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e Course Description:

— Fundamental concepts for Electromagnetic Waves in Optoelectronics, including the mathematical methods, physical
concepts, device ideas, and simulation techniques.

— Extensions and applications of these basic concepts to update research fields will also be addressed.

— Although this course is given primarily for the first year graduate students, those who are undergraduates or senior
graduates are encouraged to take this course.

— Background: Electromagnetism I, II.

e Text Books and References:

[T1]: Hermann A. Haus, ”Waves and Fields in Optoelectronics,” Prentice-Hall (1984).
[T2]: Ammon Yariv, ”Optical Electronics,” 4th Edition, John Wiley & Sons (1991).

[R1]: S. Ramo, J. Whinnery and T. Van Duzer, "Field and Waves in Communication Electronics,” John Wiley &
Sons (1994).

[R2]: Ammon Yariv and Pochi Yeh, ”Optical waves in crystals,” Wiley-Interscience (2003).
[R3]: John D. Jackson, ”Classical Electrodynamics,” 3rd edition, John Wiley & Sons (1984).
[R4]: Ammon Yariv, ”"Quantum electronics,” 3rd edition, John Wiley & Sons (1989).

e Teaching Method:
in-class lectures with some studies on journal papers

e Syllabus:

1. (13/09-16/09) Introduction

2. (20/09-23/09) Maxwell’s equations, base on Chap. 1 [T1, T2], C3 [R1], and C6-7 [R3].

3. (27/09-30/09) Plane waves propagation and reflection, base on C2 [T1] and C6 [R1].

4. (04/10-07/10) Mirrors and interferometers, base on C3 [T1]

5. (11/10-14/10) Fresnel diffraction and paraxial wave equation, base on C4 [T1].

6. (18/10-21/10) Hermite-Gaussian beams, base on C4 [T1] and C2 [T2].

7. (25/10-28/10) Midterm exam

8. (01/11-04/11) Optical waveguides and fibers, base on C6 [T1], C3 [T2], and C8 [R1].

9. (08/11-11/11) Coupled-mode theory for resonators and couplers, base on C7 [T1], C4 [T2], and C10 [R1].
10. (15/11-18/11) Distributed feedback structures, base on C8 [T1].
11. (22/11-25/11) Anisotropic media, base on C11 [T1].
12. (29/11-02/12) Acoustic-, Electro-, and Magnetic-optic modulators, base on C9, 12 [T1], and C7-10 [R2].
13. (06/12-09/12) Nonlinear systems, base on C10, 13 [T1].
14. (13/12-16/12) Phase-conjugate optics, base on C17 [T2] and C19 [RA4].
15. (20/12-23/12) Optical detection, base on C14 [T1], and C10, 11 [T2].
16. (27/12-30/12) Introduction to quantum optics.
17. (03/12-06/01) Final Exam

e Evaluation:
1. Four Homework, 40%;
2. Two Exams: one midterm exam, 30%, and one final exam, 30%;

3. Bonus: One paper study report with detailed model explanation and formula derivations, 20%.

e Office hours:
10:30-12:00, Friday at Room 523, EECS bldg.
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I. MAXWELL’S EQUATIONS
A. DMaxwell’s equations in real, time-dependent form

Maxwell’s equations in mks units, the electric field E (V/m), and the magnetic field H (A/m),
Faraday’s law:

0 0
VXxE=——pH — —poM. I.1
x el Eriat (I.1)
Ampére’s law:
0 0
H=—¢FE+ —P : 1.2
V x 570 + 71 +J (L.2)
Gauss’s law for the electric field:
V-eE=-V-P+p. (1.3)
Gauss’s law for the magnetic field:
V-puoH ==V - oM. (L.4)

where M is the magnetization density, P is the polarization density, p is the charge density; and J is the current
density. Two constants €y and ug are dielectric constant and magnetic permeability of free space.

1. Linear, isotropic, and dispersion-free media

Constitutive law:
P = eoer, (15)
M = xmH, (16)

where x. and x,, are the electric and magnetic susceptibilities.
For linear, isotropic, and dispersion-free media, Maxwell’s equations become

0
EF = —pu—H L
V x poH, (L7)
VxH = e%E +J, (1.8)
V.-eE = p, (1.9)
V-uH = 0. (I.10)
For a source-free medium, p = J =0,
82
E)=—pue—FE 11
V X (V x E) = —pes > F, (L11)
82

= V(V-E)-V’E= —pes s B (1.12)

When V - E = 0, one has wave equation

2 0?

which has following expression of the solutions, in 1D,

E = z[fi(z —vt) + f-(z + vt)], (I1.14)
H = \/gy[ﬁ(z —ot) — (= +ot)), (L15)

with the characteristic admittance, \/% , of the medium.
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2. Poynting’s theorem

Poynting’s theorem is the law of power conservation for electromagnetic fields.

0,1 0 oP 0
ExH)+ 2t + Ly 8. L H. M)+ E-J=0. L1
V(B H) (5B + (s poH?) + B S b H o (g M)+ B =0 (1.16)
For the linear constitutive law,
opP g 1
: E? L17
at at(2 €0Xe ) ( )
Then the Poynting’s theorem for the linear, isotropic medium becomes,
0
V'(EXH)+a(we+wm)+E'J:0, (I.18)
where
L oo
We = §€E , (I.19)
1
Wy = 5uH2- (1.20)
Or write the Poynting’s theorem in integral form,
0
7{E><H dA—l—at/(we—i—wm)d‘/—i—/E-JclV:O7 (L.21)
1%

3. Vector and scalar potentials

For nonmagnetic permeability, u = o, poH is divergence-free, one can introduce a vector potential,

Because unique specification of a vector field requires the specification of both its curl and its divergence, one must
still specify the divergence of A,

0A
E=——-Vo. 1.23
57 (L.23)
With vector potential, A, and the scalar potential, ®, the Maxwell’s equations become,
Vx(VxA)=- ei— aV(I)—i— J (I.24)
T THCE T Ry Ko '
0A
V.- (e5- +eVP) = (1.25)
at
One can choose a gauge, for example, the Lorentz gauge,
0P
LA — = 1.2
V- A+ poe 57 0, (1.26)
then the wave equations for A and ® become,
0? A 0
2A - = —pod — —® 1.2
\% Ho€ 5oy = —HoJ Mo(ve)at (1.27)
1 0% ® p 1 0A
-V D) — =—=—=-Ve- —. 1.2
€V (eVe) T € €Ve ot (1:28)
In a uniform charge-free medium, the wave equations for A and ® are uncoupled,
0% A
2 _
0% d
V20 — ppe—— = 0. (1.30)



B. Maxwell equations in complex form

For Maxwell’s equations in linear media are linear, one can introduce the complex fields,
E(r)e“t H(r)e!“!, J(r)el* (I.31)

to factor out the time dependence. Then Maxwell’s equations are reduced to differential equations in the spatial
variables only.

VxE = —jwuH, (1.32)
VxH = jweE +J, (1.33)
V-eE = p, (1.34)
V-uH = 0. (1.35)
In a linear dispersive medium,
P = ex.(w)E. (1.36)
A complex Poynting theorem has the form,
V- (ExH)+juH H —¢'E-E )+ E-J" =0 (1.37)
For lossless media, € and g must be real,
Im[e] = 0, (1.38)
Im[u] = 0. (1.39)
For a perfect conduct,
7{E><H*—|—jw/(,uH-H*—e*E-E*):07 (1.40)
s 1%

therefore, the field inside the volume must satisfies,

/e*E-E*:/MH-H*. (L.41)
\%4 \%4

In a dispersion-free medium, the time-averaged electric and magnetic energies are equal.

The complex form for the Helmholtz equation,

V2E + w?ueE = 0. (1.42)

1. Propagation vector

Assume a spatial dependence for E and H of the form ezp(ij -7,

E = E ¢ iF7, (1.43)
H = H,e /57, (L44)

then, with V « — jE, the Maxwell’s equations become,

—jkxEy = —jwuHy, (1.45)
—jkx Hy = jweE,, (1.46)
jk-E = 0 (1.47)

One can find the dispersion relation:

E? = wlpe. (1.48)



The solution for H follows,

1 - k
H+—k><E\/E—><E.
wit wk

The complex Poynting’s theorem to the plane-wave solution,

1
—_ExH*"=

ko1
5 E < We + Wy > .

N/

C. Fourier transforms

A periodic function of time, f(t), of period T can be represented by a Fourier transform,

-T/2

> F(t)etmet,

T/2 4
P = 3 [ s,

~
—~

~
~

where F(n) is the corresponding Fourier series.
For an aperiodic function,

Pw) = o [ st

~
—

~
N

/ F(w)et“t dw.

—0Q0

1. Properties of Fourier transform

if f(¢) is real, then F(—w) = F*(w).

if f(t) is even, then F(—w) = F(w), i.e., F(w) is even.
if f(t) is odd, then F(—w) = —F(w), i.e., F(w) is odd.
L),

al

Time scaling, f(at) <

e Frequency scaling, \_11>|f(%) — F(bw).

Time shifting, f(t — tg) < F(w)e w0,
e Frequency shifting, f(t)e’“o! « F(w — wp).
2. Convolution theorem
A convolution of two time functions, f(t) and g(t), is defined,
gof= [ gt-0))ar,

the Fourier transform of the convolution is

oo

2m ) o

g® fe I dt = 271G (w)F(w).

(1.49)

(L.50)

(151)

(1.52)

(L53)

(1.54)

(L55)

(L.56)

(L.57)

(L58)



D. Phase velocity and group velocity

Suppose that € is a function of w (dispersive media), we may expand k in the neighborhood of wy,

dk
k(w) = k(wo) + ELJOAw.

The bandwidth of the Fourier transform E(w) must occupy a narrow range of the values around wy,

E(t, Z) — ej[wot—k(wo)z] E+(Aw)ejAw[t_(dk/dw)z]dAw.
band

E(t, z) consists of two factors:

1. A rapidly varying term, the carrier, that propagates with the phase velocity,
vp = wo/k(wo).
2. A slowly varying envelope, that proceeds with the group velocity,

vg =1/(dk/dw).

A general relation between group and phase velocities is,

dk _d wy_1_wdy

dw  dw'v,’ v, 12dw’
then,
Up
Y T
vp dw
Three possible cases,
e No dispersion: vg = vp;
e Normal dispersion: vy < vp;
e Anomalous dispersion: vy > vp.
In free space,
kc
w=kv=—,
n
hence,
dw kdn
Vg=—=0(1———
Y dk ( ndk )

E. Power spectra and autocorrelation functions

Power spectra is the Fourier transformation of autocorrelation functions,

| FW)
pim [T = &(w),

/Oo d(w) et dw = f(t)f(t — 7).

oo

(1.59)

(1.60)

(1.61)

(1.62)

(1.63)

(L64)

(L.65)

(1.66)

(L.67)

(1.68)
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F. Extended studies

. Stokes parameters and Poincaré sphere;
. Fast Fourier Transform, FFT;

. Slow light and fast light;

. Atto-second pulse;

. Time-Bandwidth product.

. Auto-correlators: SPIDE, FROG, etc;

. Kramers-Kronig relation.



