6, Quantum theory of Fluorescence

Quantum theory of Damping: Density operator

=

A 2

Quantum theory of Damping: Langevin equation
System-Reservoir Interaction

Resonance Fluorescence

a >~ W h e

Decoherence

Ref:

Ch. 8, 9, 10 in "Quantum Optics,” by M. Scully and M. Zubairy.

Ch. 7 in "Mesoscopic Quantum Optics,” by Y. Yamamoto and A. Imamoglu.
Ch. 8 in "The Quantum Theory of Light,” by R. Loudon.

Ch. 14, 15 in "Elements of Quantum Optics,” by P. Meystre and M. Sargent lll.
Ch. 8 in "Introductory Quantum Optics,” by C. Gerry and P. Knight.
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Damping via oscillator reservoir
5

consider a single-mode field, with frequency w, @ and a' operators,

the reservoir may be taken as any large collection of systems with many degrees
(e.g. phonons, other photon modes, etc), with closely spaced frequencies vy, by,

and b! operators,

2 the Hamiltonian for the field-reservoir system is

A =hmwata+ Y mnb'b+ " hge(bla + alby),
k k

2 the Heisenberg equations of motion for the operators are

d—a,(t) = —[H,a] = —iwa(t) —i Y _ grbr(t),
t h .

d . . .

&bk (t) = —iwgb(t) —igra(t),

A FERE
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Damping via oscillator reservoir

2 the closed equation for the field operator a(t) is,

bi(t) = br(0)e Wkt — g, / dt/ e~k (=) g ¢/,

] A
Galt) = —iwa(t) - 2:\WJ2/n dt’'e= R a(t) + fa(t),

where

fa(t) = —i ) grbp(0)e ™7,
k
2 define slowly varying operator &’ (t) = ae*“?, then

d" — I\ w
Yoy = —§jmm{/ dt/ e~ 10— =)o/ (1) 4 B (b),

i3 b)),
k

>

~~
[

~—
|

e = - :)gr We Mse the notation a(t) to replace a’(t) in the following formulations,
W I;';} L .--|f]_ S ey
[ —
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Markovian white noise

2 3 single-mode field interacting with reservaoir,

d, > —i(vp—w)(t—t') A n
&a(t) = —Z\g,ﬁfo dt’e =" We =) E=t) (") 4 Fy(t),
k
Fo(t) = =iy gebp(0)e "R,
k

2 with the Weisskopf-Wigner theory, G(t) = Ls(t),
2 ) —i(vg—w)(t—t) I
Z\gk\ T dtrei0n- a(t') = dtG(t—t)(t)NE()

where G(t — ') = 0y, lgx|2e =)=t = [ D(w)|g(v)[2em =)=,
D(v) is the density of state for the reservoir, and the equation of motion for the
field interacting with the reservoir is

_&(t) = —g&(t) + Fa(t>7

-ﬁ"ﬁ:‘lﬂ J j_ g;f ﬂ“ o,
o D s ”‘there are dissipation and fluctuation terms,
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Commutation relation

2 for a Markovian process

d A L' - ” . 7 — (v —w)t
&a(t) = —Ea(t)—l—Fa(t), Fo(t) = —Z;kak(o)e (v —w)t

2 if one dismiss the fluctuation term Fo(t),

we have the solution a(t) = a(0)e—1/2t,

2 for the non-interacting field, the commutation relation at t = 0 is [a(0), a'(0)] = 1,
but as time evolves to ¢t # 0, the commutation relation is not satisfied,

[a(t),a’ ()] = exp(~Tt),

9 the noise operator with appropriate correlation properties helps to maintain the

commutation relation at all time,
TR EEALE
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Thermal reservoir

9 the noise operator is defined as,

A

Fo(t)=—i)  grbp(0)e ‘et
k

2 suppose the reservoir is in thermal equilibrium,

where

< br(0) >pr=< b};(O) >r=0

< by, (0)bgr (0) >r=0 < bl (0)b],(0) >p=0

< bl (0)by (0) >R= MO

< bk(o)bL (0) >r=

nih = Z NPnn =

(R + 1)0kx/

1

exp(hvy /kgT) — 1’
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Thermal reservoir

9 the noise operator is defined as,

A

Fo(t)=—i)  grbp(0)e ‘et
k

9 the Langevin noise operators have zero means

(Fa()r = (FI(t))r =0,

but non-zero variances,

(FIOF.tNr = Y grgw (b by expli(vy — w)t — i(vg — w)t'],
kK
= ) grl*nrexpli(vy — w)(t —t')],
P

= Dot —t'),

where n;p, = Ny, —w)s

A FERE

Mational Teing Hua University
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Fluctuation-dissipation theory

2 for a single-mode field interacting with thermal reservoir,

—a(t) = —gd(t) + Fu(t),

9 the Langevin noise operators have zero means but non-zero variances,

(Fa®)r = (F](t))r =0,
(FIOEI)) R = (Fa(®)Fa(t'))r =0,
(FI®)Fa(t))r = TRgnd(t —t'),
(Fa)EJ () r =T (Rgn + 1)t — t'),

9 the damping of the system is determined from the fluctuating forces of the
reservoir, in other words, the fluctuations induced by the reservoir give rise to the
dissipation in the system,

1 oo

M= _— dt’ (1 (t)Fu (') R

'ﬁ'th — 00

]

S
=)

o

z e
S A
-

= ylg

" ”"th'i§ is one formulation of the fluctuation-dissipation theorem,
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Mollow’s triplet. Resonance Fluorescence Spectrum

R EERE

Mational Teing Hua University
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Theory: B. R. Mollow, Phys. Rev. 188, 1969 (1969).

Exp: F Y. Wu, R. E. Grove, and S. Ezekiel, Phys. Rev. Lett. 35, 1426 (1975).
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Photon-Atom Interaction in PhCs

Reservoir Theory

1 1
1 1
1 1
1 1
1 1
H 1 [n+1>
0 =1 In> 1
a 1 1 — 1
1 _ 1
N — |l> l’ 1 — |n 1> '
\ ’ 1 — 1
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system interaction reservoir
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. N 1
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! 1
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: — w :<|—> |. . . . :
| T a 1 1 1
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Hamiltonian of our system: Jaynes-Cummings model

h 0 . |
H = §wa0'z + hzk:wka};ak + 5]@(O-_GZWLt i O.+€—zth)

+ B (geosar + gralo-)
k

And we want to solve the generalized Bloch equations:

g_(t) = i%az(t)e_mt + /_ dt'G(t —to,(t)o_(t") + n_(t)
g, (t) = —i%az(t)ezm + / dt'G.(t —tho (t)o.(t) +ny(t)
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1. coupling constant:

1

d-E(re
2heowrV +(To)

gr = gi(d, Tg) = ’d’wa\/
2. memory functions:
G(r) = ) gl O(r)
k
> lglPem ()
k

3
o
/N
2

]

3. Markovian approximation:
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Quantum noise operators

0 Z gre o, (t)ag(—o0)
—@Zg* —Ak g (—o0)o(t)
> Z[g:;e—w “(—o0)o_(t) -

k

g, (£)a; (—o0)

where the mean and the correlation functions of the reservoir before interaction,

< ap(—00) >p=< al (—00) >r=0

< ap(—o0)ap (—o0) >g= 10

< al(—o0)al,(—00) >r=0

< al (—00)ay (—00) >p= Tk

< ag(—00)al,(—00) >p= (g, + 1)
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Helsenberg-Langevin equations

g_(t) = i%az (H)e At 4 /_OO dt'G(t —t o (t)o_(t') +n_(t)
gi(t) = —i%az (t)e'At + /_ dt'Ge(t —t o (t')oL(t) + ny(t)
o.(t) = iQo_(t)e — oy (t)e ) + n. ()

t
— 2/ dt'[G(t —tor(t)o_(t') + Ge(t —t)or(t')o_(1)]
where the Langevin noise operators have zero means but non-zero variances,

(n—(t)r = (n+(t))r = (n2(t))r =0
(n—(tn_(t")r = (ny(t)ny(t'))r=0

(n_(®ny () r =Y lgrl* (A + 1)et2eE—t) (5 (Yo, (')
k

(ng(On—(tNr =D lgrl?ane =) (5 (1o ()
k

(= (= () r =4 lgrl*[(Ag + 1)+ oy (o (¢') + npe™ 57 (o (1)
g k

]

9
=
_:';».ln

S A
v
T
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Modeling DOS of PBCs

x10°
3
5=
25F b I
Isotropic
& b=
2,
JE=
5 Anisotropic
015 - 4
0 ol
0
a F
F
L free space o
1
05F \ b
“ ] ] | |
0 ‘ =B 14d 1005 1a1 1015
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mﬂ ['ID

anisotropic model: w, = w, + Alk — ki |?

D(w) = 1/ “5#0(w — w.)
AL EERE

National Tsing Hua University S. Y. Zhu, et al., Phys. Rev. Lett. 84, 2136 (2000).
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Memory functions of PBCs

2 anisotropic model; w;, = w, + Alk — Kk} |?
D(w) = 1/ “55°0(w — w,)

2 the memory functions under this anisotropic model
also can be derived:

e _ 33/2
() g Ve 3/ We — W — W
G~c _ (33/2 0
() & Ve +V/Wwe — wy +w
3/2 2d2
where 3%/ 6%07%3/277, and we have used the space

average coupling strength n = = [ dQ|d - E|* in the
A 2 4 % détivation.
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Memory functions of PBCs
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Correlations of noise operators at zero temperature

(N_(w1)ny(—w2))r = 7N (w1)O(w1 + wq — we)d(wy — ws)

(e (wi)nz(—w2))r = N(w1)[4m0(wr — w2) + (02 (w1 — w2)) R]
O(w1 + wy — we)

( (—w2))r = 0

(N—(wi)nz(—w2))r = N(wi){0-(w1 —w2))rO(W1 + we — we)

( (—w2))r = N(wi)(04(wr —w2)) rO(W1 + we — we)

( (—w2))

r = 0

with N(w) = 433/2 Ve Fwo—w,

Wq+w

Quantum noises of the photonic bandgap reservoir are
not only color noises but also exhibit bandgap behaviour.

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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Liouville operator expansion

—it = )]"
n!

0ij(t) = e ay(t) = )

n=0

,CnO'ij (t/)
For zero-th order Liouville operator expansion, we get

& (t) :z'%az(t)e—w— / dt'G(t — ) o_(t') +n_(t)

— 00

oy (t) = —z’%az(t)emt — /t dt'G.(t — o (t") +ny(t)
o.(t) = iQ(o_(t)e — 0+(_t)e_mt)
— /t dt'|G(t —t') + G.(t —tH](1 + o.(t")) + n.(t)
o ?"‘}:%E%}‘* o valid for the case of

atom with longer lifetime and under weak pumping
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Solve the optical Bloch equations
Since it is now a linear problem, by using Fourier transform the modified optical Bloch

equations become:

where
- (w+ A) + G(w) 0 —i %
M(w) = 0 —i(w — A) + Ge(w) z%
—i2 i2 —iw + G(w) + Ge(w)
o_(w+A)
X(w) = g4(w—A)
2 (w)
n_(w-+ A)
Xo(w) = ny(w—A)

—27[G(w) + Ge(W)]6(w) + 7z (w)

(w) Ay (w), 7z (w), G(w), and G.(w) are Fourier transforms of n_ (t), n (t),

where n_
'ﬁ‘;’ﬂ I-ir-;} ——j:l- :-Fl‘] '%‘ ﬁ I--'],.
T (1), G (), and Ge(t), respectively.
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Solve the optical Bloch equations

The solutions are

(29 h + Q) 7 (W) + Q2 7y (W) + Qg 71z (W) — i20Q9[G(w) + Ge(w)]d(w
Q2(f+g)+2fgh

P2 (w)+ 2f h+ Q2) g (w) — iQf 7z (w) 4+ i20QF[G(w) + Ge(w)](c
Q2(f+g)+2fgh

2iQg9 71— (w) — 2iQf oy (w) + 2f g7z (w) — 47 f g[G(w) + Ge(w)]d(w)

Q2(f+g)+2fgh

o_(w+A) =

o4+ (w—A) =

0 (w) =

where

f(w) = —iw — iA + G(w)
g(w) = —iw + iA + Ge(w)
h(w) = —iw + G(w) + Ge(w)

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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Fluorescence spectrum

2 Because the two-time correlation function of the atomic dipole is proportional to
the first order correlation function g(1) (7), we can obtain the fluorescence
spectrum by taking the Fourier transform of the first order correlation function:

S(w) = / dr g\ (r)eT

x  (64+(w)o-(—w))r

2 |t should be noted that here we cannot directly apply the quantum regression
theorem since it is invalid for non-Markovian process.

A FERE
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Mollow’s triplet

9 Asa check, we first use our formulation to calculate the free space case.

2 Atfree space, one can assume the memory functions are delta functions since
S lgr|?et®kt = T'5(¢) with T being the decay rate of the excited atom.

2 The noise correlation functions at zero temperature are also delta-function
correlated (i.e., white noises).

2 Therefore, the fluorescence spectrum at steady state is given by:

202 F—2—|-A2
Q2 (4 F2)5(W+A)
S+ AZ 4

(074 ()0 (~w)) r =

. TP (L + T2 + (w+ A)?)
2% + A2+ L M2( + A2+ L2 - 20+ 4)2)2 + (0 + A)2(Q% + A2+ 512 — (w + A)

A FERE

Mational Teing Hua University
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Mollow’s triplet

2 In the limit of strong on-resonance pumping (2 > I', A = 0), Eq.(1) can be

reduced to:
2 31 ir 3T
S (W)o (—w)) p = 270{ 2T —— & (w) + 16 + —4 + 16 )

2 Then, the resonance fluorescence spectrum exhibits the Mollow triplets for white
noise: three Lorentzian profiles with peaks in the ratio 1 : 3 : 1, and widths of %F,

I',and 5T
Pas R mEssTTEEE" 1
’ 1 . . 1
I, ! . !
, * 1 — 1 100
1 : 1
)
— |2> A 1 — 1 90
: Q ‘l 1 — |n+l> 1
— Gt | 80 |-
" — W, : I — [n> :
70
—— 1
“ —‘— |1> ! 1 — |n-1> : -; o
\ ’ L — 1 <
Y ’ 1 1 =
’ 1 — 1 3 %
So - -’ 1 1 @ 40
- 1 1
1 1 30
: ! 20
1 1 B
1 [0>
. . 10
interaction * ="~ - = === =" I
system —meraction - eservoir 1 .
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Resonance fluorescence spectra near the band-edge
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Quadrature spectra

Define quadrature field operator as:

AN . A

Eo(t) = e ED(t) + e P E) (1)
¢ =0 (%) are the in-phase ( ) quadrature fields.

Then the corresponding spectra with normally order
variance Is:

< EQ(W), E@(—W) >

L ~ —2i0
1[< 6 (w)o_(—w) >e

S@ (CU)

IPT5340, Fall '06 — p.26/47




Quadrature spectra in free space
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Theory: D. F Walls and P. Zoller, Phys. Rev. Lett. 47, 709 (1981).
THRZEEARG

etorar Tang fon unrenrst Theory: L. Mandel, Phys. Rev. Lett. 49, 136 (1982).
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Observation of squeezing fluorescence spectra

VOLUME &1, NUMBER 17 PHYSICAL REVIEW LETTERS 26 OCTOBER 1998

Observation of Squeezing in the Phase-Dependent Fluorescence Spectra of Two-Level Atoms

Z.H. Lu, S. Bali, and J. E. Thomas
Phvsies Depariment, Duke University, Durham, North Caroling 27708-(1303
(Recetved 18 June 1998)

We observe squeezing in the phase-dependent fluorescence spectra of two-level atoms that are
coherently driven by a near-resonant laser field in free space. In contrast to previous predictions
that emphasized the in- and out-of-phase quadratures, we find that maximum squeezing occurs for
homodyne detection at a phase near =45° relative to the exciting field. A new physical picture of
phase-dependent noise 15 developed that incorporates quantum collapses into a Bloch vector model and
vields a very simple form for the complete squeezing spectrum. [S0031-9007(98)07454-7]

PACS numbers: 42.50.Lc, 32.80. 1t
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AL EERE
Wational Teing Hua University Exp: Z.H. Lu, S. Bali, and J. E. Thomas, Phys. Rev. Lett. 81, 3635 (1998).
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Fluorescence quadrature spectra near the band-edge

0.4
Q=025

035
w, =100

o
w
I

o

V)

a
I

o
(V)
I

0.15

Quadrature Spectrum
=
-
I

0.05F

-0.05 -

AL FEERSG

Mational Teing Hua University

[nvl @)'s

03f

0.2f

o
-
v

-01f

0=0.25p

w, =100 B

IPT5340, Fall '06 — p.29/47



Resonance fluorescence quadrature spectra near the band-ed ge

1. Suppression and enhancement of the relative fluorescence
peak amplitudes varied at different wavelength offsets.

2. Squeezing occurs in the guadrature for free
space when Q? < 4I"°.

3. Sgueezing occurs in the in-phase quadrature for PhCs when
0% > 4AI?,

4. Resonance fluorescence squeezing spectra come from the
Interference between two sidebands of Mollow’s triplet.

R.-K. Lee and Y. Lai, J. Opt. B, 6, S715 (2004).
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Density operator method

2 Heisenberg-Langevin equation is a directly correspondence to classical
description of stochastic system,

In many cases, Heisenberg-Langevin equation is nonlinear,
in general it is extremely difficult to deal with the Heisenberg-Langevin equation,

another method is to develop a Schrodinger or interaction picture analysis,

vV VU L ¢

in this way we want to use a linear deterministic differential equation for the reduced

system density operator,

2 naturally, as the quantum system is open, there is statistical as well as quantum
uncertainty and a true wave function description is no longer possible,

Ref:

Ch. 7 in "Mesoscopic Quantum Optics,” by Y. Yamamoto and A. Imamoglu.
"Quantum Noise,” by C. W. Gardiner.

A FERE
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Master equation

9 we consider a system S interacting with a reservoir R via the interaction
Hamiltonian V,

the combined density operator is denoted by 5(t),

assume that at an initial time ¢t = 0, the two systems are uncorrelated,
p(t =0) = ps(0) ® pr(0),

2 in the interaction picture, the dynamics of p(t) is

d 1

S p(0) = - [H1 (), pO)L,

2 since the number of degrees of freedom of the reservoir is very large, it is
impossible to keep track of its quantum evolution,

9 we can only focus on the system with a reduced density operator, by tracing over
the reservoir degrees of freedom,

VALEEARD d . 1 g 5
Matignal Tsing Hua Universily _pS (t> — _TrR([HI (t>7 p(t>]>7
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Master equation

2 we can only focus on the system with a reduced density operator,

%AS@) L CHONO))
where
= olt) = (A1), p(0)],

2 without any approximation, the master equation for the reduced density operator is,

d ~ 1 2 ¢ / 2 2 AN Y 1 - ~
—ps(t) = (=) / dt'Trr([H1 (1), [H1(t"), p(1)]]) + =Trr([HI (1), p(0)]),
dt 1h 0 th

2 since Trr([H1(t), p(0)]) vanish for all the interaction Hamiltonians of interest in
guantum optics, we have the master equation,

&ﬁS(ﬂ — (%)2/0 dt,TrR([I:II(t)7 [ﬁ[(t/)7ﬁ(t,>]]),
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Born-Markov approximation

9 the master equation for the reduced density operator, without any approximation,
1., [t . 5
s = (50 | aTa (i (), 111 (), (¢ ),

2 four key approximations used in the following,
1. Rotating-wave approximation,
2. Born approximation,
p(t') = ps(t') ® pr(t"),

3. the initial radiation field density operator commutes with the free Hamiltonian
and the reservoir is not affected by the interaction with the system,

pr(t) =Trs[p(t)] = pr(0),

4. Markov approximation,
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Master equation

9 the master equation for the reduced density operator, without any approximation,

X 1 t ~ . .
s = (50 | aTa (i (), 111 (), (¢ ),
2 with Born-Markov approximation, the master equation becomes

—Ps( ) = <—>2/ de/ TR (L1 (4), [F1 (#), ps(8) © pr(O)]).

9 atom damping by field reservoirs,
field damping by field reservoirs,

field damping by atomic reservoirs,
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Atom damping by field reservoirs

2 consider a two-level atom damped by a field reservoir in free space,

the interaction Hamiltonian is

2 assume the reservoir density operator is a multimode thermal field,

hwrn
exp(— 72+ )
pR o H Z _ex B;iwkn |n>kk<n"
P(=%o7

2 the equation of motion for the reduced density operator Trg[6(t)] = pa(t) is,

" ha(t) = (%)2/0 dt'Trr([H(t), [Hr ('), pa(t) ® pr(0)]]),

1 o o o A
= —SMnlo-61pa —G4pab -]+ (nn + 1)|646—pa — 6-paG1])} +H
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Field damping by field reservoirs
o

consider a single-mode field in a cavity with a finite leakage rate,

assume the reservoir density operator is a multimode thermal field,

h
exp(— kgkjtb )

oy ke

=112

1 —exp(—
2 the equation of motion for the reduced density operator Trr[p(t)] = p¢(2) is,
d 1 2 t / 2 - / A~ A~
Sor0 = G [ TR0, (). s (1)@ pr(O)])
- ‘/ at’ ng{nth[aa pr(t') — al py(t)aje (e
to
+(nep + 1 w apy(t') — apy(t)al])el@ ===ty L H.C,
5k %4
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Field damping by field reservoirs

2 the equation of motion for the reduced density operator Trg[p(t)] = p¢(t) Is,

d

dtpf(t) = —/ dt’ ng{nth[aa pf(t)—a pr(tale” i(w—wp)(t—t")

to

(e + 1>[a*aﬁf<t ) —apy(thal])el ==t} Ly c,

2 again, by replacing sumkg,% with the integral [ dwg D (wg)g(wk)?, and

t ) ,
/ d¢’ ZQQ +i(w—wy)(t—t") _ / dt//dka(wk)g(wk)Qezl:z(w—wk)(t—t )7
to

Q

/ dwso D(wp)g(wi)2m8(w — wiy),

Q

L,

D(w)g(w)? = 2(o.

where w/Qe is the cavity photon decay rate due to leakage (output coupling) via a

partially reflecting mirror,

ﬂ.#lﬁf ,- ‘?‘_,_,,»,’j}" ‘ﬁ

al Teing Hua Un
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Field damping by field reservoirs

2 the equation of motion for the reduced density operator Trr [p(t)] = p¢(2) is,
dA 1 w Aat oA / AT A I\ ~ At n / A I\ A
q/r®) = =5 (G mnlaa’ps(t) = aTps (1)a) + (nen + 1)laTaps (¢) — apg (¢
+H. C,
2 compared to the case of atom damping by field reservoirs,
&Pa(t) — _ir{nth[U—UwLPa —64pab-]+ (nen +1)[646—pa —6-pad+])} +H
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Field damping by atomic reservoirs

2 consider the damping of an optical cavity mode by a two-level atomic beam
reservoir,

2 this is the reverse problem of a laser,

9 the statistics of the atomic reservoir is determined by the Boltzmann distribution,

N Paa 0
PR=atom (t = 0) = — paa|a> <CL| + pbb|b> <b|7
0  pw
where
1 exp(hwo/ kit
pu and  po. — p(hwo/kpt)

" 1+ exp(hwo /kgt)’ 1 + exp(hwo /kpt)’

9 assume there is no guantum coherence between the upper and lower states,
Pab — Pba — 0,
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Field damping by atomic reservoirs

9 the interaction Hamiltonian for a single atom is

3 o 0 a
H; =hg(6_a' +64a) = hyg o :
a
D att= 0, the atom-field density operator is,
. . . paapy(t) 0
pity=prt)y@pr= "7 ) ,
0 pobPf(t)
9 the terms for the commutator are
aat 5 — GO D Al
ST aa' paapy(t) — appppys(t)a 0
[Hp,[H p0)] = hg? e ! e
0 avapprpf(t) — a'peepy(t)a
+H. C,
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Field damping by atomic reservoirs

2 the equation of motion for the reduced density operator Trg[p(t)] = p¢(t) Is,

d

Shr(t) = (%)2/0 dt'Trr([Hr(t), [H1 ('), b () ® r(0)]]),

2 assume that  atoms are injected into the cavity per second,

2 and they spend an average time of 7 seconds inside the cavity, i.e.

T 1
dt'rt’ = —r72,
2

0
then,
d . aats _atsal Lp ratas. as.cat
Epf(t) = —=Rclaa'pr —a'pral — ERg[a, aps —aps(t)a'l + H.C,
where

Re = Tpaa927-27 and Rg — prbgz7_27
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Field damping by atomic reservoirs

=

W

2
2

®) 3w 4

Mational Ts

the equation of motion for the reduced density operator Trr [6(t)] = p£ () is,

R is the rate coefficient for photon emission by atoms per second,

R, is the rate coefficient for photon absorption by atoms per second,

the cavity photon decay rate é and the thermal equilibrium photon number n;y,
are defined by

Re 1

QL Ry—Re, and Re(14n:,) = Rgnp — ngp =
0

the later one condition gives the thermal equilibrium photon number nyy,,

E @e@ + nyp ) IS the sum of spontaneous and stimulated emission rate per second,

1 University

2 _R.n.. is (stimulated) ahsorption rate per second,
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Field damping by atomic reservoirs

2 the equation of motion for the reduced density operator Trr [p(t)] = p¢(2) is,

Epf(t) = —§Re[aanf — anfa] — §Rg[aTapf — apf(t)aT] + H.C,
= _ia{nth[aa pr —a'pra] + (e, + 1)[a"apy —apy(t)a'l} + H.C,

where we use that R, = QLo”th and R, = QLO(nth + 1),
9 the diagonal elements of the reduced density matrix are

d v
&Pn,n(t) = —a{[nth(n +1) = (nen + 1)nlpn,n

—thPn—1,n—1 — (Nen + 1) (0 4+ 1) pnt1,n+1},
— [_Re(n + 1) o Rgn]Pnn + Renpn—l,n—l + Rg (n + 1)pn—|—1,n—|—17
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Detailed balance

=
b

2 equilibrium is obtain when the net flow between all pairs of level vanishes,

Ntn

-RgnanL:VRenpn—lﬂrJJ or pnn=—"—"
nth+1

Pn—1,n—1,

2 is condition is referred to as detailed balance,
2 the solution for detailed balance is,
prn,n = [1 —exp(—hw/kpT)]|exp(—nhw/kpT),

1
exp(hw/kpT)—1"

with Nep =

2 detailed balance in this case gives the thermal (Bose-Einstein) distribution with an
average photon number,

1
(n) =2 prnn = exp(hw/kgT) —1 fith

n
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Detailed balance

2 detailed balance in this case gives the thermal (Bose-Einstein) distribution with an
average photon number,

1
(n) =3 _ pnnn = exp(hw/kgT) —1 Tith

2 this is the result we use for the thermal radiation field,

2 although the filed 5, may initially be in a pure state, the process of tracing over the
(unobserved) atomic states leads to a field in a mixed state, pr = > .. pn,n|n)(n|,

9 the effect of the atomic beam is to bring the field to the same temperature as that of
atoms,
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Reservoir, decoherence, and measurement

the reservoir theory lies in the process of tracing over the reservoir coordinates,
which induces dissipation and decoherence of the system,

at the same time, this is an irreversible dynamics for the system,

vV U Vv v

this process corresponds to the lack of measurement as to whether the atom is in
the upper level or in the lower level after interaction with the field,

2 if the initial and final states of the atom are know, i.e if the information concerning
the atomic beam is not discarded, the field remains in a pure state,

2 the primary difference between the reservoir and quantum measurement theories
Is whether information stored in the environment (reservoir) that interacts with
system is discarded or read out.
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