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III. MIRRORS AND INTERFEROMETERS

A. Reciprocity principle

For an isotropic medium, we can have two solutions of Maxwell’s equations,

∇× E
(a),(b) = −jωµH

(a),(b), (III.1)

∇× H
(a),(b) = jωǫE(a),(b), (III.2)

then one may have the field-theoretical form of the reciprocity theorem,

∇ · (E(a) × H
(b) − E

(b) × H
(a)) = 0, (III.3)

or by using of Gauss’s theorem
∮

S

(E(a) × H
(b)) · dA =

∮

S

(E(b) × H
(a)) · dA. (III.4)

It imposes a constraint on the solutions of Maxwell’s equations in a medium described by a scalar dielectric constant
and magnetic permeability.

B. Scattering Matrix and its properties

For plane waves passing through slabs of optical media, the power per unit area incident from the left is given by

1

2
Re[E × H

∗ · ~z] = |a1|2 − |b2|2. (III.5)

For TE-wave, we can write Ey as

Ey =

√

2/Y
(1)
0 [a1 + b1]e

−jkxx, (III.6)

and

Hx =

√

2Y
(1)
0 [a1 − b1]e

−jkxx, (III.7)

where

a1 ≡
√

Y
(1)
0 /2E

(1)
+ e−jk(1)

z
z , (III.8)

b1 ≡
√

Y
(1)
0 /2E

(1)
− e+jk(1)

z
z . (III.9)

Take advantage of the fact that a1 and a2 can be chosen as independent variables, b1 and b2 are dependent variables,
the latter being linear functions of the former. Then the system is describable by the scattering matrix

b1 = S11 a1 + S12 a2, (III.10)

b2 = S21 a1 + S22 a2. (III.11)

The reflection of a TE wave from an interface is an example of a particular excitation of a particular two-port. At
z = 0, the elements of the scattering matrix are

S11 = Γ(1) =
E

(1)
−

E
(1)
+

=
Y

(1)
0 − Y

(2)
0

Y
(1)
0 + Y

(2)
0

, (III.12)

S12 = S21 =

√

Y
(2)
0 E

(2)
+

√

Y
(1)
0 E

(1)
+

= (1 + Γ(1))

√

√

√

√

Y
(2)
0

Y
(1)
0

, (III.13)

S22 = −S11, (III.14)
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the last equation comes from an interchange of indices 1 and 2.
It is convenient to write the scattering matrix into matrix form by defining the two column matrices

a ≡=

[

a1

a2

]

, b ≡=

[

b1

b2

]

, (III.15)

and the matrix of second rank

S ≡=

[

S11 S12

S21 S22

]

. (III.16)

With these definitions the compact expression for the scattering matrix is

b = Sa. (III.17)

1. Properties of scattering matrix

1. Reciprocity condition: for a linear and isotropic medium,

St = S. (III.18)

The scattering matrix of a linear reciprocal system is symmetric, i.e. S12 = S21.

2. Power conservation: for a lossless medium,

S
†
S = 1, (III.19)

or

S
† = S

−1. (III.20)

The scattering matrix of a lossless system is unitary, i.e.

|S11|2 + |S21|2 = 1, (III.21)

|S22|2 + |S12|2 = 1, (III.22)

S∗
11S12 + S∗

21S22 = 0 (III.23)

. (III.24)

3. Time reversal: time reversibility leads to constraints on the scattering matrix coefficients,

S
∗ = S

−1. (III.25)

Note: When both ot time reversibility and power conservation are made,

S
∗ = S

†, (III.26)

which imply reciprocity. A lossless reciprocal two-port is described in terms of three real parameters.

C. Partially transmitting mirror

We now apply the scattering matrix formalism to a lossless reflecting and transmitting system - the general case of
a lossless partially transmitting mirror. We may choose the position of reference plane 1 so that the reflected wave is
in anti-phase with the incident wave,

E
(1)
− = −r1E

(1)
+ , (III.27)

or

b1 = −r1 a1, (III.28)
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where r1 is real and positive. The same may be done with reference plane 2, thus,

S11 = −r1, (III.29)

S22 = −r2. (III.30)

Reciprocity requires a symmetric S matrix,

|S21|2 = 1 − |S11|2 = 1 − r2
1 , (III.31)

|S12|2 = 1 − |S22|2 = 1 − r2
2 = |S21|2. (III.32)

Thus the matrix elements S11 = −r1 and S22 = −r2 are equal, r1 = r2 = r. And the other elements of the scattering
matrix are

S12 = −S∗
21

S22

S∗
11

. (III.33)

For a special choice of the reference planes, S22/S∗
11 is equal to unity, thus S12 is a pure imaginary quantity. We

choose

S12 = j t, (III.34)

where t is the ”transmissivity”

t =
√

1 − r2. (III.35)

The transmissivity t need not be positive; both signs of the square root are permissible. Through a particular choice
of reference planes the S matrix of a lossless systems has been cast into the form

S =

[

−r j t
j t −r

]

, (III.36)

where

t =
√

1 − r2. (III.37)

The present general derivation of the mirror S matrix is independent of the angle and polarization of the incident
waves, it can be TE, TM , or a combination of the two for particular reference planes.

D. Fabry-Perot interferometer

Two parallel partially transmitting mirrors separated by a distance l form a Fabry-Perot interferometer. The total
wave leaving mirror 1 and traveling to the right, at the right-hand reference plane of mirror 1 is

a =

∞
∑

m=0

(r1r2e
−jδ)mj t1a1 =

j t1
1 − r1r2e−jδ

a1. (III.38)

where δ/2 = (ωn/c) cos θl is the phase shift between two mirrors. From the scattering matrix of mirror 1,

b1 = −r1a1 + j t1b, (III.39)

b1 = j t1a1 − r1b, (III.40)

and the solution for the reflected wave b1 is

b1 = − r1 − r2e
−jδ

1 − r1r2e−jδ
a1. (III.41)

By the same method, the transmitted wave b2 is

b2 = − t1t2e
−jδ/2

1 − r1r2e−jδ
a1. (III.42)
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By reciprocity, S21 = S12, and S22 is obtained from S11 by interchange of the subscripts 1 and 2. Thus the complete
scattering matrix of the Fabry-Perot interferometer is

S =
1

1 − r1r2e−jδ

[

−(r1 − r2e
−jδ) −t1t2e

−jδ/2

−t1t2e
−jδ/2 −(r2 − r1e

−jδ)

]

. (III.43)

The important property of a Fabry-Perot interferometer is its frequency-dependent transmission of power. The
transmitted power (per unit area) is

|b2|2 = |S21|2|a1|2 =
t21t

2
2|a1|2

(1 − r1r2)2 + 4r1r2 sin2(δ/2))
. (III.44)

In this form, the expression for the transmitted power is equally valid for mirrors with loss; then r1, r2, t1, and t2
may be complex. If we define t21 = t22 = 1 − r2

1 , r2
1 = r2

2 = r2 ≡ R, and t21 = t22 = 1 − R, then

|b2|2 = |a1|2
(1 − R)2

(1 − R)2 + 4R sin2(δ/2)
. (III.45)

Here, R is the reflectivity of the mirrors expressing the reflected power per unit incident power. The transmission
peaks occur when δ/2 = (ωn/c) cos θl = mπ, with m an integer, when the frequency f = ω/2π is equal to one of a
set of characteristic value

fm =
mc

2nl cos θ
. (III.46)

The frequency separation ∆f of the peaks is given by

fm+1 − fm = ∆f =
c

2nl cos θ
. (III.47)

The free spectral range of a Fabry-Perot interferometer is defined as the frequency separation of transmission peaks,
expressed in (free-space) wavelength, ∆λ,

|∆λ| = (
|∆f |

f
)λ =

λ2

2nl

1

cos θ
. (III.48)

The full width at half-maximum (FWHM) of the transmission peaks is approximately, when 1 − R ≪ 1,

δf1/2 =
(1 − R)c

2π
√

Rnl cos θ
. (III.49)

The quantity

∆f

δf1/2
≡ F =

π
√

R

1 − R
(III.50)

is the finesse of the interferometer.

E. Michelson interferometer

The scanning Fabry-Perot interferometer is used to measure the spectrum of an incident optical wave. The Michelson
interferometer on the other hand can measure the autocorrelation function. Whereas the Fabry-Perot interferometer
is ideally suited to the analysis of narrow band processes, the Michelson interferometer is well adapted to the mea-
surement of broad band optical waveforms.
In the Michelson interferometer, an incident wave a1 is split by the ”half-silvered” mirror (r = t = 1/sqrt2) into two
components. The other one at the ”output” side of the mirror b2 is

b2 =
j

2
exp(−j2kla)a1 +

j

2
exp(−j2klb)a1 (III.51)

= jexp[−jk(la + lb)] cos k(la − lb)a1 = S21a1. (III.52)
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And the reflected wave amplitude at the input reference plane is

b1 =
1

2
exp(−j2kla)a1 −

1

2
exp(−j2klb)a1 (III.53)

= −jexp[−jk(la + lb)] sin k(la − lb)a1 = S11a1. (III.54)

The scattering matrix of the Michelson interferometer is

S = jexp[−jk(la + lb)]

[

− sink(la − lb) cos k(la − lb)
− cosk(la − lb) sin k(la − lb)

]

(III.55)

Thus, in contrast to the Fabry-Perot interferometer, the transmission as a function of frequency of the Michelson
interferometer is not narrowly peaked around the transmission maxima.

F. Coherence

The Michelson interferometer superimposes two waves with interfere. If one treats a periodic time-dependent
process,

a1(t) =
∑

n

a1(n)ejωnt, (III.56)

where ωn = n∆ω, with ∆ω = 2π/T , the periodicity of the process, T . With k = ω/c,

b2(t) =
j

2
[a1(t − τa) + a1(t − τb)], (III.57)

where

τa =
2la
c

, τb =
2lb
c

. (III.58)

The time-averaged power transmitted through the Michelson interferometer is

< |b2(t)|2 >=
1

4
2 < |a1(t)|2 > + < a1(t − τa)a∗

1(t − τb) > + < a∗
1(t − τa)a1(t − τb) >, (III.59)

where we have taken into account that < |a1(t)|2 > is time independent. For a stationary statistical process the
quantity

< a1(t − τa)a∗
1(t − τb) >=< a1(t)a

∗
1(t − τ) >= Γ11(τ), (III.60)

is the complex autocorrelation function Γ11(τ) of a1, where τ = τa − τb. A detector that responds to time-averaged
power mounted at the output of the interferometer detects

< |b2(t)|2 >=
1

4
2Γ11(0) + Γ11(τ) + Γ∗

11(τ). (III.61)

The Michelson interferometer is well suited to the measurement of temporal coherence, while the spatial coherence is
measured conveniently by diffraction.

G. Extended studies

• 1st-order correlation function;

• 2nd-order correlation function;

• Poisson distribution;

• Laser resonators with Fabry-Perot structures;

• Twyman-Green interferometer.


