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V. HERMITE-GAUSSIAN BEAMS

A. Gaussian beams

The exact solution of the scalar wave equation reduces to an exact solution of the paraxial wave equation,

∇2
Tu− 2jk

∂u

∂z
= 0, (V.1)

where

∇T ≡ x̂
∂

∂x
+ ŷ

∂

∂y
. (V.2)

This solution is proportional to the impulse response function (Fresnel kernel),

h(x, y, z) =
j

λz
e−jk[(x2+y2)/2z], (V.3)

i.e.

∇2
Th(x, y, z) − 2jk

∂h

∂z
= 0. (V.4)

The paraxial wave equation is invariant with respect to a translation of the coordinate z, z → z − z0. Thus another
solution of the equation is h(x, y, z − z0). To remove the singularity of the solution on the real z axis, the solution
of the paraxial wave equation can be constructed by making z0 imaginary, z0 = −jb. Then the solution of the scalar
paraxial wave equation becomes,

u00(x, y, z) = c1
j

λ(z + jb)
e−jk[ x2+y2

2(z+jb)
], (V.5)

where c1 is a normalization constant, which can be defined by the normalization condition,

∫

∞

−∞

d x

∫

∞

−∞

d y|u00(x, y, 0)|2 = 1. (V.6)

When the integral is carried out, it is found that the required constant c1 is
√

2bλ. Thus

u00(x, y, z) = j

√

kb

π
(

1

z + jb
)e−jk[ x2+y2

2(z+jb)
]. (V.7)

Separation of the argument of the exponential into real and imaginary parts, put u00 into the form,

u00(x, y, z) =

√
2√
πw

exp(jφ)exp(−x
2 + y2

w2
)exp[− jk

2R
(x2 + y2], (V.8)

where

beam width w2(z) =
2b

k
(1 +

z2

b2
= w2

0 [1 + (
λz

πw2
0

)2], (V.9)

radius of phase front
1

R(z)
=

z

z2 + b2
=

z

z2 + (πw2
0/λ)

2
, (V.10)

phase delay tanφ =
z

b
=

z

πw2
0/λ

, (V.11)

with the minimum beam radius w0 =
√

2bk and the confocal parameter b = kw2
0/2 = πw2

0/λ. The solution is a wave
traveling in the +z direction with a Gaussian amplitude profile and curved phase fronts of radius R(z).
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1. The Electric and Magnetic fields of Gaussian beam

The magnetic field H and the electric field E follow from the complex vector potential A,

µ0H = ∇×A; (V.12)

E = −jωA−∇Φ, (V.13)

and according to the Lorentz gauge, the scalar potential is

Φ =
j

ωµ0ǫ0
∇ · A. (V.14)

Suppose that A is polarized along x̂,

A = x̂u00(x, y, z)e
−jkz . (V.15)

Thus

µ0H = ∇× [x̂u00(x, y, z)e
−jkz ] = −j[ŷu00 − jẑ

∂u00

k∂y
]e−jkz , (V.16)

where we have ignored ∂u00/∂z compared with ku00. The electric field is,

E = −jω[x̂u00 − jẑ
∂u00

k∂x
]e−jkz (V.17)

=

√

kb

π
(

ω

z + jb
)e−jk[ x2+y2

(z+jb)
]exp(−jkz)[(x̂− ẑ

x

R
) + jẑ

xb

z2 + b2
]. (V.18)

B. Resonators with curved mirrors

Consider the Gaussian beam solution propagating in the −z direction,

u00(x, y,−z) = −j
√

kb

π
(

1

z − jb
)e+jk[ x2+y2

2(z−jb)
], (V.19)

and superposition of two gaussian beams propagating in the +z and −z directions produces standing waves. If mirror
1 is placed at position z1, with the radius of curvature,

1

R1
=

z1
z2
1 + b2

, (V.20)
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and mirror 2 at position z2 with the radius of curvature,

1

R2
=

z2
z2
2 + b2

. (V.21)

Given a set of mirrors of radii of curvature R1 and R2 and their spacing d, z1−Z2 = d, the resonant mode appropriate
for this configuration is sought.

1. One plane, one concave mirror

When R1 = ∞, R2 = R0, then z1 = 0, z2 = d, and

b =
πw2

0

λ
=

√

d(R0 − d). (V.22)

The minimum beam radius of the resonant mode occurs at the flat mirror when R0 > d.

2. The symmetric case

When R1 = R2 = R0, the distance d must be interpreted as d/2 and one has,

b =
πw2

0

λ
=

√

d

2
(R0 −

d

2
). (V.23)

3. The general case

When R1 6= R2, one finds that

R1

2
+
R2

2
±

√

R2
1

4
− b2 ±

√

R2
2

4
− b2 = d, (V.24)

and the equation for b2,

4b2 = (
R2

1R
2
2

4
)
1 − [(2d/R1R2)(d−R1 −R2) + 1]2

[d− (R1 +R2)/2]2
. (V.25)

For real solution for b, one requires that

0 ≤ (1 − d

R1
)(1 − d

R2
) ≤ 1. (V.26)

Resonators for which no solutions of Gaussian modes exist that reproduce themselves are unstable resonators.

C. Higher-order modes

A Hermite-Gaussian of order m of the independent variable η is defined as the product of a Hermite polynomial of
order m, Hm(ζ), and the Gaussian exp(−ζ2/2). The lowest-order Hermite polynomials are,

H0(ζ) = 1; (V.27)

H1(ζ) = 2ζ; (V.28)

H2(ζ) = 4ζ2 − 2. (V.29)

Then the two-dimensional Hermite-Gaussian forward traveling wave of the modes of order m, n at z = 0 is

umn(x0, y0) = Cmnψm(

√
2x0

w0
)ψn(

√
2y0
w0

), (V.30)
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where ψm(ζ) ≡ Hm(ζ)e−ζ2/2.
Assume a trial solution to the paraxial wave equation of the form,

u(x, y, z) = A(z)exp[−jkx
2 + y2

2q(z)
], (V.31)

where A(z) and q(z) are initially unknown. If we substitute this trial solution into the paraxial wave equation, we
obtain

[(
k

q
)2(

d q

d z
− 1)(x2 + y2) − 2jk

q
(
q

A

dA

d z
+ 1)]A(z) = 0. (V.32)

Now, the only way in which this equation can be satisfied for all x and y is to set both of the differential expressions
inside the large square brackets to zero, i.e.,

d q(z)

d z
= 1 and

dA(z)

d z
= −A(z)

q(z)
, (V.33)

whose solutions are given by

q(z) = q0 + z ≡ z + jb, (V.34)

A(z)

A0
=

q0
q(z)

. (V.35)

The same trial solution approach can be extended to find high-order Hermite-Gaussian modes umn(x, y, z) or Laguerre-
Gaussian modes upm(r, θ, z) to the paraxial wave equation. In rectangular coordinates the elementary solutions can
be separated into products of identical solutions in the x and y directions, i.e.,

umn(x, y, z) = un(x, z) × um(y, z), (V.36)

where un(x, z) and um(y, z) have the same mathematical form for the paraxial wave equation in one transverse
coordinate,

∂2 un(x, z)

∂x2
− 2jk

∂un(x, z)

∂z
= 0. (V.37)

Again, we now write a more general trial solution for the wave amplitude un(x, z) in the form

un(x, z) = A(z) ×Hn[
x

p(z)
] × exp[−jkx

2 + y2

2q(z)
], (V.38)
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where p(z) is a distance-dependent scaling factor. Substituting this form into the paraxial wave equation, the paraxial
wave equation then is converted into a differential relation for Hn(x/p),

H
′′

n − 2jk[
p

q
− p

′

]xH
′

n − jkp2

q
[1 +

2q

A

dA

d q
]Hn = 0, (V.39)

where H
′

n and H
′′

n mean the first and second derivatives of Hn with respect to its total argument. If we can find
solutions for p(z) and A(z) which satisfy simultaneously the two conditions,

2jk[
p

q
− p

′

] =
2

p
or

d p

d z
=
p

q
+

j

kp
, (V.40)

− jkp
2

q
[1 +

2q

A

dA

d q
] = 2n or

2q

A

dA

d q
=

2jnkp2

q
− 1. (V.41)

The the differential relation for Hn becomes the Hermite polynomials function,

H
′′

n − 2(x/p)H
′

n + 2nHn = 0, (V.42)

with the solutions Hn(x/p). The standard approach to Hermite polynomial solutions is obtained by assuming that
the scalar factor p(z) is purely real,

1

p(z)
=

√
2

w(z)
=

√

jk

2q(z)
. (V.43)

The the higher-order modes are

un(x, z) = Hn[

√
2z

w(z)
] × exp[

−jkx2

2R(z)
− x2

w2(z)
], (V.44)

where the q-parameter become

1

q(z)
=

1

R(z)
− j

λ

πw2(z)
. (V.45)

The complete normalized higher-order Hermite-Gaussian mode for a beam propagating in free-space is

u(x, z) = (
2

π
)1/4(

1

2nn!w0
)1/2(

q0
q(z)

)1/2[
q0q

∗(z)

q∗0q(z)
]n/2 ×Hn[

√
2x

w(z)
] × exp[−j kx

2

2q(z)
]. (V.46)

D. Extended studies

1. Orthogonality property of Hermite-Gaussian modes

2. Laguerre-Gaussian modes

3. The q parameter and ABCD matrix in ray optics

4. Methods of testing optical systems

5. Aberrations

6. The Twyman-Green interferometer


