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Abstract: We present the synthesis of multi-channel fiber Bragg grating 
(MCFBG) filters for dense wavelength-division-multiplexing (DWDM) 
application by using a simple optimization approach based on a Lagrange 
multiplier optimization (LMO) method. We demonstrate for the first time 
that the LMO method can be used to constrain various parameters of the 
designed MCFBG filters for practical application demands and fabrication 
requirements. The designed filters have a number of merits, i.e., flat-top and 
low dispersion spectral response as well as single stage. Above all, the 
maximum amplitude of the index modulation profiles of the designed 
MCFBGs can be substantially reduced under the applied constrained 
condition. The simulation results demonstrate that the LMO algorithm can 
provide a potential alternative for complex fiber grating filter design 
problems. 
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1. Introduction 

Fiber Bragg gratings (FBGs) are essential optical devices both for fiber communications and 
sensor applications due to their powerful ability to act as narrowband filters, optical add-drop 
multiplexers, dispersion compensators and cavity mirrors in fiber lasers [1]. Among these, 
superstructure or sampled FBG filters are especially attractive for dense 
wavelength-division-multiplexing (DWDM) applications in the existing long-haul fiber 
network due to their comb filter response [2], [3].  

With a periodic sampling function for the single channel seed grating profile, one can 
generate a multiple channel reflection spectrum by a sampled FBG. Subsequently, it has been 
found that sampled FBGs could be extended to compensate simultaneously for both the 
dispersion slope and the dispersion itself [4-6]. However, in comparison to a single channel 
grating, manufacture of an N-channel FBG device requires larger variation of the 
photo-induced refractive index change. In fact, it has been shown that the total index change is 
directly proportional to the number of the constituent gratings to be written, N times higher 
than a single channel grating [2]. Since the maximum index change with UV irradiation in 
silica glass is in the order of 0.001, there is an upper bound on the number of gratings that can 
be written by the superposition method in practical fabrication. Therefore, phase sampling is a 
preferred method for high-channel count FBG designs as the index modulation requirement 
for optimized gratings is only a square root growth with the number of channels, N times 
higher [7], [8]. In the literature, there have been many developed optimization-based or 
inverse design methods for fiber Bragg grating filters [9-12]. Among these methods, the 
inverse scattering discrete layer-peeling (DLP) algorithm has been used to directly design 
multichannel fiber gratings with an additional simulated annealing optimization process for 
different channel phases [13]. Recently, a general design method based on a genetic algorithm 
has also been applied to design the multichannel optical add-drop multiplexer as well as its 
dispersion shifts [14].  

However, for these approaches, the simplicity, efficiency, and direct synthesis advantages 
of the DLP algorithm are faded due to the inclusion of an additional Monte-Carlo approach 
(simulated annealing or genetic algorithms). What is more, all these methods mentioned above 
are complicated and lacking the design flexibility for practical applications. In other words, 
the flexibility of spectrum-tailoring for filter design, fabrication and packaging is limited.  

In this study, a new optimization-based approach for synthesizing the MCFBG filters for 
DWDM applications is investigated. The approach is based on a simple algorithm, the 
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Lagrange multiplier optimization (LMO) method, which can constrain various parameters of 
the designed devices for the practical application demands through a user-defined cost 
functional. In general, when compared to the layer-peeling algorithm, our proposed method 
can easily embed various constrains in the cost functional. When compared to Mote-Carlo 
based approaches such as the genetic algorithms or others, our method is a direct synthesis 
method without using random numbers and thus a smoother coupling coefficient profile as 
well as faster convergence speed can be obtained. Moreover, by varying the weighting 
parameters in the user-defined cost functional, the index modulation requirements can be 
controlled to meet real fabrication conditions. The LMO method has been proved to be very 
useful in designing optical pulse shapes to achieve various goals [15-17]. The main aim of the 
present work is to carry out the theoretical framework and to demonstrate the suitability and 
advantages of this method for advanced FBG filter design problems. In the study, flat-top 
MCFBGs with arbitrary channel spacing and low dispersion for DWDM applications can be 
obtained with the additional advantage of reducing the index modulation for commercially 
available photosensitivity fibers. The convergence rate is very fast and direct for the LMO 
algorithms [18-19] when compared to the stochastic approaches. The design examples in this 
work prove that the LMO algorithm is an effective method for optimally designing 
complicated fiber grating devices.  

2. LMO algorithm for FBG design 

Our LMO method is based on the conventional coupled-mode equations for FBGs [1]  

                       ( ) ( ) ( ) ( )zSzizRi
dz

zdR
,,

, δκδδδ +⋅=                      (1a) 

( ) ( ) ( ) ( )zRzizSi
dz

zdS
,,

, * δκδδδ −⋅−=                       (1b) 

where the amplitudes R  and S  are the forward- and backward mode amplitudes， 
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−= 12 0

λ
πδ n  is detuning, λ is wavelength and Λ is the grating period. The parameter κ(z) = 

ηπ∆n(z)/ λc is the designed coupling coefficient distribution function with ∆n(z) being the 

envelope function of the grating index modulation, λc is the central wavelength and η the 

overlapping factor. In this study the κ(z) function will be assumed to be real for the ease of 

practical fabrication. The main idea of the LMO method is to define an objective functional 

that needs to be minimized, such as,  
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Where ( ) ( ) ( )2
0/0 RSr =λ is the calculated reflection spectrum, L is the total length of the 

grating, and β is a positive number acting as a weighting parameter for the constraint control. 
In the defined cost functional, Eq. (2), the spatially coupling coefficient κ(z) is used to shape 
an output reflection spectrum )(λr  of a given reflection spectrum )(λdr  and to minimize 
both the reflection spectra difference and the norm of the coupling coefficient profiles 
simultaneously.  

In the proposed method, the forward / backward-modes and the Lagrange multipliers are 
separated into real and imaginary parts, respectively, i.e. IR iRRR += , IR iSSS += , 

IRRRR i ,, μμμ +=  and ISRSS i ,, μμμ += . 

To minimize the cost functional J , a variational method for Eq (2) is used with respect to 
the forward- and backward- modes R and S through the Lagrange multipliers Rμ and Sμ . The 
resulting equations of motion for the Lagrange multipliers are  

                       SR
R ii

z
κμμδμ −⋅=

∂
∂

                             (3a) 

        RS
S ii

z
μκμδμ *+⋅−=

∂
∂

                           (3b) 

with the boundary conditions obtained by varying R and S at z=0,  
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where )()( λλ dr rr −=Δ  is the discrepancy between the output and target reflection 
spectrum. Then, the cost functional J  is varied with respect to the coupling coefficient 
function κ(z)  

( ) λμμκβ
δκ
δ

dRSi
J

SR∫
∞

∞−
−+⋅= **

*
                     (5) 

 
Finally, the Eq. (1)-Eq. (5) are solved in a self-consistent way with the following procedures: 
 
(a) Guess an initial ( )ziniκ and let ( ) ( )zz iniold κκ = . 
(b) Solve the Eq. (1) and R(z) and S(z) can be obtained from Lz = to 0=z . 

(2) 
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(c) Set the boundary conditions of ( )0Rμ and ( )0Sμ by using Eq. (4). Then, the propagations 
of the Lagrange-multiplier functions ( )zRμ and ( )zSμ  from 0=z to Lz =  can be 
obtained by solving the Eq. (3).  

(d) Find *δκδJ from Eq. (5) and update the new medium 

            ( ) ( )
*δκ

δακκ J
zz oldnew −=                           (6) 

where α is an ad hoc constant.  
(e) Repeat the steps (b) to (d) until convergence are reached.  

3. Design results and discussion 

In order to evaluate the effectiveness of the proposed LMO algorithm for FBG filter design, 
several MCFBG filters with different grating length, channel spacing and bandwidth are 
presented in this section. All of the MCFBG filters are designed with the LMO algorithm 
described in the previous section with a same initial Gaussian apodization profile for the 
coupling coefficient. In the designed MCFBGs, the target spectrum of the reflectivity is set to 
be  
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where N is the total number of the channels, 0r  is the maximum reflectivity, λc is the central 
wavelength, ∆CS is channel spacing, and ∆λ  is the bandwidth for each channel. The total 
number of the calculated spectral points is set to be 200 and the central wavelength is set to be 
1.55×10 3− mm (1550nm). The units of λ and L are mm , and κ(z) is 1−mm . In the LMO 
algorithm for synthesizing MCFBGs, α is an ad hoc constant and β is a weighting parameter 
which is zero for unconstrained conditions and nonzero for the constrained coupling 
coefficient design. In this study case, we find that the best value of α is around 4105× , which 
can achieve an optimal and smoother convergence. The constrain on the value of the coupling 
constant can be more enforced with the sacrifice of the reflectivity spectrum quality by 
increasing the values of the weighting parameter β. We choose a value of β=10 7− for the 
comparison with the unconstrained situation β=0 in this designed case. 

The first synthesized example is a two-channel FBG filter, N=2. The total grating length is 
L=30mm, the channel spacing is ∆CS= 50GHz and the ∆λ  is 0.16nm for each channel 
corresponding to a bandwidth of full width at half maximum about 0.32nm and bandwidth 
0.35nm in -50dB. The simulation results are shown in Fig. 1.The designed reflection spectrum 
meets excellently with the target spectrum as in Fig. 1(a), with close to 30dB isolation outside 
the channels and with low dispersion inside the channels (deviation < ± 100 ps/nm in 75% of 
stopband and the maximum value is about ± 350ps/nm within whole channels). A detailed 
dispersion profile in one channel of the designed two-channel FBG is shown in Fig. 1(c). The 
apodization profile of the index modulation for this two-channel FBG filter is shown in Fig. 
1(d), with the maximum index modulation only slightly larger than the single-channel one 
(initial Gaussian apodization). In this work, we only consider the spectral reflectivity 
amplitude optimization, just to demonstrate the present optimization method. This is why we 
don't have a flat group delay (dispersionless) response here. 
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Fig. 1. Two-channel low dispersion FBG filter with channel spacing 50GHz synthesized by the 
LMO method. (a) Reflection spectrum and dispersion profile, (b) transmission and target 
spectra, (c) the detailed dispersion profile in one channel, (d) designed apodization profile of 
the index modulation. 

In the following design example, an eight-channel FBG, N=8, with grating length 80mm, 
channel spacing 25GHz and the ∆λ =0.088nm corresponding to a bandwidth of full width at 
half maximum 0.16nm and bandwidth 0.2nm in -50dB is synthesized. The simulation results 
appear in Fig. 2. Again, the designed reflection spectrum meets very well with the target 
spectrum in Fig. 2(a) with more than 30dB isolation outside the channels. In Fig. 2(c), the 
dispersion profile in one channel of the 8-channel FBG is shown. The apodization profile of 
the index modulation for this eight-channel FBG filter is shown in Fig. 2(d), with the 
maximum index modulation 1.6 times higher than the single-channel one (initial Gaussian 
apodization). It should be noted that the simulation is finished after hundreds of iterations. The 
convergence of the LMO method for MCFBG syntheses is efficient and monochromatic. 
Unlike other phase sampling approaches, no additional Monte-Carlo based optimization 
algorithm is used here. The typical evolution curves of the calculated average error (total error 
divided by the number of spectral points) for the cases of N = 2, 4, 8 channel numbers are 
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shown in Fig. 3. The reason why the initial error increases with the channel number is simply 
because we use the same Gaussian apodization function as the initial guess for all the design 
cases. When the channel number is increased, the initial error is increased due to the larger 
mismatch. However, the important thing here is that the convergence behavior (or trend) for 
different channel numbers is basically the same as can be seen in Fig. 3, despite the different 
magnitude of the initial errors. That is, the convergence quality actually does not degrade due 
to the increase of the channel numbers. This proves the suitability of the present method for 
designing complicated multichannel FBG filters. 
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Fig. 2. Eight-channel low dispersion FBG filter with channel spacing 25GHz synthesized by 
the LMO method. (a) Reflection spectrum and dispersion profile, (b) transmission and target 
spectra, (c) the detailed dispersion profile in one channel, (d) designed apodization profile of 
the index modulation. 
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Fig. 3. Typical evolution curves of the average error for the designed MCFBGs in the LMO 
method. 

In the above MCFBG syntheses, the weighting parameter β is zero for the unconstrained 
design. In this case, the maximum index modulation approximately grows proportional to the 
square root of the channel numbers, the same rate as a phase sampling approach. To further 
decrease the maximum value of the index modulation, β = -7101×  is used to control the 
maximum index modulation in the apodization profile. In Fig. 4, it can be seen that the 
maximum index modulation of a MCFBG could be significantly decreased to the same 
magnitude as the single-channel FBG case by slightly sacrificing the channel reflectivity.  
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Fig. 4. Reflection spectra and the apodization index profiles for (a), (b) two-channel FBG and 
(c), (d) eight-channel FBG  with the weighting parameter β = 0 and 7101 −× for 
unconstrained and constrained coupling coefficient designs, respectively. 

4. Conclusion 

In conclusion, a novel MCFBG synthesis method based on the Lagrange multiplier 
optimization (LMO) is presented. Based on the simulation results, it has been found that 
single stage MCFBGs with arbitrary channel spacing and bandwidth of low dispersion for 
DWDM applications can be obtained by using the proposed design method. In addition, the 
maximum amplitude of the index profile of the designed MCFBGs can be reduced by 
choosing a properly constrained parameter in the LMO algorithm in order to obtain a better 
index modulation profile for practical photosensitivity fibers. Our future investigation along 
this line will include the actual fabrication of the designed FBG filters, the dispersion (or other 
parameters) optimization, and the theoretical extension of the κ(z) function to be complex for 
more design freedom and possible better performance. Finally, it is believed that the proposed 
method is an attractive and effective way for optimally designing complicated fiber grating 
devices for practical applications and can be further developed to construct a powerful toolbox 
for practical design of other optical devices.  
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