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VII. COUPLED-MODE THEORY FOR RESONATORS AND COUPLERS

A. Single resonator

For a simple LC circuit,

v = L
d i

d t
, (VII.1)

i = −C
d v

d t
, (VII.2)

the two coupled first-order differential equations lead to the second-order differential equation for the voltage,

d2 v

d t2
+ ω2

0v = 0, (VII.3)

where

ω2
0 =

1

LC
. (VII.4)

Instead of the coupled first-order differential equations we may derive two uncoupled first-order differential equations,
by defining the complex variables,

a± =

√

C

2
(v ± j

√

L

C
i), (VII.5)

then,

d a+

d t
= jω0a+, (VII.6)

d a−

d t
= −jω0a−. (VII.7)

Therefore, a+ is the positive-frequency component of the mode amplitude,

a+ =

√

C

2
V ejω0t, (VII.8)

is normalized with the energy, W , in the circuit,

|a+|2 =
C

2
|V |2 = W. (VII.9)

If the circuit is lossy, the loss may e represented by a conductance G in parallel with L and C,

d a

d t
= jω0a − 1

τo
a, (VII.10)

where 1/τ0 is the decay rate due to the loss. The time-average loss is,

Pd =
1

2
G|V |2 =

G

C
|a|2, (VII.11)

where the dimensionless quantity,

Pd

ω0W
=

G

ω0C
=

2

ω0τ0
=

1

Q0
, (VII.12)

is the inverse unloaded Q or quality factor.
If we had started from the equations of the circuit and had computed the complex frequency s = −(1/τ) + ω exactly,
we would have obtained,

s = −1

τ
+ jω = − G

2C
+ j

√

1

LC
− G2

4C2
. (VII.13)

Note that the decay rate has been properly evaluated by the perturbation, but a correction to the frequency ω0 =
1/

√
LC that is of second order in G/C.
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B. Single resonator with input wave

If the resonator is coupled to an external waveguide or to the outside space by a partially transmitting mirror,

d a

d t
= jω0a − (

1

τ0
+

1

τe
)a, (VII.14)

where 1τe expresses the additional rate of decay due to escaping power, and the ”external” Q of the resonator is,

Pe

ω0W
=

2

ω0τe
=

1

Qe
. (VII.15)

The waveguide may carry a wave traveling toward the resonator of amplitude s+ due to a source,

d a

d t
= jω0a − (

1

τ0
+

1

τe
)a + κs+, (VII.16)

where κ is a coefficient expressing the degree of coupling between the resonator and the wave s+. We normalized s+

so that,

|s+|2 = power carried by incident wave, (VII.17)

in contrast to |a|2, which is normalized to the energy.
If the source is at the frequency ω, s+ ∝ exp(jωt), then the response is at the same frequency,

a =
κs+

j(ω − ω0) + (1/τ0 + 1/τe)
. (VII.18)

If there is no internal source, from the energy conservation,

d

d t
|a|2 = − 2

τe
|a|2 + |κ|2|s+|2 = 0, (VII.19)

then,

|κ| =

√

2

τe
. (VII.20)

The phase of κ can be disposed of by noting that the phase of a relative to s+ can be defined arbitrarily. Thus,

d a

d t
= jω0a − (

1

τ0
+

1

τe
)a +

√

2

τe
s+. (VII.21)

If the system is linear, so that s− is the sum of a term proportional to s+ and a term proportional to a,

s− = css+ + caa, (VII.22)

where

ca =

√

2

τe
. (VII.23)

The coefficient cs can be evaluated by energy conservation,

|s+|2 − |s−|2 =
d

d t
|a|2 +

2

τ0
|a|2, (VII.24)

and

d

d t
|a|2 = −2(

1

τ0
+

1

τe
)|a|2 +

√

2

τe
(a∗s+ + as∗+). (VII.25)

Comparison of the coefficients, we obtain,

cs = −1, (VII.26)
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thus,

s− = −s+ +

√

2

τe
a. (VII.27)

The reflection coefficient of the resonator in the steady state is

Γ =
s−
s+

=
1/τe − 1/τ0 − j(ω − ω0)

1/τe + 1/τ0 + j(ω − ω0)
. (VII.28)

If a resonator is connected to two guides, or power is coupled in and out at two mirrors as in the Fabry-Perot
transmission resonator,

d a

d t
= jω0a − (

1

τ0
+

1

τe1
+

1

τe2
)a + κ1s+1 + κ2s+2, (VII.29)

where 1/τe1 and 1/τe2 express the contribution to the mode decay of the free running resonator due to the power
escaping into each of the two guides, and the coupling coefficients,

κ1 =

√

2

τe1
, (VII.30)

κ2 =

√

2

τe2
. (VII.31)

The power transmitted to guide 2 from guide 1 is,

|s−2|2 =
2|a|2
τe2

=
(4τ2/τe1τe2)|s+1|2
(ω − ω0)2τ2 + 1

, (VII.32)

where 1/τ = 1/τe1 + 1/τe2 + 1/τ0. When there is no loss, 1/τ = 1/τe1 + 1/τe2, and the transmitted power is at
resonance, ω = ωo,

|s−2|2 =
(4/τe1τe2)

(1/τe1 + 1/τe2)2
|s+1|2, (VII.33)

which is the same result for the transmission of a Fabry-Perot interferometer at, and near, resonance of one of its
modes, i.e.

|b2|2 = |S21|2|a1|2 =
t21t

2
2|a1|2

(1 − r1r2)2 + 4r1r2 sin2(δ/2))
, (VII.34)

or

|b2|2 = |a1|2
(1 − R)2

(1 − R)2 + 4R sin2(δ/2)
, (VII.35)

when t21 = t22 = 1 − r2
1 , r2

1 = r2
2 = r2 ≡ R, and t21 = t22 = 1 − R.

C. Coupling of two resonator modes

Consider the equation of motion of the amplitudes a1 and a2 of the modes of two uncoupled lossless resonators of
natural frequencies ω1 and ω2,

d a1

d t
= jω1a1, (VII.36)

d a2

d t
= jω2a2. (VII.37)
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Suppose that the modes are coupled through some small perturbation of the system, such as the small connecting
capacitor, or by a change of the totally reflecting mirror between the two resonators to a partially transmitting mirror.
This change can be described by

d a1

d t
= jω1a1 + κ12a2, (VII.38)

d a2

d t
= jω2a2 + κ21a1, (VII.39)

where κ12 and κ21 are the coupling coefficients. Here week coupling means that |κ12 ≪ ω1 and |κ21 ≪ ω2. Energy
conservation imposes a restriction on κ12 and κ21. The time rate of change of energy, which must vanish, is derived
as,

d

d t
(|a1|2 + |a2|2) = a∗

1κ12a2 + a1κ
∗

12a
∗

2 + a∗

2κ21a1 + a2κ
∗

21a
∗

1 = 0. (VII.40)

Because the initial amplitudes and phases of a1 and a2 can be set arbitrarily, the coupling coefficients must be related
by,

κ12 + κ∗

21 = 0. (VII.41)

1. Transient response

We solve for the natural frequencies of the coupled systems,

d

d t

[

a1

a2

]

=

[

jω1 κ12

κ21 jω2

] [

a1

a2

]

, (VII.42)

which have two homogeneous solutions,

ω =
ω1 + ω2

2
±

√

(
ω1 − ω2

2
)2 + |κ12|2, (VII.43)

≡ ω1 + ω2

2
± Ω0. (VII.44)

The two frequencies of the coupled system are ”forced apart” by the coupling. Suppose, initially, that at t = 0, a1(0)
and a2(0) are specified, then the two solutions are,

a1(t) = [a1(0)(cos Ω0t − j
ω2 − ω1

2Ω0
sin Ω0t) +

κ12

Ω0
a2(0) sin Ω0t]e

j[(ω1+ω2)/2]t, (VII.45)

a2(t) = [
κ21

Ω0
a1(0) sin Ω0t + a2(0)(cosΩ0t − j

ω1 − ω2

2Ω0
sin Ω0t)]e

j[(ω1+ω2)/2]t. (VII.46)
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FIG. 1: Left: ω1 − ω2 = 0; Right: ω1 − ω2 = 1.
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D. Coupling of modes in space

If two optical waveguides are coupled to each other via their fringing fields. A wave set up initially in one guide is
transferred to the other guide. Consider two waves a1 and a2, of modes 1 and 2, which, in the absence of coupling ,
have propagation constants β1 and β2,

d a1

d z
= −jβ1a1, (VII.47)

d a2

d z
= −jβ2a2. (VII.48)

Suppose next that the two waves are weakly coupled by some means,

d a1

d z
= −jβ1a1 + κ12a2, (VII.49)

d a2

d z
= −jβ2a2 + κ21a1. (VII.50)

If power is to be conserved, there are restrictions imposed on κ12 and κ21. Because the waves may carry power in
opposite directions, we must distinguish the directions of power flow by a sign, p1,2 = ±1, depending upon whether
the power flow is in the plus or minus z direction. The net power P is,

P = p1|a1|2 + p2|a2|2. (VII.51)

Power conservation requires that the power be independent of distance z,

dP

d z
= p1

d |a1|2
d z

+ p2
d |a2|2

d z
= 0, (VII.52)

from which if follows that,

p1κ12 + p2κ
∗

21 = 0. (VII.53)

The determinantal equation for an assumed exp(−jβz) dependence is,

β =
β1 + β2

2
±

√

(
β1 − β2

2
)2 − κ12κ21. (VII.54)

For waves carrying power in the same direction, p1p2 = +1, κ12κ21 = −|κ12|2, and β is always real. But for p1p2 = −1
(i.e. waves carrying power in opposite directions), κ12κ21 = |κ12|2 and β is complex for,

|β1 − β2

2
| < |κ12|. (VII.55)

Note the appreciable coupling can occur only if |β1 − β2| is of order |κ12|, which is small compared with |β1| and |β2|
(weak-coupling assumption). Consider the case of codirectional, positive, group velocities, p1 = p2 = +1, with the
initial waves a1(0) and a2(0), the solutions is analogous to the coupling of modes in time solutions,

a1(z) = [a1(0)(cosβ0z + j
β2 − β1

2β0
sin β0z) +

κ12

β0
a2(0) sin β0z]e−j[(β1+β2)/2]z , (VII.56)

a2(z) = [
κ21

β0
a1(0) sin β0z + a2(0)(cosβ0z + j

β1 − β2

2β0
sinβ0z)]e−j[(β1+β2)/2]z , (VII.57)

where

β0 =

√

(
β1 − β2

2
)2 + |κ12|2 (VII.58)
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E. Quality factors, laser threshold, and output power

The advantage of the perturbation approach is that one may evaluate quite easily the different Q factor for a Fabry-
Perot resonator for a given mirror transmissivity and internal loss. The energy W in the resonator is, as defined,
W = |a|2. In the limit of high reflectivity |a|2/2 is the energy associated with each of the oppositely directed traveling
waves. The powers in the two counter-traveling waves is approximately,

< P± >=
|a|2
2

vg

l
, (VII.59)

where l is the length of the resonator, and vg is the group velocity of the mode. The power Pe escaping through the
partially transmitting mirror of transmissivity t2 = T is,

Pe = T < P− >= T
|a|2
2

vg

l
. (VII.60)

The external Q is thus,

1

Qext
=

Pe

ω0W
=

2

ω0τe
=

Tvg

2ω0l
. (VII.61)

And the incident wave |s+|2 exciting the resonator can be obtained, with zero internal resonator loss,

|s+|2 =
2

τe
|a|2 = T < P+ > . (VII.62)

Suppose that the medium filling the resonator has a spatial decay rate α for the field, then the unloaded Q is,

1

Q0
=

Pd

ω0W
=

2

ω0τ0
=

2αvg

ω0
, (VII.63)

where the power dissipated Pd is,

Pd = 4αl < P± >= 2α|a|2vg. (VII.64)

Again, the gain is produced by some form of ”pumping” over a length lg of the resonator with the generated power
Pg,

Pg = 4αglg < P± > . (VII.65)

The equation for the mode amplitude in the laser is now,

d a

d t
= (jω0 −

1

τ0
− 1

τe
+

1

τg
)a +

√

2

τe
s+. (VII.66)

If the laser is to oscillate in the steady state with no drive, s+ = 0, one must have,

1

τg
=

1

τ0
+

1

τe
, (VII.67)

or

αg =
l

lg
α +

T

4lg
. (VII.68)

This is the gain coefficient which must be achieved to reach threshold, the gain level for self-starting of the oscillator.

F. Extended studies

1. Propagation of Gaussian pulses,

2. Waveguide couplers: tunable filters, switch,

3. Injection locking of an oscillator.


