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VI. OPTICAL WAVEGUIDES AND FIBERS

A. Wave equation in nonuniform dielectric

In a source-free, nonuniform, dielectric medium, the wave equation for the vector potential becomes,

∇2A − µ0ǫ
∂2 A

∂ t2
= −µ0(∇ǫ)

∂

∂ t
Φ. (VI.1)

The nonuniform dielectric couples the vector potential to the scalar potential, and vice versa. On the other hand, in
a uniform charge-free medium, the wave equations for A and Φ are uncoupled,

∇2A − µ0ǫ
∂2 A

∂ t2
= 0 (VI.2)

∇2Φ − µ0ǫ
∂2 Φ

∂ t2
= 0. (VI.3)

The coupling is weak when the spatial variation of ǫ is small over distances of the order of a wavelength, then we can
neglect this coupling entirely,

∇2A − µ0ǫ
∂2 A

∂ t2
≈ 0, (VI.4)

here ǫ(ρ) is not a constant, which represents an axially uniform medium, but with radial variation. We write

A = ŷu(x, y)e−jβz, (VI.5)

where β is an unknown propagation constant. The wave equation for u(x, y) is,

∇2
T u + [ω2µ0ǫ(ρ) − β2]u = 0, (VI.6)

where ρ = x̂x + ŷy. Compared to the Schrödinger equation of a particle in a two-dimensional potential V , i.e.

−h̄2

2m
∇2

T Ψ + (V − E)Ψ = 0, (VI.7)

then the solutions are bounded, if and only if, there are local negative values of the function,

|V | − |E| > 0, (VI.8)

with

V = −ω2µ0ǫ(ρ), (VI.9)

E = −β2. (VI.10)

Bounded solutions correspond to guided waves and are found only for specific values of the eigenvalues β2.

B. Parabolic profile of dielectric constant

We assume a dielectric constant profile that depends quadratically on the distance from the axis:

ω2µ0ǫ(ρ) = ω2µǫ(0)(1 − x2 + y2

h2
). (VI.11)

Denote by k0 the propagation constant of an infinite parallel plane wave propagating in a medium of uniform dielectric
constant ǫ(0),

k0 ≡ ω
√

µ0ǫ(0). (VI.12)
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With the normalized variables,

ξ =

√

k0

h
x, (VI.13)

η =

√

k0

h
y, (VI.14)

then the wave equation for the u becomes,

∂2u

∂ξ2
+

∂2u

∂η2
+ [λ2 − (ξ2 + η2)]u = 0, (VI.15)

where

λ =
k2
0 − β2

k0
h. (VI.16)

The solutions to this equation are Hermite-Gaussian polynomials,

umn(ξ, η) = Hm(ξ)Hn(η)e−(ξ2+η2)/2, (VI.17)

with

λ = 2(m + n) + 2, m, n = 0, 1, 2, . . . (VI.18)

The fundamental mode, with λ00 = 2, has the pattern

u00(x, y) =

√

2

π

1

w
exp(−x2 + y2

w2
), (VI.19)

where

w2 =
2h

k0
=

hλ

π

√

ǫ0
ǫ(0)

. (VI.20)

The propagation constant of the mn modes is,

β2
mn = k2

0(1 − λmn

k0h
). (VI.21)

The propagation constant is smaller than k0, thus indicating that the phase velocity of the mode is greater than the
speed of an infinite parallel plane wave in a medium with a uniform dielectric constant ǫ = ǫ(0). When λmn/(k0h) ≪ 1,
one may approximate the propagation constant by

βmn ≈ k0(1 − m + n + 1

k0h
). (VI.22)

The inverse group velocity is then

dβmn

dω
=

√

µ0ǫ(0), (VI.23)

independent of mode number m and n. The modes in a parabolic index profile are an approximate representation of
modes in multimode fibers.

C. The dielectric slab waveguides

Transverse Electric modes:

Ey = A cos(kxx)e−jβz , |x| < d, (VI.24)

Ey = Be−jβze−αxx, x > d, (VI.25)

= Be−jβzeαxx, x < −d, (VI.26)
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and the magnetic field follows from Faraday’s law,

Hz = − jkx

ωµ0
A sin(kxx)e−jβz , |x| < d, (VI.27)

Ey = − jαx

ωµ0
Be−jβze−αxx, x > d, (VI.28)

=
jαx

ωµ0
Be−jβzeαxx, x < −d. (VI.29)

Continuity of Ey/Hz at x = d gives,

tan(kxd) =
αx

kx
. (VI.30)

From the wave equation, we have

β2 − α2
x = ω2µ0ǫ, (VI.31)

β2 + k2
x = ω2µ0ǫi, (VI.32)

and combine these two equations,

αx

kx
=

√

ω2µ0(ǫi − ǫ)

k2
x

− 1, (VI.33)

one can find the dispersion diagram, the dependence of the propagation constant β on frequency,

tan(kxd) =

√

ω2µ0(ǫi − ǫ)

k2
x

− 1, (VI.34)

For decreasing ω, αx/kx moves toward the origin and intersections are lost, except for the first branch of the tan
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k_x d

-4

-2

2

4

function. This corresponds to the dominant mode, m = 0, with no cutoff. At low frequency, the fundamental mode
acquires a small kx, tan(kxd) ≈ kxd,

ω2µ0(ǫi − ǫ)d2 − k2
xd2 ≈ k4

xd4. (VI.35)

Neglecting k4
xd4 compared with k2

xd2, we have k2
x = ω2µ0(ǫi − ǫ) and β ≈ ω

√
µ0ǫ. The wave propagates at the

speed characteristic of the external region. In the other hand, when ω− > ∞, kxd approaches π/2 and we find that
β ≈ ω

√
µ0ǫi.

D. Single-mode fiber

The propagation constant for a step index profile is bracketed between the limits,

ω2µ0ǫ < β2 < ω2µ0ǫi. (VI.36)
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By making (ǫi − ǫ)/ǫ small enough, one can prevent solutions from occurring with greater curvatures at any given
frequency and thus prevent the existence of any higher-order modes. In practice, the waveguide dispersion for a single
mode fiber is overshadowed by the material dispersion, the frequency dependence of the dielectric constant, ǫ(ω).
suppose that we have solved the eigenvalue problem and have determined the propagation constant β as a function
of frequency. The spatial dependence of the vector potential Ay is then,

Ay = a(z)u(x, y), (VI.37)

where az is the amplitude with the z dependence ex[−jβ(ω)z]. If the spectrum a(z, ω) is narrow, and centered around
ω0 so that β(ω) can be expanded into,

∂a(z, ω)

∂z
= −j[β(ω0) +

dβ

dω
(ω − ω0) +

1

2

d2β

dω2
(ω − ω)2)]a. (VI.38)

In terms of a function of (ω − ω0),

a(z, ω) = A(z, ω − ω0)exp[−jβ(ω0)z], (VI.39)

then the equation of motion for the envelope A is,

∂

∂z
A(z, ω − ω0) = −j[

dβ

dω
(ω − ω0) +

1

2

d2β

dω2
(ω − ω)2)]A(z, ω − ω0), (VI.40)

and its inverse Fourier transform,

(
∂

∂z
+

1

vg

∂

∂t
)A(z, t) =

j

2

d2β

dω2

∂2A(z, t)

∂t2
, (VI.41)

where

1

vg
=

dβ

dω
. (VI.42)

The envelope A(z, t) would propagate at the group velocity, but with dispersion effect.

E. Extended studies

1. Propagation of Gaussian pulses,

2. The solutions of Bessel functions for the single mode fibers with step index profile,

3. Index change in a fiber,

4. Orthogonality of guided waves,

5. A. W. Snyder and J. D. Love, ”Optical waveguide theory,” Chapman & Hall (1995).


