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• Course Description:

– Fundamental concepts for Electromagnetic Waves in Optoelectronics, including the mathematical methods, physical
concepts, device ideas, and simulation techniques.

– Extensions and applications of these basic concepts to update research fields will also be addressed.

– Although this course is given primarily for the first year graduate students, those who are undergraduates or senior
graduates are encouraged to take this course.

– Background: Electromagnetism I, II.

• Text Books and References:

[T1]: Hermann A. Haus, ”Waves and Fields in Optoelectronics,” Prentice-Hall (1984).

[T2]: Ammon Yariv, ”Optical Electronics,” 4th Edition, John Wiley & Sons (1991).

[R1]: S. Ramo, J. Whinnery and T. Van Duzer, ”Field and Waves in Communication Electronics,” John Wiley &
Sons (1994).

[R2]: Ammon Yariv and Pochi Yeh, ”Optical waves in crystals,” Wiley-Interscience (2003).

[R3]: John D. Jackson, ”Classical Electrodynamics,” 3rd edition, John Wiley & Sons (1984).

[R4]: Ammon Yariv, ”Quantum electronics,” 3rd edition, John Wiley & Sons (1989).

• Teaching Method:

in-class lectures with some studies on journal papers

• Syllabus:

1. (13/09-16/09) Introduction

2. (20/09-23/09) Maxwell’s equations, base on Chap. 1 [T1, T2], C3 [R1], and C6-7 [R3].

3. (27/09-30/09) Plane waves propagation and reflection, base on C2 [T1] and C6 [R1].

4. (04/10-07/10) Mirrors and interferometers, base on C3 [T1]

5. (11/10-14/10) Fresnel diffraction and paraxial wave equation, base on C4 [T1].

6. (18/10-21/10) Hermite-Gaussian beams, base on C4 [T1] and C2 [T2].

7. (25/10-28/10) Midterm exam

8. (01/11-04/11) Optical waveguides and fibers, base on C6 [T1], C3 [T2], and C8 [R1].

9. (08/11-11/11) Coupled-mode theory for resonators and couplers, base on C7 [T1], C4 [T2], and C10 [R1].

10. (15/11-18/11) Distributed feedback structures, base on C8 [T1].

11. (22/11-25/11) Anisotropic media, base on C11 [T1].

12. (29/11-02/12) Acoustic-, Electro-, and Magnetic-optic modulators, base on C9, 12 [T1], and C7-10 [R2].

13. (06/12-09/12) Nonlinear systems, base on C10, 13 [T1].

14. (13/12-16/12) Phase-conjugate optics, base on C17 [T2] and C19 [R4].

15. (20/12-23/12) Optical detection, base on C14 [T1], and C10, 11 [T2].

16. (27/12-30/12) Introduction to quantum optics.

17. (03/12-06/01) Final Exam

• Evaluation:

1. Four Homework, 40%;

2. Two Exams: one midterm exam, 30%, and one final exam, 30%;

3. Bonus: One paper study report with detailed model explanation and formula derivations, 20%.

• Office hours:

10:30-12:00, Friday at Room 523, EECS bldg.
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I. MAXWELL’S EQUATIONS

A. Maxwell’s equations in real, time-dependent form

Maxwell’s equations in mks units, the electric field E (V/m), and the magnetic field H (A/m),
Faraday’s law:

∇× E = − ∂

∂ t
µ0H − ∂

∂ t
µ0M. (I.1)

Ampére’s law:

∇× H =
∂

∂ t
ǫ0E +

∂

∂ t
P + J. (I.2)

Gauss’s law for the electric field:

∇ · ǫ0E = −∇ · P + ρ. (I.3)

Gauss’s law for the magnetic field:

∇ · µ0H = −∇ · µ0M. (I.4)

where M is the magnetization density; P is the polarization density; ρ is the charge density; and J is the current

density. Two constants ǫ0 and µ0 are dielectric constant and magnetic permeability of free space.

1. Linear, isotropic, and dispersion-free media

Constitutive law:

P = ǫ0χeE, (I.5)

M = χmH, (I.6)

where χe and χm are the electric and magnetic susceptibilities.
For linear, isotropic, and dispersion-free media, Maxwell’s equations become

∇× E = −µ
∂

∂ t
H, (I.7)

∇× H = ǫ
∂

∂ t
E + J, (I.8)

∇ · ǫE = ρ, (I.9)

∇ · µH = 0. (I.10)

For a source-free medium, ρ = J = 0,

∇× (∇× E) = −µǫ
∂2

∂ t2
E, (I.11)

⇒ ∇(∇ · E) −∇2E = −µǫ
∂2

∂ t2
E. (I.12)

When ∇ · E = 0, one has wave equation

∇2E = µǫ
∂2

∂ t2
E (I.13)

which has following expression of the solutions, in 1D,

E = x̂[f+(z − vt) + f−(z + vt)], (I.14)

H =

√

ǫ

µ
ŷ[f+(z − vt) − f−(z + vt)], (I.15)

with the characteristic admittance,
√

ǫ
µ , of the medium.

∗Electronic address: rklee@ee.nctu.edu.tw
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2. Poynting’s theorem

Poynting’s theorem is the law of power conservation for electromagnetic fields.

∇ · (E × H) +
∂

∂ t
(
1

2
ǫ0E

2) +
∂

∂ t
(
1

2
µ0H

2) + E · ∂ P

∂ t
+ H · ∂

∂ t
(µ0M) + E · J = 0. (I.16)

For the linear constitutive law,

E · ∂ P

∂ t
=

∂

∂ t
(
1

2
ǫ0χeE

2), (I.17)

Then the Poynting’s theorem for the linear, isotropic medium becomes,

∇ · (E × H) +
∂

∂ t
(we + wm) + E · J = 0, (I.18)

where

we =
1

2
ǫE2, (I.19)

wm =
1

2
µH2. (I.20)

Or write the Poynting’s theorem in integral form,
∮

S

E × H · dA +
∂

∂ t

∫

V

(we + wm) d V +

∫

V

E · J dV = 0, (I.21)

3. Vector and scalar potentials

For nonmagnetic permeability, µ = µ0, µ0H is divergence-free, one can introduce a vector potential,

µ0H = ∇× A. (I.22)

Because unique specification of a vector field requires the specification of both its curl and its divergence, one must
still specify the divergence of A,

E = −∂ A

∂ t
−∇Φ. (I.23)

With vector potential, A, and the scalar potential, Φ, the Maxwell’s equations become,

∇× (∇× A) = −µ0ǫ
∂2 A

∂ t2
− µ0ǫ

∂

∂ t
∇Φ + µ0J (I.24)

∇ · (ǫ∂ A

∂ t
+ ǫ∇Φ) = −ρ. (I.25)

One can choose a gauge, for example, the Lorentz gauge,

∇ · A + µ0ǫ
∂ Φ

∂ t
= 0, (I.26)

then the wave equations for A and Φ become,

∇2A − µ0ǫ
∂2 A

∂ t2
= −µ0J − µ0(∇ǫ)

∂

∂ t
Φ (I.27)

1

ǫ
∇ · (ǫ∇Φ) − µ0ǫ

∂2 Φ

∂ t2
= −ρ

ǫ
− 1

ǫ
∇ǫ · ∂ A

∂ t
. (I.28)

In a uniform charge-free medium, the wave equations for A and Φ are uncoupled,

∇2A − µ0ǫ
∂2 A

∂ t2
= 0 (I.29)

∇2Φ − µ0ǫ
∂2 Φ

∂ t2
= 0. (I.30)
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B. Maxwell equations in complex form

For Maxwell’s equations in linear media are linear, one can introduce the complex fields,

E(r)ejωt,H(r)ejωt,J(r)ejωt (I.31)

to factor out the time dependence. Then Maxwell’s equations are reduced to differential equations in the spatial
variables only.

∇× E = −jωµH, (I.32)

∇× H = jωǫE + J, (I.33)

∇ · ǫE = ρ, (I.34)

∇ · µH = 0. (I.35)

In a linear dispersive medium,

P = ǫχe(ω)E. (I.36)

A complex Poynting theorem has the form,

∇ · (E× H
∗) + jω(µH · H∗ − ǫ∗E · E∗) + E · J∗ = 0 (I.37)

For lossless media, ǫ and µ must be real,

Im[ǫ] = 0, (I.38)

Im[µ] = 0. (I.39)

For a perfect conduct,
∮

S

E× H
∗ + jω

∫

V

(µH · H∗ − ǫ∗E · E∗) = 0, (I.40)

therefore, the field inside the volume must satisfies,
∫

V

ǫ∗E ·E∗ =

∫

V

µH ·H∗. (I.41)

In a dispersion-free medium, the time-averaged electric and magnetic energies are equal.

The complex form for the Helmholtz equation,

∇2
E + ω2µǫE = 0. (I.42)

1. Propagation vector

Assume a spatial dependence for E and H of the form exp(−j~k · ~r),

E = E+e−j~k·~r, (I.43)

H = H+e−j~k·~r, (I.44)

then, with ∇ ↔ −j~k, the Maxwell’s equations become,

−j~k × E+ = −jωµH+, (I.45)

−j~k × H+ = jωǫE+, (I.46)

j~k ·E = 0 (I.47)

One can find the dispersion relation:

k2 = ω2µǫ. (I.48)
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The solution for H follows,

H+ =
1

ωµ
~k × E =

√

ǫ

µ

~k

k
× E. (I.49)

The complex Poynting’s theorem to the plane-wave solution,

1

2
E× H

∗ =
~k

k

1√
µǫ

< we + wm > . (I.50)

C. Fourier transforms

A periodic function of time, f(t), of period T can be represented by a Fourier transform,

F(n) =
1

T

∫ T/2

−T/2

f(t)e−jnω0t d t, (I.51)

f(t) =

∞
∑

−∞

F(t)e+jnω0t, (I.52)

(I.53)

where F(n) is the corresponding Fourier series.
For an aperiodic function,

F(ω) =
1

2π

∫ ∞

−∞

f(t)e−jωt d t, (I.54)

f(t) =

∫ ∞

−∞

F(ω)e+jωt dω. (I.55)

(I.56)

1. Properties of Fourier transform

• if f(t) is real, then F(−ω) = F
∗(ω).

• if f(t) is even, then F(−ω) = F(ω), i.e., F(ω) is even.

• if f(t) is odd, then F(−ω) = −F(ω), i.e., F(ω) is odd.

• Time scaling, f(a t) ↔ 1
|a|F(ω

a ).

• Frequency scaling, 1
|b|f( t

b ) ↔ F(b ω).

• Time shifting, f(t − t0) ↔ F(ω)e−jωt0 .

• Frequency shifting, f(t)ejω0t ↔ F(ω − ω0).

2. Convolution theorem

A convolution of two time functions, f(t) and g(t), is defined,

g ⊗ f =

∫ ∞

−∞

g(t − t′)f(t′) d t′, (I.57)

the Fourier transform of the convolution is

1

2π

∫ ∞

−∞

g ⊗ f e−jωt d t = 2πG(ω)F(ω). (I.58)
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D. Phase velocity and group velocity

Suppose that ǫ is a function of ω (dispersive media), we may expand k in the neighborhood of ω0,

k(ω) = k(ω0) +
d k

dω
|ω0

∆ω. (I.59)

The bandwidth of the Fourier transform E(ω) must occupy a narrow range of the values around ω0,

E(t, z) = ej[ω0t−k(ω0)z]

∫

band

E+(∆ω)ej∆ω[t−(d k/d ω)z]d ∆ω. (I.60)

E(t, z) consists of two factors:

1. A rapidly varying term, the carrier, that propagates with the phase velocity,

vp = ω0/k(ω0). (I.61)

2. A slowly varying envelope, that proceeds with the group velocity,

vg = 1/(d k/dω). (I.62)

A general relation between group and phase velocities is,

d k

dω
=

d

dω
(
ω

vp
) =

1

vp
− ω

v2
p

d vp

dω
, (I.63)

then,

vg =
vp

1 − ω
vp

d vp

d ω

. (I.64)

Three possible cases,

• No dispersion: vg = vp;

• Normal dispersion: vg < vp;

• Anomalous dispersion: vg > vp.

In free space,

ω = k v =
k c

n
, (I.65)

hence,

vg =
dω

d k
= v(1 − k

n

dn

d k
). (I.66)

E. Power spectra and autocorrelation functions

Power spectra is the Fourier transformation of autocorrelation functions,

lim
T−>∞

[T
¯|F (n)|2

2π
] = Φ(ω), (I.67)

∫ ∞

∞

Φ(ω) ejωt dω = ¯f(t)f(t − τ ). (I.68)
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F. Extended studies

1. Stokes parameters and Poincaré sphere;

2. Fast Fourier Transform, FFT;

3. Slow light and fast light;

4. Atto-second pulse;

5. Time-Bandwidth product.

6. Auto-correlators: SPIDE, FROG, etc;

7. Kramers-Kronig relation.


