is said to be classical coherence to second order if $|\gamma^{(1)}(x_1, x_2)| = 1$ and $\gamma^{(2)}(x_1, x_2) = 1$, with the factorization,

$$\langle E^*(x_1)E^*(x_2)E(x_2)E(x_1)\rangle = \langle |E(x_1)|^2 \rangle \langle |E(x_2)|^2 \rangle,$$

Classical Second-order coherence function

for zero time-delay coherence function

$$\gamma^{(2)}(0) = \frac{\langle I(t)^2 \rangle}{\langle I(t) \rangle^2},$$

for a sequence of N measurements taken at times t_1, t_2, \ldots, t_N ,

$$\langle I(t) \rangle = \frac{I(t_1) + I(t_2) + \dots + I(t_N)}{N}, \text{ and } \langle I(t)^2 \rangle = \frac{I(t_1)^2 + I(t_2)^2 + \dots + I(t_N)^2}{N},$$

from Cauchy's inequality,

$$2I(t_1)I(t_2) \le I(t_1)^2 I(t_2)^2,$$

we have

$$\langle I(t)^2 \rangle \ge \langle I(t) \rangle^2$$
, or $1 \le \gamma^{(2)}(0) < \infty$,

Classical Second-order coherence function

for non-zero delay, we have

 $[I(t_1)I(t_1+\tau)+\cdots I(t_N)I(t_n+\tau)]^2 \le [I(t_1)^2+\cdots I(t_N)^2][I(t_1+\tau)^2+\cdots I(t_N+\tau)^2],$

then

$$\langle I(t)I(t+\tau)\rangle \leq \langle I(t)\rangle^2$$
, or $1 \leq \gamma^{(2)}(\tau) \leq \gamma^{(2)}(0)$,

where $1 \leq \gamma^{(2)}(0) < \infty$,

for a light source containing a large number of independently photons,

$$\gamma^{(2)}(\tau) = 1 + |\gamma^{(1)}(\tau)|^2,$$

a relation for all kinds of chaotic light,

$$\Im$$
 since $0 \leq |\gamma^{(1)}(\tau)|^2 \leq 2$, it follows that

$$1 \le \gamma^{(2)}(\tau) \le 2,$$

Ch. 6 in "The Quantum Theory of Light," by R. Loudon.

立清華大學

Photon Bunching: HBT experiment

for all kinds of chaotic light,

$$1 \le \gamma^{(2)}(\tau) \le 2,$$

for source with Lorentzian spectra,

$$\gamma^{(2)}(\tau) = 1 + e^{-2|\tau|/\tau_0},$$

$${f i}$$
 for $au o \infty$, $\gamma^{(2)}(au) o 1$,

$$\circ$$
 for zero delay, $au
ightarrow 0$, $\gamma^{(2)}(au)
ightarrow 2$,

Hanbury Brown and Twiss experiment shows that if the photon are emitted independently by the source, then the photons arrive in pairs at zero time delay, photon bunching effect.

Quantum Second-order correlation function

define the normalized first-order quantum coherence function,

$$g^{(1)}(x_1, x_2) = \frac{G^{(1)}(x_1, x_2)}{[G^{(1)}(x_1, x_1)G^{(1)}(x_2, x_2)]^{1/2}},$$

where $G^{(1)}(x_1, x_2) = \text{Tr}\{\hat{\rho}\hat{E}^{(-)}(x_1) \cdot \hat{E}^{(+)}(x_2)\}$,

define the second-order quantum coherence function as,

$$g^{(2)}(x_1, x_2) = \frac{G^{(2)}(x_1, x_2)}{[G^{(1)}(x_1, x_1)G^{(1)}(x_2, x_2)]}$$

where $g^{(2)}(x_1, x_2)$, is the joint probability of detecting one photon at (r_1, t_1) and (r_2, t_2) ,

at a fixed position, $g^{(2)}$ depends only on the time difference,

$$g^{(2)}(\tau) = \frac{\langle \hat{E}^{(-)}(t)\hat{E}^{(-)}(t+\tau)\hat{E}^{(+)}(t+\tau)\hat{E}^{(+)}(t)\rangle}{\langle \hat{E}^{(-)}(t)\hat{E}^{(-)}(t)\rangle\langle \hat{E}^{(-)}(t+\tau)\hat{E}^{(-)}(t+\tau)\rangle},$$

Quantum Second-order correlation function

for a single-mode field,

$$g^{(2)}(\tau) = \frac{\langle \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a} \rangle}{\langle \hat{a}^{\dagger} \hat{a} \rangle^{2}} = \frac{\langle \hat{n}(\hat{n}-1) \rangle}{\langle \hat{n} \rangle^{2}} = 1 + \frac{\langle \Delta \hat{n}^{2} \rangle - \langle \hat{n} \rangle}{\langle \hat{n} \rangle^{2}},$$

• for a coherent state |lpha
angle,

$$g^{(2)}(\tau) = 1,$$

which has a Poisson distribution, i.e. $\Delta \hat{n}^2 \rangle = \langle \hat{n} \rangle$,

? for a single-mode thermal state, $\hat{\rho}_{th} = \frac{1}{Z} \sum \exp(-E_n/k_B T) |n\rangle \langle n|$,

$$g^{(2)}(\tau) = 2,$$

for a non-classical state, with *sub-Poisson* photon number distribution, i.e. $\langle \Delta \hat{n}^2 \rangle < \langle \hat{n} \rangle$,

$$g^{(2)}(\tau) = g^{(2)}(0) < 1,$$

Photon-antibunching and single photon source

for a single-mode field,

$$g^{(2)}(\tau) = \frac{\langle \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a} \rangle}{\langle \hat{a}^{\dagger} \hat{a} \rangle^{2}} = \frac{\langle \hat{n}(\hat{n}-1) \rangle}{\langle \hat{n} \rangle^{2}} = 1 + \frac{\langle \Delta \hat{n}^{2} \rangle - \langle \hat{n} \rangle}{\langle \hat{n} \rangle^{2}},$$

? for a Fock state
$$|n\rangle$$
,

National Tsing Hua Univer-

$$g^{(2)}(0) = 1 - \frac{1}{n},$$

for a single photon source,
$$n = 1$$
, $g^{(2)}(0) = 0$,

Single photon source in QD micro-disk

quantum dots in a microcavity

Fig. 1. The microdisk structure, which consists of a 5-µm-diameter disk and a 0.5-µm post. The GaAs disk area that supports high-quality factor WGMs is 200 nm thick and contains InAs quantum dots.

microcavity modifies the spontaneous emission rate (Purcell Effect)

STIRAP

Spatial quantum noise interferometry with cold atom

● 図 点清華大學
 Exp: Simon Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and I. Bloch,
 National Taing Hua University
 Nature 424, 481 (2005)

Nature **434**, 481 (2005).