V. HERMITE-GAUSSIAN BEAMS
A. Gaussian beams

The exact solution of the scalar wave equation reduces to an exact solution of the paraxial wave equation,
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This solution is proportional to the impulse response function (Fresnel kernel),
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The paraxial wave equation is invariant with respect to a translation of the coordinate z, z — 2z — z9. Thus another
solution of the equation is h(z,y,z — zo9). To remove the singularity of the solution on the real z axis, the solution
of the paraxial wave equation can be constructed by making zy imaginary, zo = —jb. Then the solution of the scalar

paraxial wave equation becomes,
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where ¢y is a normalization constant, which can be defined by the normalization condition,
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When the integral is carried out, it is found that the required constant c; is v2bA. Thus
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Separation of the argument of the exponential into real and imaginary parts, put ugg into the form,
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with the minimum beam radius wp = v/2bk and the confocal parameter b = kw3 /2 = w2 /. The solution is a wave

traveling in the 4z direction with a Gaussian amplitude profile and curved phase fronts of radius R(z).
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1. The Electric and Magnetic fields of Gaussian beam

The magnetic field H and the electric field E follow from the complex vector potential A,

woH = V x A4
E = —jwA—-VO,

and according to the Lorentz gauge, the scalar potential is
J
Wlo€y

P = V.- A

Suppose that A is polarized along Z,

A = Zugo(z,y, 2)e %,

Thus
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where we have ignored Qugg/0z compared with kugg. The electric field is,
E = —jw[ZTug fjéé]zfg;)]e*jkz
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B. Resonators with curved mirrors

Consider the Gaussian beam solution propagating in the —z direction,
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and superposition of two gaussian beams propagating in the +2 and —z directions produces standing waves. If mirror

1 is placed at position z;, with the radius of curvature,
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(V.20)



27

and mirror 2 at position zo with the radius of curvature,

1 z9
—_— = . V.21
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Given a set of mirrors of radii of curvature R and Ry and their spacing d, z; — Zs = d, the resonant mode appropriate
for this configuration is sought.

1. One plane, one concave mirror

When Ry = o0, Ry = Ry, then z; = 0, 29 = d, and

2

b= ”Tw“ = /d(Ry — d). (V.22)

The minimum beam radius of the resonant mode occurs at the flat mirror when Ry > d.

2. The symmetric case

When R; = Ry = Ry, the distance d must be interpreted as d/2 and one has,
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3. The general case

When R; # Rs, one finds that

and the equation for b2,
Ap? — (R%Rg)l —[(2d/R1R2)(d — Ry — Rg) + 1)? (V.25)
4 [d = (R1 + Ro)/2]?
For real solution for b, one requires that
0< (1—]%)(1—]%) <1 (V.26)

Resonators for which no solutions of Gaussian modes exist that reproduce themselves are unstable resonators.

C. Higher-order modes

A Hermite-Gaussian of order m of the independent variable 7 is defined as the product of a Hermite polynomial of
order m, H,,(¢), and the Gaussian exp(—(¢2/2). The lowest-order Hermite polynomials are,

Ho(¢) = 1; (V.27)
Hi(Q) = 2¢; (V.28)
Hy(¢) = 4¢* —2. (V.29)

Then the two-dimensional Hermite-Gaussian forward traveling wave of the modes of order m, n at z =0 is

umn(xov yO) = Cmnwm(%)wn( \/Ego

), (V.30)
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where 1, (¢) = Hp (¢)e¢ /2.
Assume a trial solution to the paraxial wave equation of the form,
22 442
2q(z)

where A(z) and ¢(z) are initially unknown. If we substitute this trial solution into the paraxial wave equation, we
obtain

u(z,y, z) = A(z)exp|—jk 1, (V.31)
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Now, the only way in which this equation can be satisfied for all x and y is to set both of the differential expressions
inside the large square brackets to zero, i.e.,

daz) g 24G) AR (V.33)
dz dz q(2)
whose solutions are given by
q(z) = qo+2z=z+jb, (V.34)
A(2) q0
= = V.35
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The same trial solution approach can be extended to find high-order Hermite-Gaussian modes ., (z, y, z) or Laguerre-
Gaussian modes up, (7, 8, z) to the paraxial wave equation. In rectangular coordinates the elementary solutions can
be separated into products of identical solutions in the x and y directions, i.e.,

umn(ma Y, Z) = un(x7 Z) X Um(% Z), (V36)

where u,(z,z) and um,(y, z) have the same mathematical form for the paraxial wave equation in one transverse
coordinate,

P un(r,2) 2jk8un(x,z)
ox? 0z

=0. (V.37)
Again, we now write a more general trial solution for the wave amplitude uy,(z, z) in the form

m2+y2
2q(z)
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up(z,2) = A(2) % Hn[p(z)

| x exp|—jk 1, (V.38)
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where p(z) is a distance-dependent scaling factor. Substituting this form into the paraxial wave equation, the paraxial
wave equation then is converted into a differential relation for H, (z/p),
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" ik

n

2ik[L — ploH., — 1+ |H, =0, (V.39)
q

where H,, and H, mean the first and second derivatives of H, with respect to its total argument. If we can find

solutions for p(z) and A(z) which satisfy simultaneously the two conditions,

o 2 dp _p , J
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The the differential relation for H, becomes the Hermite polynomials function,
H, —2(x/p)H,, + 2nH, =0, (V.42)

with the solutions H,,(z/p). The standard approach to Hermite polynomial solutions is obtained by assuming that
the scalar factor p(z) is purely real,
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The the higher-order modes are
V22 —jkzx2 x?
- g i 44
un(@,2) = Ha[3 o5 > eoplgprs = b (V.44)
where the ¢-parameter become
1 1 A
—_— = — . V.45
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The complete normalized higher-order Hermite-Gaussian mode for a beam propagating in free-space is
2 1 q qoq* (2 V2x ka?
u(e,2) = () /2y O Dy gy V2 eapl-j5 ) (V.46)
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D. Extended studies

. Orthogonality property of Hermite-Gaussian modes
. Laguerre-Gaussian modes

. The ¢q parameter and ABCD matrix in ray optics

. Methods of testing optical systems

. Aberrations
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. The Twyman-Green interferometer



