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Role of Quantum Optics

S A

photons occupy an electromagnetic mode,
we will always refer to modes in quantum optics,
typically a plane wave;

the energy in a mode is not continuous but discrete in
guanta of hw;

the observables are just represented by probabilities
as usual in quantum mechanics;

there IS a zero point energy inherent to each mode which
IS equivalent with fluctuations of the electromagnetic
fleld in vacuum, due to uncertainty principle.

. 4
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Vacuum

Mational Teing Hua University

vacuum is not just nothing, it is full of energy.
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Vacuum

spontaneous emission IS actually stimulated by the vacuum fluctuation of the
electromagnetic field,

2 one can modify vacuum fluctuations by resonators and photonic crystals,

2 atomic stability : the electron does not crash into the core due to vacuum fluctuation
of the electromagnetic field,

2 gravity 1S not a fundamental force but a side effect matter modifies the vacuum
fluctuations, by Sakharov,

9 Casimir effect : two charged metal plates repel each other until Casimir effect
overcomes the repulsion,

9 Lamb shift : the energy level difference between 25, ,, and 2P; ;, in hydrogen.
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Casimir effect

Hendrik Casimir {1909-2000)

thers 15 a force betwesn
two metal slabs if brought
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force is due to vacuum fuctuations of
the electromagnetic field

ey - e ; e, i
L If; L2 5. K Lamoreaw. “Demonstration of the Gasimir Forcs inthe 0.8 o & ym Rangs
Mational - Bfys. Aew Leit T8, 58 [ 1567) -
[ —

=

' i 15316

| IPT5340, Fall '06 — p.5/85



Uncertainty relation

2 Non-commuting observable do not admit common eigenvectors.
2 Non-commuting observables can not have definite values simultaneously.

Simultaneous measurement of non-commuting observables to an arbitrary degree
of accuracy is thus incompatible.

2 variance: AA? = (U|(A — (A))2|0) = (U|A2|T) — (T|A|T)2.

AA?AB? > —[(F)? + (C)?],

> =

where
[A,B]=iC, and F=AB+ BA—-2(A)(B).

9 Take the operators A = § (position) and B = p (momentum) for a free particle,

Mational Teing Hua University
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Uncertainty relation
5

Schwarz inequality: (¢[¢)(1[1) = ([)(]@).

Equality holds if and only if the two states are linear dependent, [10) = \|¢), where A
IS a complex number.

2 uncertainty relation,

AA?AB? > —[(F)? + (C)?],

e R

where

A

[A,B]=iC, and F=AB+ BA—2(A)(B).
9 the operator F' is a measure of correlations between A andB.

define two states,

1) = [A—(D]lY),  |v2) = [B—(B)]l¥),
the uncertainty product is minimum, i.e. |¢1) = —i\|2),

[A 4+ iAB]|[¢) = [(A) + iA(B)]|9) = z|w).

L - -
Mationa 1 3 1
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Uncertainty relation
5

if Re(\) = 0, A + iAB is a normal operator, which have orthonormal eigenstates.

the variances,

AA? = —Z[(F C 32 — — —_[(F) — (O],
SUE) +10)), o5 [(F) = (O]
set A = A\ + 1)\,
12 1 - A ~>2 1 A2 A -
AA :E[Ai(F>+>\T(C>], AB :WAA, i (C)Y — M\ (F) = 0.

if \| = 1, then AA2 = AB?2, equal variance minimum uncertainty states.

if |\| = 1 along with \; = 0, then AA2 = AB? and (F) = 0, uncorrelated equal
variance minimum uncertainty states.

it A # 0, then (F) = 240y, AA2=B(éy,  aB2= ;1 (0).

If C is a positive operator then the minimum uncertainty states exist only if A, > 0.

A FERE
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Minimum Uncertainty State

(@ = (@)|P) = =iA(D = (P)[¥)

if we define A\ = e—27, then
(e"q+ie” ")) = (e"(q) +ie” " (P))|V),

2 the minimum uncertainty state is defined as an eigenstate of a non-Hermitian
operator e” g + ie~"p with a c-number eigenvalue e” (¢) + ie ™" (p).

2 the variances of q and p are

. . h o,
(AG%) = Ze™,  (Ap%) = Je.

2 here r is referred as the squeezing parameter.

A FERE
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Quantization of EM fields

2 the Hamiltonian for EM fields becomes: H = Zj hwj(&}dj + %),

2 the electric and magnetic fields become,
Er(z,t) = Z( ] )1/2[a e Wit —I—aTe“"J | sin(k;z),

= Z Cj [&U cosw;t + &23' sin C‘th]uj (T>7
J

/ 14 ’

mode 2 3 — 2

\/\_/\ |
| -
0
M 0
FEEL L FErrre

energy
[l

R HE ARG
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Phase diagram for EM waves

Electromagnetic waves can be represented by
E(t) = Eo[X sin(wt) — X5 cos(wt)]
where

X1 = amplitude quadrature

X2 = phase quadrature
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Quadrature operators

|

vV V L0 9V

A G %

-,

the electric and magnetic fields become,
n hwj 1/274  —itw,t AT _dwit] o
Bao(zt) = D (—2)"?laje ™" +ale’s ] sin(k;2),

= Z cjla1; cosw;t 4 agj sinw;t|u;(r),
J
note that @ and a' are not hermitian operators, but (a')T = a.
a1 = 5(a+a')and a2 = 5= (a — a') are two Hermitian (quadrature) operators.
the commutation relation for a4 and at is [a,at] = 1,
the commutation relation for @ and a' is [a1, a2] = %,

and (Aa?)(Aa3) > 1.

Mational Teing Hua University
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Minimum Uncertainty State

(a1 — (a1))|y) = —iX(az — (a2))[)
if we define A\ = e=27, then (e"a1 + ie " "a2)|Y) = (e"(a1) + ie " {a2))|vy),

the minimum uncertainty state is defined as an eigenstate of a non-Hermitian
operator e"a; + ie” "ag with a c-number eigenvalue e”{(a1) + ie” " (a2).

2 the variances of a1 and as are

1 1
(Aa}) = ze7, (Aaf) = e

2 here r is referred as the squeezing parameter.

9 whenr = 0, the two quadrature amplitudes have identical variances,

2 in this case, the non-Hermitian operator, e"a, + ie”"as = a1 + ia2 = a, and this
. minajmum uncertainty state is termed a coherent state of the electromagnetic field, an
-ﬁ‘;ﬁa- |_§'_;], _-_j:_ :F-If]' &- . l"-'f" . . "

fgénstate of the annihilation operator, aja) = a|a).

Mational Teing Hua Uniw
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Coherent States

2 inthis case, the non-Hermitian operator, e"a; + ie~"a2 = a1 + iao = a, and this
minimum uncertainty state is termed a coherent state of the electromagnetic field, an
eigenstate of the annihilation operator,

ala) = ala).

2 expand the coherent states in the basis of number states,

o) = ) In){nla) = ZW \—\azz .0\a>\n

n

2 imposing the normalization condition, («|a) = 1, we obtain,

— {afa) = 3" 3 mjm) LBLZE  clof? ggja 2

— vmlvn!
2 we have
1,2 X a”
VALEEARS oy = ezl Y ——|n),
Hational Ts ng Hua Universi Iy n:O n!
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Properties of Coherent States

9 the coherent state can be expressed using the photon number eigenstates,
o0 n
1 2 (8
‘a> — e—§|a| Z _/—"n’>7
n=0 n!
9 the probability of finding the photon number n for the coherent state obeys the
Poisson distribution,
—|e|? 2n
_ 2 € ||
P(n) = [{n|o)|* = —
.
2 the mean and variance of the photon number for the coherent state |«) are,
A 2
(A) = > nP(n)=la?
n
(AR%) = (%) = (A)? = |a® = (A),
HFERE
[ —
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Poisson distribution

p(n)
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Photon number statistics

n—=6 n= n=>5s n=>5s

.
T ; T T

time

2 For photons are independent of each other, the probability of occurrence of n
photons, or photoelectrons in a time interval T' is random. Divide T" into N
intervals, the probability to find one photon per interval is, p = n/N,

the probability to find no photon per interval is, 1 — p

2 the probability to find n photons per interval is,

N!
P _ n 1 _ N—n
which is a binomial distribution.
2 when N — oo,
P(n) = n exp(—n)7
n!

S EEE T

i
ssuna g wua uitfiS IS the Poisson distribution and the characteristics of coherent light.
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Real life Poisson distribution
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Displacement operator

2 coherent states are generated by translating the vacuum state |0) to have a finite
excitation amplitude «,

142 = a” L1142 = (aa®)™
) = ezl Y ——n) =em2le" Y 0),

2 since al0) = 0, we have e~“"@|0) = 0 and

2 ~ ~
) = e~ 3lal® gaal g—a™a)qy

2 any two noncommuting operators A and B satisfy the Baker-Hausdorff relation,
eAtB = eAeBe_%[A’B], provided [A, [A, B]] = 0,

2 using A = aat, B = —a*a, and [4, B] = |a|2, we have,

o) = D(a)|0) = e—2a —a"a|g),

'ﬁ‘;’ﬁ? Iﬁ]. .-‘; ,'_f]— g‘ a; .'glf- A . . . . . .
o hére D(a) is the displacement operator, which is physically realized by a classical

Mational Tsing Hua Universi
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Displacement operator

9 the coherent state is the displaced form of the harmonic oscillator ground state,
) = D(a)|0) = e@" =720,

where D(a) is the displacement operator, which is physically realized by a classical
oscillating current,

2 the displacement operator D(«) is a unitary operator, i.e.

D Y(@aD(a) = a+a,
D Y(@a'Da) = a' +a,

A FERE
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Radiation from a classical current

9 the Hamiltonian (p - A) that describes the interaction between the field and the
current is given by

V= / J(r,t) - A(r, t)d3r,

where J(r, t) is the classical current and A(r, t) is quantized vector potential,

A(r,t) = —zz —Eka e WritikT L e
Wk

2 the interaction picture Schrodinger equation obeys,
d i
—|W(t)) = —=VI|P¥(1)),
WD) =~ V()

2 the solution is (¥ (t)) =1, explaxa’ — afax]|0)s, where
ap = ﬁEk fg dt’ [ drd(r, t)elwt' —ik-r
ﬂ“ i,

2 this state of radiation field is called a coherent state,
,jL
J

o) = (aa’ — a*a)|0).
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Properties of Coherent States

the probability of finding n photons in |«) is given by a Poisson distribution,
the coherent state is a minimum-uncertainty states,

2 the set of all coherent states |a) is a complete set,

/|a)(a|d2a:7r2|n>(n|, or %/|a)(a|d2a:1,

2 two coherent states corresponding to different eigenstates o« and (3 are not
orthogonal,

1 1 1
(al8) = exp(~[al? + a5 — Z[8]%) = exp(— o — 5I2),

2 coherent states are approximately orthogonal only in the limit of large separation of
the two eigenvalues, |a — 3| — oo,

A FERE
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Properties of Coherent States

2 therefore, any coherent state can be expanded using other coherent state,
L[ 42 L [ 28— 318—al?
@) = — [ i8)(Bla) = = [ d2pem 31|,

2 this means that a coherent state forms an overcomplete Set,

2 the simultaneous measurement of a1 and as, represented by the projection
operator |a)(«/, Is not an exact measurement but instead an approximate
measurement with a finite measurement error.

A FERE
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g-representation of the coherent state

2 coherent state is defined as the eigenstate of the annihilation operator,

A

ala) = alay,

A 1 N R
where a = m(wq + ip),

9 the g-representation of the coherent state is,

(wq + h§q><q|a> — VZhwa(gla),

2 with the solution,

(dlo) = (20) Hexpl— 2 (g — {a))? +i 2!

where 6 is an arbitrary real phase,

q + 0],
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Expectation value of the electric field

2 fora single mode electric field, polarized in the z-direction,

E, = Eola(t) + a' (t)] sin kz,

9 the expectation value of the electric field operator,

(a| E(t)|a) = Eolae™ ™ + a* et sin kz = 2Fg|a| cos(wt + ¢) sin kz,

2 similar,
(| E(t)?|) = E3[4]|a)? cos? (wt + ¢) + 1] sin? kz,

2 the root-mean-square deviation int the electric field is,

(AE(t)%)1/2 = \/ hwv|sin kz|,
0

2€

2 (AE(t)2)/2 is independent of the field strength |«

T F 7 3: eudhtum noise becomes less important as |a|? increases, or why a highly excited
e teoherent state |af > 1 can be treated as a classical EM field.
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Phase diagram for coherent states

mean numba‘qﬂf photons i ,
< N >=< a|N|a >=< ald'd|la >= |a|?

phase of the field

TEH Z o= |a|exp(if)
Mational -
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Generation of Coherent States

2 |n classical mechanics we can excite a SHO into motion by, e.g. stretching the
spring to a new equilibrium position,

2
N 1
H = §—m+§k$2—€EO$,
2
P 1 ebo.o 1 ,ekp. o
pr— — _k b - ’
2 +2 ( k ) 2( k )

2 upon turning off the dc field, i.e. £y = 0, we will have a coherent state |«) which
oscillates without changing its shape,

2 applying the dc field to the SHO is mathematically equivalent to applying the
displacement operator to the state |0).

A FERE
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Generation of Coherent States

9 aclassical external force f(t) couples linearly to the generalized coordinate of the
harmonic oscillator,

A

A = ho(aal + ) + Blf(0)a + £ ('),

2 for the initial state W (0)) = |0), the solution is
U (1)) = exp[A(t) + C(t)a']0),

where

£ t o
/ dt” t”) dt/ezw(t —t”)f( ) C(t) _ _Z/O dtlezw(t —t)f* (t/),

2 When the classical driving force f(t) is resonant with the harmonic oscillator,
f(t) = foe*t, we have

. 1 |af?
_ 1wt = A — _ = 2 _ _ I U _ -
@ A E;(t) e fot = «, (t) 5 (fot) 5 and |¥(t)) = |a)

| ' IPT5340, Fall '06 — p.28/85




Attenuation of Coherent States

2 Glauber showed that a classical oscillating current in free space produces a
multimode coherent state of light.

9 The guantum noise of a laser operating at far above threshold is close to that of a
coherent state.

2 A coherent state does not change its quantum noise properties if it is attenuated,
a beam splitter with inputs combined by a coherent state and a vacuum state |0),
H; = hw(a'b+ab'),  interaction Hamiltonian
where « is a coupling constant between two modes,

2 the output state is, with 3 = vVTa and v = /1 — Ta,

[@)out = Ula)al0)p = |B)aly)p, with U = explir(ald+ abh)i],
9 The reservoirs consisting of ground state harmonic oscillators inject the vacuum
fluctuation and partially replace the original quantum noise of the coherent state.

TEH 5otk § AL : .
= nce the vacuum state is also a coherent state, the overall noise is unchanged.

Mational Teing Hua Universily
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Coherent and Squeezed States

Uncertainty Principle: AX;AX, > 1.

1. Coherentstates: AX; = AX5 =1, Im AKX, Al
2. Amplitude squeezed states: AX; < 1, k <
A~ ."J i x“x
3. Phase squeezed states: AXs < 1,
AX | oc An
4. Quadrature squeezed states.
Re

it
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Squeezed States and SHO

2 Suppose we again apply a dc field to SHO but with a wall which limits the SHO to a
finite region,

2 insucha case, it would be expected that the wave packet would be deformed or
'squeezed’ When it is pushed against the barrier.

2 Similarly the quadratic displacement potential would be expected to produce a
squeezed wave packet,
. 2 1
=2 4 "k eEo(ax — bx?),
2m 2
where the az term will displace the oscillator and the bz? is added in order to give

us a barrier,

~ p2 1
H=—+ 5(1{ + 2ebEg)z? — eaEpx,

2m

9 we again have a displaced ground state, but with the larger effective spring
constant k¥’ = k + 2ebEy.

A FERE
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Squeezed Operator

2 To generate squeezed state, we need quadratic terms in z, i.e. terms of the form
(a+af)?,
2 for the degenerate parametric process, i.e. two-photon, its Hamiltonian is
H = ih(ga'? — g*a?),
where ¢ is a coupling constant.

9 the state of the field generated by this Hamiltonian is

[W(t)) = exp[(ga’? — g*a*)t]|0),
9 define the unitary squeeze operator
A 1 1
S(§) = exp[¢7a” — —ga']

where £ = rexp(i0) is an arbitrary complex number.

A FERE
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Properties of Squeezed Operator

9 define the unitary squeeze operator

3(6) = explS¢"a? — ~gal?

where £ = rexp(¢0) is an arbitrary complex number.

2 squeeze operator is unitary, St(¢) = S71(¢) = S(—¢) ,and the unitary
transformation of the squeeze operator,

ST(&)asS(€) = acoshr —a'e sinhr,
ST©)atS) = a'coshr —ae Y sinhr,

with the formula eA Be=4 = B + [A, B] + 4[4, [4, B]], . ..

9 A squeezed coherent state |, &) is obtained by first acting with the displacement
operator D(«) on the vacuum followed by the squeezed operator S(¢), i.e.

o, &) = S(€) D(a)[0),

T 2 it o = |alexp(iv).

IPT5340, Fall '06 — p.33/85




Uncertainty relation
=

if Re(\) = 0, A + iAB is a normal operator, which have orthonormal eigenstates.

the variances,

AA? = —Z[(F C 32 — — —_[(F) — (O],
SUE) +10)), o5 [(F) = (O]
set A = A\ + 1)\,
12 1 - A ~>2 1 A2 A -
AA :E[Ai(F>+)\T(C>], AB :WAA, i (C)Y — M\ (F) = 0.

if \| = 1, then AA2 = AB?2, equal variance minimum uncertainty states.

if |\| = 1 along with \; = 0, then AA2 = AB? and (F) = 0, uncorrelated equal
variance minimum uncertainty states.

it A # 0, then (F) = 240y, AA2=B(éy,  aB2= ;1 (0).

If C is a positive operator then the minimum uncertainty states exist only if A, > 0.

A FERE
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Minimum Uncertainty State
2

(@1 — (a1))|¥) = —iX(az — (a2))|¥)

if we define A = e—27, then
(e"a1 +ie” "az)[y) = (e (a1) +ie” "(az))[v),

9 the minimum uncertainty state is defined as an eigenstate of a non-Hermitian
operator e"a; + ie” "ag with a c-number eigenvalue e” {(a1) + ie” " (a2).

2 the variances of a; and ao are

A 1 — 27T A 1 T
(Baf) = ze2, (Aad) = 2

A FERE
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Squeezed State

9 define the squeezed state as

Ws) = S5(8)|0),
9 where the unitary squeeze operator
. 1 1
S(§) = exp[€ra® — Sga™

where ¢ = rexp(i0) is an arbitrary complex number.

2 squeeze operator is unitary, St(¢) = S71(¢) = S(—¢) ,and the unitary
transformation of the squeeze operator,

ST(€)asS() = acoshr —a'e sinhr,
ST(©)a'S(E) = a'coshr —ae ¥ sinhr,

2 for |\W) is the vacuum state |0), the |¥;) state is the squeezed vacuum,

o

VAL EERE €) = S(9)]0),

ignal Tsing Hua Universi
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Squeezed Vacuum State

2 for |\W) is the vacuum state |0), the |¥;) state is the squeezed vacuum,
€) = S(6)[0),

2 the variances for squeezed vacuum are

1
Aa? = Z[COShQT—i—SiHhQT—QSinhTCOShTCOSQ],
Aeﬂ—l[ h? inh? r + 2sinh r cosh 0
5 = 4cos r 4 sinh® r + 2 sinh r cosh r cos 6],
2 for 6 = 0, we have
A2 1 —2r A2 1 +27r
Aaf = -e ", and Aa; = -e™7,
4

and squeezing exists in the a; quadrature.

9 forg = 7, the squeezing will appear in the as quadrature.

A FERE
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Quadrature Operators

9 define a rotated complex amplitude at an angle 6/2

where
Y1 B cosf/2  sinf/2 a1
Yo —sinf/2 cos6/2 a2

2 then ST(ﬁ)(Yl + ’L}A/Q)S(ﬁ) = ?16_T + ’i}}ger,
9 the guadrature variance

s 1 o 1 LAY, = -
2 —2r AY22 — 164‘27", and AY1AY> = 1

2 in the complex amplitude plane the coherent state error circle is squeezed into an

error ellipse Of the same area,

e adri IR 43 the%dlegree of squeezing is determined by r = |&] which is called the squeezed

| 1PT5340, Fall '06 - p.38/85
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Vacuum, Coherent, and Squeezed states
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Squeezed Coherent State

9 A squeezed coherent state |, &) is obtained by first acting with the displacement
operator D(c) on the vacuum followed by the squeezed operator S(¢), i.e.

o, €) = D(@)5(6)]0),
where S(¢) = exp[3£*a? — 1¢at?],
2 for ¢ = 0, we obtain just a coherent state.
9 the expectation values,
(o, €lalo, &) = «, {(a?) = a® — e sinhrcoshr, and (a'a) = |a|? + sinh?r,

with helps of DT (a)aD(a) = a4 + o and Dt (a)aTD(a) = at + o,
for r — 0 we have coherent state, and o« — 0 we have squeezed vacuum.
2 furthermore

~ ~ . ~ 1
(o, €Y1 + iYa|a, €) = ae %972 (AY?) = 16—27“, and  (AYP?) = Zet?7,

oo : i
o PET PN
Mat 1y

ignal Tsing Hua Universi
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Squeezed State

2 from the vacuum state a|0) = 0, we have

S(€)asT(€)S(©)I0) =0, or S(©)asT(E)e) = o,
2 since S(€)aST(¢) = acoshr + afe? sinhr = pa + vat, we have,
(na +vah)lg) = o,

the squeezed vacuum state is an eigenstate of the operator pua + va' with
eigenvalue zero.

2 similarly,
D(a)S(£)aST (&) DT () D()|¢) =0,

with the relation D(a)aDT (o) = é — o, we have

(pa + val)|o, €) = (acoshr + a* sinhr)|a, £) = v|a, €),
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Squeezed State and Minimum Uncertainty State

9 write the eigenvalue problem for the squeezed state

(na + va©)la,€) = (acoshr + a* sinhr)|a, &) = ~]a, €),

2 interms of in terms of & = (Y1 + iY3)e/2 we have
(Y1 +ie™?"Y2) o, §) = Bulov, €),

where
Br = e e /2 = (V1) +i(Ya)e 2",

2 in terms of a; and as we have
(a1 + irad)|a, €) = Bala, &),

where
~

ptv

A=2"" and 8, =
v

R HE ARG

Hational Teing Hua University
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Squeezed State in the basis of Number states

2 consider squeezed vacuum state first,

‘5) — Z Cn|n>7
n=0

with the operator of (ua + va®)|€) = 0, we have

v n
Cpi1 = _(n+ 1)1/20

2 only the even photon states have the solutions,

(2m — !

1/2
(2m)!! 7o,

Com (—1)™ (€% tanh r)™|

where Cy can be determined from the normalization, i.e. Co = v/cosh r,

9 the squeezed vacuum state is

VHLFEERG €) =

\/ 2m) 0
3 E:( pym Y2 ime b | 2m),
ional Teing Hua University V COSh T _

IPT5340, Fall '06 — p.43/85



Squeezed State in the basis of Number states

9 the squeezed vacuum state is

1 S Vv 2m)!
= —1)"M —=¢€*"Y tanh™ r|2m),
)= Temnr 22V 2

9 the probability of detecting 2m photons in the field is

(2m)!  tanh?™r
Pa,, = |(2m]€)|? =

2m = [(2mi¢)] 22m(m!)2  coshr
for detecting 2m + 1 states Pa,,+1 = 0,

the photon probability distribution for a squeezed vacuum state is oscillatory,
vanishing for all odd photon numbers,

2 the shape of the squeezed vacuum state resembles that of thermal radiation.
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Number distribution of the Squeezed State
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Number distribution of the Squeezed Coherent State

For a squeezed coherent state,

Py = |(n]a, §)? = (2 fa:l:hr: eXp[—\ozP—%(oz*Qew—l—a e~ %) tanh r]H2 (v(e* sinh(2r)) "/
0.1 -
0.08
0.06
0.04
0.02
Ref: - 30 40 50 60 70 80

ﬂ‘ﬁ:‘-

& 3 C‘ﬁ' g ﬁln?mtroductory Quantum Optics,” by C. Gerry and P. Knight.

al Teing Hua Un
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Number distribution of the Squeezed Coherent State

9 A squeezed coherent state |, &) is obtained by first acting with the displacement
operator f)(a) on the vacuum followed by the squeezed operator S(&), le.

&) = D(a)5()]0),

2 the expectation values,
(aTa) = |a|? + sinh? r,

0.08 | 0012 |
0.01 |
0.06 |
0.008 |
0.04 | 0.006 |
0.004 |
0.02 |
0.002 |
50 100 150 200 50 100 150 200
la]? = 50,0 =0,r = 0.5 la]? = 50,0 =0,r = 4.0
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Generations of Squeezed States

9 Generation of guadrature squeezed light are based on some sort of parametric
process utilizing various types of nonlinear optical devices.

2 for degenerate parametric down-conversion, the nonlinear medium is pumped by a
field of frequency w, and that field are converted into pairs of identical photons, of
frequency w = wy /2 each,

H = hwata + hwpbth + i (a2bT — at2b),

where b is the pump mode and a is the signal mode.

2 assume that the field is in a coherent state |Be~*“rt) and approximate the
operators b and b' by classical amplitude Be~“»t and B*e‘wr?, respectively,

2 we have the interaction Hamiltonian for degenerate parametric down-conversion,
Hy = ih(n*a? —na'?),
where n = x(2) 3.

A FERE

Mational Teing Hua University
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Generations of Squeezed States

2 we have the interaction Hamiltonian for degenerate parametric down-conversion,

H; = ih(n*a? — na'?),
where n = x(2) 8, and the associated evolution operator,
Ur(t) = exp[—iH t/] = exp[(n*a® — na?)t] = S(¢),

with £ = 2nt.

2 for degenerate four-wave mixing, in which two pump photons are converted into
two signal photons of the same frequency,

H = hwa'a + hwbTd + imx®) (a?b1? — a2b2),
2 the associated evolution operator,

Ur(t) = exp[(n*a® — nal?)t] = S(¢),

O 5 ik it = 2, 7

Mational Teing Hua University
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Generations of Squeezed States

Nonlinear optics:

. second Harmonic Generation

[y

A EERE

Mational Teing Hua University

Parametnc Oscillation

e |

Kerr Effect

Courtesy of P. K. Lam
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Parametric Ampification
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Generation and Detection of Squeezed Vacuum

1. Balanced Sagnac Loop (to cancel the mean field),

fasanal Taing Hu Unierity M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153(1991).
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Beam Splitters

2 Wrong picture of beam splitters,
as = rai, as = tay,

where r and t are the complex reflectance and transmittance respectively which
require that |r|? + [t|? = 1.

2 in this case,

lag, al) = |r?[a2,al] = |r|*,  [as,a]] = |t°[ag,al) = |¢[, and [az,af] =rt* £0,

this kind of the transformations do not preserve the commutation relations.

9 Correct transformations of beam splitters,

)
\V]
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~
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L
w
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~
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Homodyne detection

2 the detectors measure the intensities I. = (¢t¢) and I; = (dfd), and the
difference in these intensities is,

I — I; = (heq) = (&Té — dTd) = i(aTh — abT),

2 assuming the b mode to be in the coherent state |Be~*“t), where 8 = |3|e™*¥, we
have

(ca) = |B{ae’ e +ale™ " el
where 6 = ¢ + 7 /2,

9 assume that « mode light is also of frequency w (in practice both the a and b
modes derive from the same laser), i.e. @ = age~*“t, we have

(Rea) = 2|BI(X(9)),
where X (0) = %(&oe—w + dgew) is the field quadrature operator at the angle 6,

2 by changing the phase 1 of the local oscillator, we can measure an arbitrary
SR A gy%grature of the signal field.

Mational Teing Hua University
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Detection of Squeezed States
2

mode a contains the single field that is possibly squeezed,

mode b contains a strong coherent classical field, local oscillator, which may be taken
as coherent state of amplitude s,

9 for a balanced homodyne detection, 50 : 50 beam splitter,

the relation between input (a, b) and output (¢, d) is,

1 ~ ~ 1 .
6= ——(a+ib), d=—=(b+ia),
\/5( ) \/5( )

2 the detectors measure the intensities I, = (¢1¢) and I; = (d'd), and the
difference in these intensities is,

A A

I — I; = (heq) = (&T¢ — dTd) = i(aTh — abT),

A FERE

Mational Teing Hua University
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Squeezed States in Quantum Optics

2 (Generation of squeezed states:
> nonlinear optics: y? or () processes,
> cavity-QED,
> photon-atom interaction,
> photonic crystals,

:} . . .

2 Applications of squeezed states:
> Gravitational Waves Detection
> Quantum Non-Demolition Measurement (QND)
> Super-Resolved Images (Quantum Images)

@ 54§ a,g,g‘Generation of EPR Pairs
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Syllabus

A brief review about Quantum Mechanics,

Quantum theory of Radiation,

Coherent and Squeezed States,

Quantum Distribution Theory,

Atom-field interaction, semi-classical and quantum theories,
Quantum theory of Fluorescence,

Cavity Quantum ElectroDynamics (Cavity-QED),

Quantum theory of Lasers,

© 0o N o o Bk w0 DN

Quantum theory of Nonlinear Optics,

[EEY
©

Quantum Non-demolition Measurement (QND),

[EY
=

Quantum theory for Nonlinear Pulse Propagation,

[EY
N

Entangled source generation and Quantum Information,

H
©

Bose-Einstein Condensates (BEC) and Atom Optics,
14. Quantum optical test of Complementarity of Quantum Mechanics,
=~ @ 5 :4°% Puantum optics in Semiconductors,

ErEily

6. "Semester reports, Jan. 3, 5
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Experiment of CV Teleportation

LDx LOP
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Pump 1 .!| ‘l Pump 2 Victor

. A. Furusawa, J. L. Sgrensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble,
A EERE

panienaTHng Hu uniersh and E. S. Polzik, Science 282, 706 (1998).
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Interference of Coherent States

Coherent States

A Es
n p- Ec
+ Es A 4 .
1
—_ . .
1
> Ec / > .
2
A Es
7 P Ec
VAL EARG
Matignal Tsing Hua University
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Generation of Continuous Variables Entanglement

Preparation EPR pairs by Squeezed Sates
A Es

a

AEs A A Es
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Photon-Atom Interaction in PhCs

Reservoir Theory
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Hamiltonian of our system: Jaynes-Cummings model

h 0 . |
H = §wa0'z + hzk:wka};ak + §h(0_€ZWLt i O.+€—zth)

+ B (geosar + gralo-)
k

And we want to solve the generalized Bloch equations:

g_(t) = i%az(t)e_mt + /_ dt'G(t —to,(t)o_(t") + n_(t)
g, (t) = —i%az(t)ezm + / dt'G.(t —tho (t)o.(t) +ny(t)

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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Fluorescence quadrature spectra near the band-edge
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Y HEAEREL R.-K. Lee and Y. Lai, J. Opt. B, 6, S715 (Special Issue 2004).
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Solitons in optical fibers

Classical nonlinear Schrodinger Equation

iU.(2.1) = —gUtt(z,t) Uz ) PU (2. 1)

Fundamental soliton:

2
U(z,t) = %emp[i%z -+ i@o]sech[%t]

T P undamental Higher-order (N = 2) Soliton interaction
| | | IPT5340, Fall '06 — p.63/85




1D Quantum nonlinear Schrodinger eguation

Quantum nonlinear Schrodinger equation

0 - 0% -
Za¢(t,ﬂf) a a9

where ¢(t, z) and ¢'(¢, z) are annihilation and creation field
operators and satisfy Bosonic commutation relations:

9(t,2'), ¢ (t,2)] = 6(x — a)

A

o(t,2), ¢(t,x)] = [#1(t, ), ¢ (t,2)] = O

(t, @) + 200! (t,2)p(t, 2)9(t, )

and in classical (mean-field) solution, i.e. ¢ — &,
for attractive case (a, < 0), ¢ < 0, bright soliton exists;

nnnnnnnnnnnnnnnnnnnnnnnn
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1-D Bose gas with o-interaction

Expand the quantum state in Fock space

W >= ; Un dnajffn(xla ooy t)QBT(le) e QBT(:UTL)’O >

then, QNLSE corresponds to 1-D Bosons with ¢-interaction

iifn(ajl,...,wn,t):[— —+2(: Z O(xi—x)| fulxy,... 2

dt .
71=1 1<i<g<n

and can be solved by
1. Bethe’s ansatz (exact solution);
2. Hatree approximation (/N is large);

A 2. 7B Bantum inverse scattering method (exact solution).
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Quadrature Squeezing of Solitons

For N = 1 soliton:
2
U(z,t) = @emp[i%z + i6p]sech|

@t]
2

Af(z) = AR(0)
Ad(z) = AG(0) + %zAﬁ(O)

AXp(2) = a1 Af(z) + aa AO(2)

0 —
i 25| _—
SE 2o
m -
e B
Py @ 15F
T S
o -10 2 .,k
o | = 10 j// \
= e \
) B o [/ \‘\
> | S sk \
S-15 o | \
o T S F \
E § o |
s | - \
O -20f 5 |
i - |
B ||
f . . , , , |
_250 L L L L 1 L L L L 2 L L L L 3 0 L L L L l L L L L 2 L L L L 3
Normalized Length ( 1) 0 (rad)
) : : . AX (2)]
P Optimal Squeezing Ratio = min ¥&12Xe
VAL AERE P g 9 var[A X (0)]

Mational Teing Hua University

Y. Lai and H. A. Haus, Phys. Rev. A 40, 844 (1989); ibid 40, 854 (1989).
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Generation and Detection of Squeezed Vacuum

1. Balanced Sagnac Loop (to cancel the mean field),

fasanal Taing Hu Unierity M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153(1991).
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Amplitude Squeezing of FBG solitons
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R.-K. Lee and Y. Lai, Phys. Rev. A 69, 021801(R) (2004).
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Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas

C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen, G. N. Price, and M. G. Raizen,
The University of Texas at Austin, USA, Phys. Rev. Lett. 95, 260403 (2005)
Abstract:
We report the direct observation of sub-Poissonian number fluctuation for a degenerate

Bose gas confined in an optical trap. Reduction of number fluctuations below the
Poissonian limit is observed for average numbers that range from 300 to 60 atoms.
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Direct Observation of Sub-Poissonian Number Statistics in

a Degenerate Bose Gas
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Classical coherence functions

2 for Young’s two-slit interference,

I(r) = (|E(r,t)[*) = (K1 E(r1,t1) + K2 E(r2, t2)[?),
where (f(t)) = limp_, % fOT f(t)dt, then for a stationary average,
I(r) = I + Iz + 27/ 1 bRe[K1 Koy (21, 22)],

where Iy = |K1|?{|E(r1,t1)|?), I2 = |K2|?{|E(r2,t2)|?),

2 and the mutual coherence function, with z; = r;, t;,

E* E

1D 1,22) = —— P

VAIE(z1)P) (| E(z2)]?)

2 degree of coherence
YD (1, 20)] =1, complete coherence,
(1) '
T Y 0 < |y'“V(x1,2z2)| <1, partial coherence,
aiomar T s Untearait Iy (21, 22)| = 0, complete incoherence,
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Quantum coherence functions

9 the single-atom detector couples to the quantized field through the dipole
interaction,

A A

HI = —d- E(’f’,t),

2 assume the atom is initially in the some ground state |g) and the field is in some
state |B),

2 upon the absorption of radiation, the atom makes a transition to state |e) and the
field to the state |f), then

(fI{el Hrlg)|i) oc —(eld|g)(f|ali),
where E(r,t) = 3" ¢j[a; (t) + al(t)] = B (r,t) + EC)(r,1),

2 the probability that the detector measures all the possible final states,

Z [(flali))? = GIET) (r, ) - B (r,0)13),,,
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First-order quantum coherence function

9 the probability that the detector measures all the possible final states,

ZI GIE (r,t) - B (r, 1) [4),

9 define a density operator,

p=2_ Fili)il,

9 the expectation value can be replaced by the ensemble average,

T{pE ) (r,t) - B (r, 1)} = PGIEC) (r,8) - B (r, 1)),

2 define the normalized first-order quantum coherence function,

G (21, x2)
[G(l) (mlawl)G(l) (z2, 1'2)]1/2 ’

g(1>(£131,$2) —

-ﬁ‘#

| J ‘#'.d.-’ Whé-re G(l)(gj17x2)—Tr{pE( )(331) E(_'_)(ZCQ)}

al Teing Hua Un
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First-order quantum coherence function

2 define the normalized first-order quantum coherence function,

G (xq,x2)
[G(l) (x1,21)G) (22, xz)]l/Q ’

g(1>(x1,5132) —

where G (x1, z2) = TH{HE(T) (z1) - B (z2)},

2 degree of coherence

g (z1,22)| = 1, complete coherence,
0< |g(1)(:c1,932)| <1, partial coherence,
|9(1)(£C1,932)| = 0, complete incoherence,

TRAZLAEERS

Hational Teing Hua University
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First-order quantum coherence function
2

assume E(1) (z) = iKae'(k'm—«t) 3 single mode plane wave,
if the field is in a number state |n), then

G(1>(x,x) — K?n, G(l)(m,m) — K2peilk(ri—r2)—w(ti—ta)]

and
g (21, 22)| = 1,

2 if the field is a coherent state |a), then
G (z,2) = K2[af?, GW(z1,22) = K2|a|2eilF(r—r2)—wlti—t2)]

and
g™ (21, 32)| = 1,

2 asin the classical case, the key to first-order quantum coherence is that
factorization of the expectation value of the correlation functions,

@zt ire GV (x,2)= (BT (1) EF) (22)) = (B (2) (B (22)),
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Classical Second-order coherence function

2 the classical second-order coherence function,

@y~ UOIE 7)) (B O (4 DB+ )W)
(1(1))? (B (1) E(1))? |

2 i the detectors are at different distances from the beam splitter,

@) (31, 29) = (I(z1)I(z2)) _ (E*(z1)E"(z2)E(z2)E(21))

(I(x1)){I(22)) (E(z1)2) (| E(z2)?)

2 the field is said to be classical coherence to second order if vV (z1,22)| =1 and
72 (x1,z2) = 1, with the factorization,

(B (21) E™ (x2) E(22) E(21)) = (|E(x1) *)(|E(x2) %),

VAL EARG

Mational Teing Hua University
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Classical Second-order coherence function

2 for zero time-delay coherence function

@) L(1)?)
72 (0) = T2

2 fora sequence of N measurements taken attimes t1,ta2,...,tnN,

and <I(t)2> _ I(t1)2+l(t23\2[+l(t]\7)2’

I(tl)—l—I(tQ)-l----[(tN)
N )

(I(t)) =

2 from Cauchy’s inequality,
21(t1)I(t2) < I(t1)I(t2)?,

we have
(I()2) > (I(t)?, or 1<~+P(0) < oo,

A FEERE

Mational Teing Hua University
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Classical Second-order coherence function

2 for non-zero delay, we have
[T I(t1+7)+ - I(EN)T (b A+7))? < [T(81)* 4 - I(EN) ][I (1 +7) 2+ - I (En+7)7),

then
(IWIE+7) <(I®)2, or 1<~y (r) <~43)(0),

where 1 < ~(2)(0) < oo,
2 fora light source containing a large number of independently photons,

YD () = 1+ D),

a relation for all kinds of chaotic light,

2 since 0 < [V (7)]2 < 2, it follows that
1<y®(r) <2,

Ch 6 IN "The Quantum Theory of Light” by R. Loudon.
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Photon Bunching: HBT experiment

9 for all kinds of chaotic light,

1<~+®(7) <2,
2 for source with Lorentzian spectra,

2 (1) =14 2I7l/0,

for 7 — oo, v(3) (1) — 1,
for zero delay, + — 0, v(2) (1) — 2,

Hanbury Brown and Twiss experiment shows that if the photon are emitted
independently by the source, then the photons arrive in pairs at zero time delay,
photon bunching effect.

2
1.75/+¢
1.
125
1t
0.75
0.5
A HERE | e | |
Matignal Tsing Hua University -4 -2 2 4
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Quantum Second-order correlation function

2 define the normalized first-order quantum coherence function,

G (x1,x2)
(G (z1, 21)GD) (z2, 22)]1/2’

g(1>(331,$2) —

where G (x1, z2) = TH{HE(T) (z1) - B (z2)},

9 define the second-order guantum coherence function as,

G(Q)(xl,xz)
[G(1> (z1, xl)G(1> (x2,x2)] ’

9(2) (5131,332) —

where ¢(?) (z1, z2), is the joint probability of detecting one photon at (r1,¢1) and
(r2,t2),

9 at a fixed position, ¢(2) depends only on the time difference,

(ECOQOES) 4+ 1) E) (¢t + 1) EM) (1))
(E’(—) (t)E’(—) (t))(E(—)(t + T)E‘(—) (t+ 7))

g (r) =

Y

R HE ARG
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Quantum Second-order correlation function

2 fora single-mode field,

4@ (r) = <&’:&f&&> _ - <Aﬁ2} —
(ata)? (n)? (n)?
2 for a coherent state ),
g (r) =1,

which has a Poisson distribution, i.e. An2) = (i),

2 fora single-mode thermal state, py, = % Y exp(—FEn/kgT)|n)(n|,

g (r) =2,

2 for a non-classical state, with sub-Poisson photon number distribution,i.e.

(AR2) < (A),
g (r) =g (0) <1,
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Photon-antibunching and single photon source

2 fora single-mode field,

'E [&]0 0]
=
o
; 4 E
s =
= £
_E 200 4 -
i
r
ﬂ T T T ¥ T T T ¥ T
=5 — -0 -20 =10 [n]] 10 20 30 E-an LT ]
== = -
L L f-;f]‘__% j}:‘ delay [ns]
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Single photon source in QD micro-disk

quartum dots in a microcavity microcavity modifies the spontaneous emission rate
{(Purcell Effect)

A Ti:sapphire laser

Gm (x)

I"?. 1. The microdisk structure, which consists
of a 5-pm-diameter disk and a 0.5 pm pest.

The GaAs disk area that supports high-quality " B Exciton transition (1X)
factor WGMs is 200 nm thick and contains Infs
quantum dots,
T VST cw-ancation
1% 1.0
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STIRAP

Hp
ﬂ- Lr | |_|— [ ot 1! STIRAP = Stimulated Raman Production by Adiabatic Passage
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Spatial quantum noise interferometry with cold atom

i i
H g
] :
3 8 | ;

A P 40D -X0 0 XD 400
o ;d; X [}

#ﬁ@] 1%_/% ﬁ rﬂExp Simon Folling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and I. Bloch,
o Taing Hua Universit Nature 434, 481 (2005).
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