
6, Quantum theory of Fluorescence

1. Quantum theory of Damping: Density operator

2. Quantum theory of Damping: Langevin equation

3. System-Reservoir Interaction

4. Resonance Fluorescence

5. Decoherence
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Damping via oscillator reservoir

consider a single-mode field, with frequency ω, â and â† operators,

the reservoir may be taken as any large collection of systems with many degrees
(e.g. phonons, other photon modes, etc), with closely spaced frequencies νk, b̂k

and b̂†k operators,

the Hamiltonian for the field-reservoir system is

Ĥ = ~ωâ†â +
∑

k

~νk b̂†b̂ +
∑

k

~gk(b̂†kâ + â†b̂k),

the Heisenberg equations of motion for the operators are

d
dt

â(t) =
i

~
[Ĥ, â] = −iωâ(t) − i

∑

k

gk b̂k(t),

d
dt

b̂k(t) = −iνk b̂(t) − igkâ(t),
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Damping via oscillator reservoir

the closed equation for the field operator â(t) is,

b̂k(t) = b̂k(0)e−iνkt − igk

∫ ∞

0
dt′e−iνk(t−t′)â(t′),

d
dt

â(t) = −iωâ(t) −
∑

k

|gk|2
∫ ∞

0
dt′e−iνk(t−t′)â(t′) + f̂a(t),

where

f̂a(t) = −i
∑

k

gk b̂k(0)e−iνkt,

define slowly varying operator â′(t) = âeiωt, then

d
dt

â′(t) = −
∑

k

|gk|2
∫ ∞

0
dt′e−i(νk−ω)(t−t′)â′(t′) + F̂a(t),

F̂a(t) = −i
∑

k

gk b̂k(0)e−i(νk−ω)t,

we use the notation â(t) to replace â′(t) in the following formulations,
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Markovian white noise

a single-mode field interacting with reservoir,

d
dt

â(t) = −
∑

k

|gk|2
∫ ∞

0
dt′e−i(νk−ω)(t−t′)â(t′) + F̂a(t),

F̂a(t) = −i
∑

k

gk b̂k(0)e−i(νk−ω)t,

with the Weisskopf-Wigner theory, G(t) = Γ
2

δ(t),

∑

k

|gk|2
∫ ∞

0
dt′e−i(νk−ω)(t−t′)â(t′) ≡

∫ ∞

0
dt′G(t − t′)â(t′) ≈ Γ

2
â(t),

where G(t − t′) =
∑

k |gk|2e−i(νk−ω)(t−t′) =
∫

ν D(ν)|g(ν)|2e−i(νk−ω)(t−t′),
D(ν) is the density of state for the reservoir, and the equation of motion for the
field interacting with the reservoir is

d
dt

â(t) = −Γ

2
â(t) + F̂a(t),

there are dissipation and fluctuation terms,
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Commutation relation

for a Markovian process

d
dt

â(t) = −Γ

2
â(t) + F̂a(t), F̂a(t) = −i

∑

k

gk b̂k(0)e−i(νk−ω)t,

if one dismiss the fluctuation term F̂a(t),

d
dt

â(t) = −Γ

2
â(t),

we have the solution â(t) = â(0)e−Γ/2t,

for the non-interacting field, the commutation relation at t = 0 is [â(0), â†(0)] = 1,
but as time evolves to t 6= 0, the commutation relation is not satisfied,

[â(t), â†(t)] = exp(−Γt),

the noise operator with appropriate correlation properties helps to maintain the
commutation relation at all time,
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Thermal reservoir

the noise operator is defined as,

F̂a(t) = −i
∑

k

gk b̂k(0)e−i(νk−ω)t,

suppose the reservoir is in thermal equilibrium,

< bk(0) >R=< b†k(0) >R= 0

< bk(0)bk′(0) >R= 0 < b†k(0)b†
k′

(0) >R= 0

< b†k(0)bk′(0) >R= n̄kδkk′

< bk(0)b†
k′

(0) >R= (n̄k + 1)δkk′

where

n̄th = 〈n〉 =
∑

n

nρnn =
1

exp(~νk/kBT ) − 1
,
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Thermal reservoir

the noise operator is defined as,

F̂a(t) = −i
∑

k

gk b̂k(0)e−i(νk−ω)t,

the Langevin noise operators have zero means

〈F̂a(t)〉R = 〈F̂ †
a (t)〉R = 0,

but non-zero variances,

〈F̂ †
a (t)F̂a(t′)〉R =

∑

k

∑

k′

gkgk′〈b̂†k b̂k′〉exp[i(νk − ω)t − i(νk′ − ω)t′],

=
∑

k

|gk|2n̄kexp[i(νk − ω)(t − t′)],

= Γn̄thδ(t − t′),

where n̄th = n̄(νk−ω),
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Fluctuation-dissipation theory

for a single-mode field interacting with thermal reservoir,

d
dt

â(t) = −Γ

2
â(t) + F̂a(t),

the Langevin noise operators have zero means but non-zero variances,

〈F̂a(t)〉R = 〈F̂ †
a (t)〉R = 0,

〈F̂ †
a (t)F̂ †

a (t′)〉R = 〈F̂a(t)F̂a(t′)〉R = 0,

〈F̂ †
a (t)F̂a(t′)〉R = Γn̄thδ(t − t′),

〈F̂a(t)F̂ †
a (t′)〉R = Γ(n̄th + 1)δ(t − t′),

the damping of the system is determined from the fluctuating forces of the
reservoir, in other words, the fluctuations induced by the reservoir give rise to the
dissipation in the system,

Γ =
1

n̄th

∫ ∞

−∞

dt′〈F̂ †
a (t)F̂a(t′)〉R,

this is one formulation of the fluctuation-dissipation theorem,
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Mollow’s triplet: Resonance Fluorescence Spectrum
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Theory: B. R. Mollow, Phys. Rev. 188, 1969 (1969).

Exp: F. Y. Wu, R. E. Grove, and S. Ezekiel, Phys. Rev. Lett. 35, 1426 (1975).

elastic Rayleigh scattering and inelastic Raman scattering
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Photon-Atom Interaction in PhCs

Reservoir Theory
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Hamiltonian of our system: Jaynes-Cummings model

H =
~

2
ωaσz + ~

∑

k

ωka
†
kak +

Ω

2
~(σ−eiωLt + σ+e−iωLt)

+ ~

∑

k

(gkσ+ak + g∗
ka

†
kσ−)

And we want to solve the generalized Bloch equations:

σ̇−(t) = i
Ω

2
σz(t)e

−i∆t +

∫ t

−∞
d t′G(t − t′)σz(t)σ−(t′) + n−(t)

σ̇+(t) = −i
Ω

2
σz(t)e

i∆t +

∫ t

−∞
d t′Gc(t − t′)σ+(t′)σz(t) + n+(t)

σ̇z(t) = iΩ(σ−(t)ei∆t − σ+(t)e−i∆t) + nz(t)

− 2

∫ t

−∞
d t′[G(t − t′)σ+(t)σ−(t′) + Gc(t − t′)σ+(t′)σ−(t)]
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Remarks:

1. coupling constant:

gk ≡ gk(d̂,−→r 0) = |d|ωa

√

1

2~ǫ0ωkV
d̂ · E∗

k(
−→r0 )

2. memory functions:

G(τ) ≡
∑

k

|gk|2ei∆ktΘ(τ)

Gc(τ) ≡
∑

k

|gk|2e−i∆ktΘ(τ)

3. Markovian approximation:

G(t) = Gc(t) = Γδ(t)
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Quantum noise operators

n−(t) = i
∑

k

gke
i∆ktσz(t)ak(−∞)

n+(t) = −i
∑

k

g∗
ke

−i∆kta+
k (−∞)σz(t)

nz(t) = 2i
∑

k

[g∗
ke

−i∆kta+
k (−∞)σ−(t) − gke

i∆ktσ+(t)a+
k (−∞)]

where the mean and the correlation functions of the reservoir before interaction,

< ak(−∞) >R=< a
†
k(−∞) >R= 0

< ak(−∞)ak′(−∞) >R= 0

< a
†
k(−∞)a†

k′(−∞) >R= 0

< a
†
k(−∞)ak′(−∞) >R= n̄kδkk′

< ak(−∞)a†
k′(−∞) >R= (n̄k + 1)δkk′
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Heisenberg-Langevin equations

σ̇−(t) = i
Ω

2
σz(t)e−i∆t +

∫ t

−∞

d t′G(t − t′)σz(t)σ−(t′) + n−(t)

σ̇+(t) = −i
Ω

2
σz(t)ei∆t +

∫ t

−∞

d t′Gc(t − t′)σ+(t′)σz(t) + n+(t)

σ̇z(t) = iΩ(σ−(t)ei∆t − σ+(t)e−i∆t) + nz(t)

− 2

∫ t

−∞

d t′[G(t − t′)σ+(t)σ−(t′) + Gc(t − t′)σ+(t′)σ−(t)]

where the Langevin noise operators have zero means but non-zero variances,

〈n−(t)〉R = 〈n+(t)〉R = 〈nz(t)〉R = 0

〈n−(t)n−(t′)〉R = 〈n+(t)n+(t′)〉R = 0

〈n−(t)n+(t′)〉R =
∑

k

|gk|2(n̄k + 1)ei∆k(t−t′)〈σz(t)σz(t′)〉

〈n+(t)n−(t′)〉R =
∑

k

|gk|2n̄ke−i∆k(t−t′)〈σz(t)σz(t′)〉

〈nz(t)nz(t′)〉R = 4
∑

k

|gk|2[(n̄k + 1)ei∆k(t−t′)〈σ+(t)σ−(t′)〉 + n̄ke−i∆k(t−t′)〈σ−(t)σ+(t′)〉
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Modeling DOS of PBCs
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S. Y. Zhu, et al., Phys. Rev. Lett. 84, 2136 (2000).
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Memory functions of PBCs

anisotropic model: ωk = ωc + A|k − k
i
0|2

D(ω) =
√

ω−ωc

A3 Θ(ω − ωc)

the memory functions under this anisotropic model
also can be derived:

G̃(ω) = β3/2 −i√
ωc +

√
ωc − ωa − ω

G̃c(ω) = β3/2 i√
ωc +

√
ωc − ωa + ω

where β3/2 = ω2
ad2

6~ǫ0πA3/2 η, and we have used the space

average coupling strength η ≡ 3
8π

∫

dΩ|d · E|2 in the
derivation.
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Memory functions of PBCs
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Correlations of noise operators at zero temperature

〈ñ−(ω1)ñ+(−ω2)〉R = πN(ω1)Θ(ω1 + ωa − ωc)δ(ω1 − ω2)

〈ñz(ω1)ñz(−ω2)〉R = N(ω1)[4πδ(ω1 − ω2) + 〈σ̃z(ω1 − ω2)〉R]

·Θ(ω1 + ωa − ωc)

〈ñz(ω1)ñ−(−ω2)〉R = 0

〈ñ−(ω1)ñz(−ω2)〉R = N(ω1)〈σ̃−(ω1 − ω2)〉RΘ(ω1 + ωa − ωc)

〈ñz(ω1)ñ+(−ω2)〉R = N(ω1)〈σ̃+(ω1 − ω2)〉RΘ(ω1 + ωa − ωc)

〈ñ+(ω1)ñz(−ω2)〉R = 0

with N(ω) ≡ 4β3/2
√

ωa+ω−ωc

ωa+ω

Quantum noises of the photonic bandgap reservoir are
not only color noises but also exhibit bandgap behaviour.
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Liouville operator expansion

σij(t) = e−iL(t−t′)σij(t
′) =

∞
∑

n=0

[−i(t − t′)]n

n!
Lnσij(t

′)

For zero-th order Liouville operator expansion, we get

σ̇−(t) = i
Ω

2
σz(t)e

−i∆t −
∫ t

−∞
dt′G(t − t′)σ−(t′) + n−(t)

σ̇+(t) = −i
Ω

2
σz(t)e

i∆t −
∫ t

−∞
dt′Gc(t − t′)σ+(t′) + n+(t)

σ̇z(t) = iΩ(σ−(t)ei∆t − σ+(t)e−i∆t)

−
∫ t

−∞
dt′[G(t − t′) + Gc(t − t′)](1 + σz(t

′)) + nz(t)

valid for the case of
atom with longer lifetime and under weak pumping
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Solve the optical Bloch equations

Since it is now a linear problem, by using Fourier transform the modified optical Bloch
equations become:

M(ω) · ~X (ω) = ~X0(ω)

where

M(ω) =









−i(ω + ∆) + G̃(ω) 0 −iΩ
2

0 −i(ω − ∆) + G̃c(ω) iΩ
2

−iΩ iΩ −iω + G̃(ω) + G̃c(ω)









~X (ω) =









σ̃−(ω + ∆)

σ̃+(ω − ∆)

σ̃z(ω)









~X0(ω) =









ñ−(ω + ∆)

ñ+(ω − ∆)

−2π[G̃(ω) + G̃c(ω)]δ(ω) + ñz(ω)









where ñ−(ω), ñ+(ω), ñz(ω), G̃(ω), and G̃c(ω) are Fourier transforms of n−(t), n+(t),

nz(t), G(t), and Gc(t), respectively.
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Solve the optical Bloch equations

The solutions are

σ̃−(ω + ∆) =
(2g h + Ω2) ñ−(ω) + Ω2 ñ+(ω) + iΩg ñz(ω) − i2πΩg[G̃(ω) + G̃c(ω)]δ(ω)

Ω2(f + g) + 2f g h

σ̃+(ω − ∆) =
Ω2 ñ−(ω) + (2f h + Ω2) ñ+(ω) − iΩf ñz(ω) + i2πΩf [G̃(ω) + G̃c(ω)]δ(ω)

Ω2(f + g) + 2f g h

σ̃z(ω) =
2iΩg ñ−(ω) − 2iΩf ñ+(ω) + 2f g ñz(ω) − 4πf g[G̃(ω) + G̃c(ω)]δ(ω)

Ω2(f + g) + 2f g h

where

f(ω) = −iω − i∆ + G̃(ω)

g(ω) = −iω + i∆ + G̃c(ω)

h(ω) = −iω + G̃(ω) + G̃c(ω)
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Fluorescence spectrum

Because the two-time correlation function of the atomic dipole is proportional to
the first order correlation function g(1)(τ), we can obtain the fluorescence
spectrum by taking the Fourier transform of the first order correlation function:

S(ω) =

∫ ∞

−∞

dτ g(1)(τ)eiωτ

∝ 〈σ̃+(ω)σ̃−(−ω)〉R

It should be noted that here we cannot directly apply the quantum regression
theorem since it is invalid for non-Markovian process.
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Mollow’s triplet

As a check, we first use our formulation to calculate the free space case.

At free space, one can assume the memory functions are delta functions since
∑

k |gk|2ei∆kt = Γδ(t) with Γ being the decay rate of the excited atom.

The noise correlation functions at zero temperature are also delta-function
correlated (i.e., white noises).

Therefore, the fluorescence spectrum at steady state is given by:

〈σ̃+(ω)σ̃−(−ω)〉R =
π2Ω2(Γ2

4
+ ∆2)

Ω2

2
+ ∆2 + Γ2

4

δ(ω + ∆)

+
πΓΩ4(Ω2

2
+ Γ2 + (ω + ∆)2)

2(Ω2

2
+ ∆2 + Γ2

4
)[Γ2(Ω2

2
+ ∆2 + Γ2

4
− 2(ω + ∆)2)2 + (ω + ∆)2(Ω2 + ∆2 + 5

4
Γ2 − (ω + ∆)2)2]
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Mollow’s triplet

In the limit of strong on-resonance pumping (Ω ≫ Γ, ∆ = 0), Eq.(1) can be
reduced to:

〈σ̃+(ω)σ̃−(−ω)〉R = 2π{2π
Γ2

4Ω2
δ(ω) +

3
16

Γ

(ω + Ω)2 + 9
16

Γ2
+

1
4
Γ

ω2 + 1
4
Γ2

+
3
16

Γ

(ω − Ω)2 + 9
16

Γ2
}

Then, the resonance fluorescence spectrum exhibits the Mollow triplets for white
noise: three Lorentzian profiles with peaks in the ratio 1 : 3 : 1, and widths of 3

2
Γ,

Γ, and 3
2
Γ.
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Resonance fluorescence spectra near the band-edge
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Quadrature spectra

Define quadrature field operator as:

Êθ(t) = eiθÊ(+)(t) + e−iθÊ(−)(t)

θ = 0 (π
2
) are the in-phase (out-of-phase) quadrature fields.

Then the corresponding spectra with normally order
variance is:

Sθ(ω) ≡ < Ẽθ(ω), Ẽθ(−ω) >

∝ 1

4
[< σ̃−(ω)σ̃−(−ω) > e−2iθ+ < σ̃+(ω)σ̃−(−ω) >

+ < σ̃+(−ω)σ̃−(ω) > + < σ̃+(−ω)σ̃+(ω) > e2iθ]
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Quadrature spectra in free space

Ω = 5.0Γ Ω = 2.0Γ

Ω = 1.0Γ Ω = 0.5Γ

Theory: D. F. Walls and P. Zoller, Phys. Rev. Lett. 47, 709 (1981).

Theory: L. Mandel, Phys. Rev. Lett. 49, 136 (1982).
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Observation of squeezing fluorescence spectra

with 147Yb atoms

Exp: Z. H. Lu, S. Bali, and J. E. Thomas, Phys. Rev. Lett. 81, 3635 (1998).
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Fluorescence quadrature spectra near the band-edge
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Resonance fluorescence quadrature spectra near the band-ed ge

1. Suppression and enhancement of the relative fluorescence

peak amplitudes varied at different wavelength offsets.

2. Squeezing occurs in the out-of-phase quadrature for free

space when Ω
2

< 4Γ
2.

3. Squeezing occurs in the in-phase quadrature for PhCs when

Ω
2

> 4Γ
2.

4. Resonance fluorescence squeezing spectra come from the

interference between two sidebands of Mollow’s triplet.

R.-K. Lee and Y. Lai, J. Opt. B, 6, S715 (2004).
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Density operator method

Heisenberg-Langevin equation is a directly correspondence to classical
description of stochastic system,

in many cases, Heisenberg-Langevin equation is nonlinear,

in general it is extremely difficult to deal with the Heisenberg-Langevin equation,

another method is to develop a Schrödinger or interaction picture analysis,

in this way we want to use a linear deterministic differential equation for the reduced

system density operator,

naturally, as the quantum system is open, there is statistical as well as quantum
uncertainty and a true wave function description is no longer possible,

Ref:

Ch. 7 in ”Mesoscopic Quantum Optics,” by Y. Yamamoto and A. Imamoglu.
”Quantum Noise,” by C. W. Gardiner.
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Master equation

we consider a system S interacting with a reservoir R via the interaction
Hamiltonian V̂ ,

the combined density operator is denoted by ρ̂(t),

assume that at an initial time t = 0, the two systems are uncorrelated,

ρ̂(t = 0) = ρ̂S(0) ⊗ ρ̂R(0),

in the interaction picture, the dynamics of ρ̂(t) is

d
dt

ρ̂(t) =
1

i~
[ĤI(t), ρ̂(t)],

since the number of degrees of freedom of the reservoir is very large, it is
impossible to keep track of its quantum evolution,

we can only focus on the system with a reduced density operator, by tracing over
the reservoir degrees of freedom,

d
dt

ρ̂S(t) =
1

i~
TrR([ĤI(t), ρ̂(t)]),
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Master equation

we can only focus on the system with a reduced density operator,

d
dt

ρ̂S(t) =
1

i~
TrR([ĤI(t), ρ̂(t)]),

where
d
dt

ρ̂(t) =
1

i~
[ĤI(t), ρ̂(t)],

without any approximation, the master equation for the reduced density operator is,

d

dt
ρ̂S(t) = (

1

i~
)2

∫ t

0
dt′TrR([ĤI(t), [ĤI(t′), ρ̂(t′)]]) +

1

i~
TrR([ĤI(t), ρ̂(0)]),

since TrR([ĤI(t), ρ̂(0)]) vanish for all the interaction Hamiltonians of interest in
quantum optics, we have the master equation,

d

dt
ρ̂S(t) = (

1

i~
)2

∫ t

0
dt′TrR([ĤI(t), [ĤI(t′), ρ̂(t′)]]),
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Born-Markov approximation

the master equation for the reduced density operator, without any approximation,

d
dt

ρ̂S(t) = (
1

i~
)2

∫ t

0
dt′TrR([ĤI(t), [ĤI(t′), ρ̂(t′)]]),

four key approximations used in the following,

1. Rotating-wave approximation,

2. Born approximation,

ρ̂(t′) = ρ̂S(t′) ⊗ ρ̂R(t′),

3. the initial radiation field density operator commutes with the free Hamiltonian
and the reservoir is not affected by the interaction with the system,

ρ̂R(t) = TrS [ρ̂(t)] = ρ̂R(0),

4. Markov approximation,

ρ̂S(t′) ≈ ρ̂S(t),
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Master equation

the master equation for the reduced density operator, without any approximation,

d
dt

ρ̂S(t) = (
1

i~
)2

∫ t

0
dt′TrR([ĤI(t), [ĤI(t′), ρ̂(t′)]]),

with Born-Markov approximation, the master equation becomes

d
dt

ρ̂S(t) = (
1

i~
)2

∫ t

0
dt′TrR([ĤI(t), [ĤI (t′), ρ̂S(t) ⊗ ρ̂R(0)]]),

atom damping by field reservoirs,

field damping by field reservoirs,

field damping by atomic reservoirs,
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Atom damping by field reservoirs

consider a two-level atom damped by a field reservoir in free space,

the interaction Hamiltonian is

ĤI =
∑

k

~(gkσ̂−â†
ke−i(ω−ωk)t + H. C),

assume the reservoir density operator is a multimode thermal field,

ρ̂R =
∏

k

∑

n

exp(− ~ωkn
kBT

)

1 − exp(− ~ωkn
kBT

)
|n〉kk〈n|,

the equation of motion for the reduced density operator TrR[ρ̂(t)] ≡ ρ̂a(t) is,

d
dt

ρ̂a(t) = (
1

i~
)2

∫ t

0
dt′TrR([ĤI(t), [ĤI(t′), ρ̂a(t) ⊗ ρ̂R(0)]]),

= −1

2
Γ{nth[σ̂−σ̂+ρ̂a − σ̂+ρ̂aσ̂−] + (nth + 1)[σ̂+σ̂−ρ̂a − σ̂−ρ̂aσ̂+])} + H. C,
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Field damping by field reservoirs

consider a single-mode field in a cavity with a finite leakage rate,

assume the reservoir density operator is a multimode thermal field,

ρ̂R =
∏

k

∑

n

exp(− ~ωkn
kBT

)

1 − exp(− ~ωkn
kBT

)
|n〉kk〈n|,

the equation of motion for the reduced density operator TrR[ρ̂(t)] ≡ ρ̂f (t) is,

d
dt

ρ̂f (t) = (
1

i~
)2

∫ t

0
dt′TrR([ĤI(t), [ĤI(t′), ρ̂f (t) ⊗ ρ̂R(0)]]),

= −
∫ t

t0

dt′
∑

k

g2
k{nth[ââ†ρ̂f (t′) − â†ρ̂f (t′)â]e−i(ω−ωk)(t−t′)

+(nth + 1)[â†âρ̂f (t′) − âρ̂f (t′)â†])ei(ω−ωk)(t−t′)} + H. C,
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Field damping by field reservoirs

the equation of motion for the reduced density operator TrR[ρ̂(t)] ≡ ρ̂f (t) is,

d
dt

ρ̂f (t) = −
∫ t

t0

dt′
∑

k

g2
k{nth[ââ†ρ̂f (t′) − â†ρ̂f (t′)â]e−i(ω−ωk)(t−t′)

+(nth + 1)[â†âρ̂f (t′) − âρ̂f (t′)â†])ei(ω−ωk)(t−t′)} + H. C,

again, by replacing sumkg2
k with the integral

∫

dωkD(ωk)g(ωk)2, and

∫ t

t0

dt′
∑

k

g2
ke±i(ω−ωk)(t−t′) =

∫ t

t0

dt′
∫

dωkD(ωk)g(ωk)2e±i(ω−ωk)(t−t′),

≈
∫

dωkD(ωk)g(ωk)2πδ(ω − ωk),

≈ πD(ω)g(ω)2 ≡ 1

2
(

ω

Qe
),

where ω/Qe is the cavity photon decay rate due to leakage (output coupling) via a
partially reflecting mirror,
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Field damping by field reservoirs

the equation of motion for the reduced density operator TrR[ρ̂(t)] ≡ ρ̂f (t) is,

d
dt

ρ̂f (t) = −1

2
(

ω

Qe
){nth[ââ†ρ̂f (t′) − â†ρ̂f (t′)â] + (nth + 1)[â†âρ̂f (t′) − âρ̂f (t′)â†])},

+H. C,

compared to the case of atom damping by field reservoirs,

d
dt

ρ̂a(t) = −1

2
Γ{nth[σ̂−σ̂+ρ̂a − σ̂+ρ̂aσ̂−] + (nth + 1)[σ̂+σ̂−ρ̂a − σ̂−ρ̂aσ̂+])} + H. C,
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Field damping by atomic reservoirs

consider the damping of an optical cavity mode by a two-level atomic beam
reservoir,

this is the reverse problem of a laser,

the statistics of the atomic reservoir is determined by the Boltzmann distribution,

ρ̂R=atom(t = 0) =





ρaa 0

0 ρbb



 = ρaa|a〉〈a| + ρbb|b〉〈b|,

where

ρaa =
1

1 + exp(~ω0/kBt)
, and ρaa =

exp(~ω0/kBt)

1 + exp(~ω0/kBt)
,

assume there is no quantum coherence between the upper and lower states,
ρab = ρba = 0,
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Field damping by atomic reservoirs

the interaction Hamiltonian for a single atom is

ĤI = ~g(σ̂−â† + σ̂+â) = ~g





0 â

â† 0



 ,

at t = 0, the atom-field density operator is,

ρ̂(t) = ρ̂f (t) ⊗ ρ̂R =





ρaaρ̂f (t) 0

0 ρbbρ̂f (t)



 ,

the terms for the commutator are

[ĤI , [ĤI , ρ̂(t)]] = ~g2





ââ†ρaaρ̂f (t) − âρbbρ̂f (t)â† 0

0 â†âρbbρ̂f (t) − â†ρeeρ̂f (t)â





+H. C,
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Field damping by atomic reservoirs

the equation of motion for the reduced density operator TrR[ρ̂(t)] ≡ ρ̂f (t) is,

d
dt

ρ̂f (t) = (
1

i~
)2

∫ t

0
dt′TrR([ĤI(t), [ĤI(t′), ρ̂f (t) ⊗ ρ̂R(0)]]),

assume that r atoms are injected into the cavity per second,

and they spend an average time of τ seconds inside the cavity, i.e.

∫ τ

0
dt′rt′ =

1

2
rτ2,

then,

d
dt

ρ̂f (t) = −1

2
Re[ââ†ρ̂f − â†ρ̂f â] − 1

2
Rg[â†âρ̂f − âρ̂f (t)â†] + H.C,

where

Re = rρaag2τ2, and Rg = rρbbg
2τ2,
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Field damping by atomic reservoirs

the equation of motion for the reduced density operator TrR[ρ̂(t)] ≡ ρ̂f (t) is,

d
dt

ρ̂f (t) = −1

2
Re[ââ†ρ̂f − â†ρ̂f â] − 1

2
Rg[â†âρ̂f − âρ̂f (t)â†] + H.C,

where

Re = rρaag2τ2, and Rg = rρggg2τ2,

Re is the rate coefficient for photon emission by atoms per second,

Rg is the rate coefficient for photon absorption by atoms per second,

the cavity photon decay rate ν
Q0

and the thermal equilibrium photon number nth

are defined by

ν

Q0
≡ Rg−Re, and Re(1+nth) = Rgnth → nth =

Re

Rg − Re
=

1

exp(~ω/kbT ) − 1
,

the later one condition gives the thermal equilibrium photon number nth,

Re(1 + nth) is the sum of spontaneous and stimulated emission rate per second,

Rgnth is (stimulated) absorption rate per second,
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Field damping by atomic reservoirs

the equation of motion for the reduced density operator TrR[ρ̂(t)] ≡ ρ̂f (t) is,

d
dt

ρ̂f (t) = −1

2
Re[ââ†ρ̂f − â†ρ̂f â] − 1

2
Rg[â†âρ̂f − âρ̂f (t)â†] + H.C,

= −1

2

ν

Q0
{nth[ââ†ρ̂f − â†ρ̂f â] + (nth + 1)[â†âρ̂f − âρ̂f (t)â†]} + H.C,

where we use that Re = ν
Q0

nth and Rg = ν
Q0

(nth + 1),

the diagonal elements of the reduced density matrix are

d
dt

ρn,n(t) = − ν

Q0
{[nth(n + 1) − (nth + 1)n]ρn,n

−nthρn−1,n−1 − (nth + 1)(n + 1)ρn+1,n+1},
= [−Re(n + 1) − Rgn]ρnn + Renρn−1,n−1 + Rg(n + 1)ρn+1,n+1,
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Detailed balance

equilibrium is obtain when the net flow between all pairs of level vanishes,

Rgnρn,n = Renρn−1,n−1, or ρn,n =
nth

nth + 1
ρn−1,n−1,

is condition is referred to as detailed balance,

the solution for detailed balance is,

ρn,n = [1 − exp(−~ω/kBT )]exp(−n~ω/kBT ),

with nth = 1
exp(~ω/kbT )−1

,

detailed balance in this case gives the thermal (Bose-Einstein) distribution with an
average photon number,

〈n〉 =
∑

n

ρn,nn =
1

exp(~ω/kBT ) − 1
= nth
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Detailed balance

detailed balance in this case gives the thermal (Bose-Einstein) distribution with an
average photon number,

〈n〉 =
∑

n

ρn,nn =
1

exp(~ω/kBT ) − 1
= nth

this is the result we use for the thermal radiation field,

although the filed ρ̂f may initially be in a pure state, the process of tracing over the
(unobserved) atomic states leads to a field in a mixed state, ρ̂f =

∑

n ρn,n|n〉〈n|,

the effect of the atomic beam is to bring the field to the same temperature as that of
atoms,
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Reservoir, decoherence, and measurement

the reservoir theory lies in the process of tracing over the reservoir coordinates,

which induces dissipation and decoherence of the system,

at the same time, this is an irreversible dynamics for the system,

this process corresponds to the lack of measurement as to whether the atom is in
the upper level or in the lower level after interaction with the field,

if the initial and final states of the atom are know, i.e if the information concerning
the atomic beam is not discarded, the field remains in a pure state,

the primary difference between the reservoir and quantum measurement theories
is whether information stored in the environment (reservoir) that interacts with
system is discarded or read out.
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