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II. PLANE WAVES PROPAGATION AND REFLECTION

A. Transverse Electric wave reflected from boundary

Consider a plane wave with its electric field polarized parallel to the surface of an interface between two media,
(transverse electric, or TE, wave),

Ein = ŷE+e−jk(1)
·r (II.1)

The tangential E and E must be continuous at z = 0. This implies ,

k(1)
x = k(2)

x = kx, phase matching. (II.2)

The consequence is Snell’s law,

√
µ1ǫ1 sin θ1 =

√
µ2ǫ2 sin θ2. (II.3)

At z < 0, the superposition of the incident and reflected waves is,

Ey = [E
(1)
+ e−jk(1)

z
z + E

(1)
− e+jk(1)

z
z]e−jkxx, (II.4)

from Faraday’s law,

Hx = − k
(1)
z

ωµ1
[E

(1)
+ e−jk(1)

z
z − E

(1)
− e+jk(1)

z
z]e−jkxx, (II.5)

where

k
(1)
z

ωµ1
=

√

ǫ1
µ1

cos θ1 ≡ Y
(1)
0 , (II.6)

is the characteristic admittance by medium 1 to a TE wave at inclination θ1 with respect at the z direction. The

inverse of Y
(1)
0 is the characteristic impedance Z

(1)
0 .

At z > 0, the transmitted waves is,

Ey = E
(2)
+ e−jk(2)

z
ze−jkxx, (II.7)

with the x component of the H field,

Hx = − k
(2)
z

ωµ2
E

(2)
+ e−jk(2)

z
ze−jkxx, (II.8)

with the characteristic admittance in medium 2,

k
(2)
z

ωµ2
=

√

ǫ2
µ2

cos θ2 ≡ Y
(2)
0 . (II.9)

Continuity of the tangential components of E and H requires the ratio

Z ≡ −Ey

Hx

(II.10)

to be continuous. Z is the wave impedance at the interface.
At z = 0,

Z
(1)
0

E
(1)
+ + E

(1)
−

E
(1)
+ − E

(1)
−

= Z
(2)
0 . (II.11)

The quantity,

Γ ≡ E−

E+
, (II.12)



9

is the reflection coefficient.

For E
(1)
− /E

(1)
+ ,

Γ(1) =
Z

(2)
0 − Z

(1)
0

Z
(2)
0 + Z

(1)
0

, (II.13)

using Snell’s law,

Γ(1) =

√

1 − sin2 θ1 −
√

1 − sin2 θ1
ǫ1µ1

ǫ2µ2

√

ǫ2µ1

ǫ1µ2

√

1 − sin2 θ1 +
√

1 − sin2 θ1
ǫ1µ1

ǫ2µ2

√

ǫ2µ1

ǫ1µ2

. (II.14)

The density of power flow in the z direction is

1

2
Re[E × H∗] · ẑ = −1

2
Re[EyHx] =

1

2
Y

(1)
0 |E(1)

+ |2(1 − |Γ(1)|2). (II.15)

Thus |Γ|2 is the ratio of reflected to incident power flow.

B. Transverse Magnetic wave reflected from boundary

Consider a plane wave with its magnetic field polarized parallel to the surface of an interface between two media,
(transverse magnetic, or TM, wave), At z < 0, the superposition of the incident and reflected waves is,

Hy = [H
(1)
+ e−jk(1)

z
z + H

(1)
− e+jk(1)

z
z ]e−jkxx, (II.16)

from Ampére’s law,

Ex =
k

(1)
z

ωǫ1
[H

(1)
+ e−jk(1)

z
z − H

(1)
− e+jk(1)

z
z]e−jkxx. (II.17)

At z > 0, the transmitted waves is,

Hy = H
(2)
+ e−jk(2)

z
ze−jkxx, (II.18)

with the x component of the E field,

Ex =
k

(2)
z

ωǫ2
H

(2)
+ e−jk(2)

z
ze−jkxx, (II.19)

with the characteristic admittance of the traveling TM wave,

Y0 =
ωǫ

kz

=

√

ǫ

µ

1

cos θ
. (II.20)

Continuity of the tangential components of E and H requires the ratio

Z ≡ Ex

Hy

(II.21)

to be continuous. Z is the wave impedance at the interface.
At z = 0,

Z
(1)
0

H
(1)
+ − H

(1)
−

H
(1)
+ + H

(1)
−

= Z
(2)
0 . (II.22)

The quantity,

Γ ≡ −H−

H+
, (II.23)
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is the reflection coefficient.

For E
(1)
− /E

(1)
+ ,

Γ(1) =
Z

(2)
0 − Z

(1)
0

Z
(2)
0 + Z

(1)
0

, (II.24)

using Snell’s law,

Γ(1) = −

√

1 − sin2 θ1 −
√

1 − sin2 θ1
ǫ1µ1

ǫ2µ2

√

ǫ1µ2

ǫ2µ1

√

1 − sin2 θ1 +
√

1 − sin2 θ1
ǫ1µ1

ǫ2µ2

√

ǫ1µ2

ǫ2µ1

. (II.25)

TM waves can be transmitted reflection-free at a dielectric interface, when µ1 = µ2 = µ0, for the angle θ1 = θB, the
so-called Brewster angle,

θB = tan−1

√

ǫ2
ǫ1

. (II.26)

Summary

TE TM

Reflection coefficient Γ(z) = E
−

E+
e+j2kzz Γ(z) = −H

−

H+
e+j2kzz

Wave impedance Z0 =
√

µ
ǫ

1
cos θ

Z0 =
√

µ
ǫ
cos θ

Z(z) = −Ey

Hx

Z(z) = Ex

Hy

Z(z)
Z0

= 1+Γ(z)
1−Γ(z)

Γ(z) = Z(z)−Z0

Z(z)+Z0

Characteristic admittance Y0 =
√

ǫ
µ

cos θ Y0 =
√

ǫ
µ

1
cos θ

Y (z) = −Hx

Ey

Y (z) =
Hy

Ex

Y (z)
Y0

= 1−Γ(z)
1+Γ(z)

Γ(z) = Y0−Y (z)
Y0+Y (z)
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C. Total internal reflection

If medium 1 has a larger value of
√

µǫ, optical denser, than medium 2, Snell’s law fails to yield a real angle θ2 for
a certain range of angle of incidence.
For µ1 = µ2 = µ0,

sin θc =

√

ǫ2
ǫ1

=
n2

n1
. (II.27)

When no real solution of θ2 are found, the propagation constant must be allowed to become negative imaginary,

k(2)
x = k(1)

x , (II.28)

k(2)
z = −jα(2)

z . (II.29)

In this case,

[k(2)
x ]2 + [k(2)

z ]2 = [k(2)
x ]2 − [α(2)

z ]2 = ω2µ0ǫ2, (II.30)

and

k(2)
x =

√

ω2µ0ǫ2 + [α
(2)
z ]2. (II.31)

In the case of a TE wave, the transmitted fields become,

Ey = E
(2)
+ e−α(2)

z
ze−jkxx, (II.32)

Hx =
jα

(2)
z

ωµ0
E

(2)
+ e−α(2)

z
ze−jkxx. (II.33)

The wave impedance, −Ey/Hx,

ωµ0

k
(1)
z

E
(1)
+ + E

(1)
−

E
(1)
+ − E

(1)
−

=
jωµ0

α
(2)
z

= Z
(2)
0 . (II.34)

The characteristic impedance of medium 2 is now imaginary, Z
(2))
0 = jX

(2)
0 , with X

(2)
0 real. Then the reflection

coefficient, Γ = E
(1)
− /E

(1)
+ ,

Γ(1) =
E

(1)
−

E
(1)
+

=
jX

(2)
0 − Z

(1)
0

jX
(2)
0 + Z

(1)
0

, (II.35)

which shows that |Γ(1)| = 1, and the magnitude of the reflected wave, E
(1)
− , equals to the magnitude of the incident

wave, E
(1)
+ .

At z < 0,

Ey = E
(1)
+ [e−jk(1)

z
z + Γ(1)e+jkzz]e−jkxx, (II.36)

= 2e−jφE
(1)
+ cos(k(1)

z z − φ)e−jkxx, (II.37)

where φ = − 1
2 arg(Γ(1)), is the Goos-Hänchen shift.

D. Impedance and reflection coefficient

The wave impedance of a TE wave in medium 1 at any position z is,

Z(z) = −Ey

Hx

= Z0
1 + Γe2jkzz

1 − Γe2jkzz
. (II.38)
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At z = 0,

Z(0) = Z0
1 + Γ

1 − Γ
, (II.39)

then,

Z(z) = Z0
Z(0) − jZ0 tan(kzz)

Z0 − jZ(0) tan(kzz)
. (II.40)

At z = −[(2m + 1)/2kz]π, with m an integer, where tan(kzz) = ∞,

Z(−2m + 1

2kz

π) =
Z2

0

Z(0)
. (II.41)

E. Anti-reflection coating

Reflection of a plane wave from a dielectric interface may be eliminated by coating the interface with a layer of
different dielectric constant. For example, the substrate is a medium described by µ0, ǫ = ǫ0n

2. The wave impedance
by a TE wave incident from the top is,

Z(0) =

√

µ0

ǫ0

1

n cos θ
. (II.42)

If the thickness of the layer is a quarter wavelength,

d =
λ(1)

4

1

cos θ1
, (II.43)

we have at z = −d,

Z(−d) =
Z2

01

Z(0)
=

√

µ0/ǫ0
n cos θ

n2
1 cos2 θ1

. (II.44)

If the substrate is to be matched, we have

Z(−d) = Z0 =

√

µ0

ǫ0

1

n cos θ
, (II.45)

when

n2
1 cos2 θ1 = n cos θ cos θ0. (II.46)

A coating applied to match the substrate, and eliminate the reflected wave is an anti-reflection coating. In particular
for θ0 = 0,

n2
1 = n. (II.47)

It may be difficult to find a dielectric material with an index n1 for a given n. In the usual case, one would apply
several quarter-wave layers. If m pairs of layers are applied to the substrate, the wave impedance seen at the ”input
plane” is,

Z(zj) =

√

µ0

ǫ0

1

n cos θ
(
n1 cos θ1

n2 cos θ2
)2m. (II.48)

The multiple layers act as an antireflection coating, if, (n1 cos θ1/n2 cos θ2) is chosen so that Z(zj) is equal to the
characteristic impedance of the wave in the ”input” medium i.
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F. Reflection gratings

A reflection grating is formed by a periodically ”corrugated” reflecting surface. We idealize a grating surface as

perfectly reflecting. The spatial period of the grating is Λ. Consider the incident wave is a TE wave, ŷEiexp(−j~k ·~r),
then the superposition of incident and reflected wave will be,

Eiexp[−(jkixx + jkizz]|z=h(x) + ER(x, z)|z=h(x) = 0. (II.49)

The reflected field can only cancel the incident field at z = h(x) of the form,

ER(x, z) = exp(−jkixx)
∑

m

Rmexp(jk
(m)
Rz )exp(−j

2πm

Λ
x), (II.50)

where the Rm’s are constants and k
(m)
Rz ’s obey the constraint

(kix +
2π

Λ
m)2 + k

(m)2

Rz = ω2µ0ǫ0. (II.51)

The reflected electric field is composed of an infinite sum of plane waves propagating at different angles. The angle
of reflection of mth order may be related to the angle of incidence,

sin θ
(m)
R = sin θi +

mλ

Λ
. (II.52)

This is the grating reflection law.
Example 1: Sinusoidal corrugation,

h(x) = h0 cos
2π

Λ
x, (

h0

Λ
≪ 1). (II.53)

In this case, only R±1 are non-zero,

R+1 = R−1 = jkizh0Ei, (II.54)

and all other Rm’s are zero.
Example 2: Step grating with the step height is a multiple of half wavelengths.
In this case, we consider the condition of reflection of the −1 order into the direction of incidence,

− sin θ
(−1)
R = sin θi =

λ

Λ
− sin θi. (II.55)

Here, the blaze angle, θB is defined as

sin θB =
λ

2Λ
. (II.56)

G. Extended studies

• Grating spectrometers, (Optical Spectral Analyzer);

• Handbook of anti-reflection coating;

• Dispersion compensation by grating pairs;

• Left-handed materials.


