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VIII. DISTRIBUTED FEEDDACK STRUCTURES

A. The equations of DFB structures

In the preceding chapter, we consider that two optical waveguides are coupled to each other via their fringing fields.
To produce appreciable coupling, synchronism was necessary; that is, the two propagation constants could not differ
by much more than the magnitude of the coupling coefficient,

|
β1 − β2

2
| < |κ12|. (VIII.1)

Consider a structure of the ”distributed feedback” (DFB) structure as shown below, for two waves of opposite group
velocity, denoted by a for the ”forward” wave with positive group velocity and b for the ”backward” wave with negative
group velocity. If there is no periodicity, then the differential equations obeyed by a and b are,

d a

d z
= −jβa, (VIII.2)

d b

d z
= jβb. (VIII.3)

Suppose that a periodic perturbation of the guiding structure is introduced. The space harmonics of the periodic
structure are capable of coupling the forward wave, a, to another wave via

exp(−jβz) cos(
2π

Λ
z) =

1

2
{exp[−j(β −

2π

Λ
)z] + exp[−j(β +

2π

Λ
)z]}. (VIII.4)

When β − 2π
Λ is close to −β, the forward wave, a, is coupled to the backward wave, b. The other exponential with

the argument [β + (2π/Λ)]z does not produce backward wave because its spatial dependence differs greatly for that
of exp(+jβz). The effect of the coupling of a to b can be included by introducing a coupling term produced by the
forward/backward waves from the space harmonics in the differential equations for a/b,

d a

d z
= −jβa + κabbe

−j(2π/Λ)z, (VIII.5)

d b

d z
= jβb + κbabe+j(2π/Λ)z. (VIII.6)

The equations above can be reduced to coupling-of-modes equations with space-independent coefficients by introducing
the new variables,

a = A(z)e−j(π/Λ)z , (VIII.7)

b = B(z)e+j(π/Λ)z , (VIII.8)

with the result

dA

d z
= −j(β −

π

Λ
)A + κabB, (VIII.9)

dB

d z
= j(β −

π

Λ
)B + κbaA. (VIII.10)

These coupled mode equations can be simplified in appearance by the introduction of the detuning parameter,

δ ≡ β −
π

Λ
, (VIII.11)

and the relation of the coupling constants,

κab = κ∗

ba ≡ κ, (VIII.12)

dA

d z
= −jδA + κB, (VIII.13)

dB

d z
= jδB + κ∗A, (VIII.14)
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The propagation constant β for the coupled system is

β = ±
√

δ2 − |κ|2, (VIII.15)

which is a real number when

|δ| > |κ|. (VIII.16)

B. Reflection filter

Consider the reflection from a DFB structure of length l, which acts as a filter, with one end matched, B = 0 at
z = 0. For |δ| < |κ|, the solutions of the coupled equations are of the form,

exp(∓γz), (VIII.17)

where

±γ = ±
√

|κ|2 − δ2, (VIII.18)

with κ = κab = κ∗

ba and δ = β − (π/Λ). The solutions are growing and decaying exponentials, whereas they are
periodic functions in the range |δ| > |κ|.
The general solutions with arbitrary constants are,

A = A+e−γz + A−e+γz, (VIII.19)

B = B+e−γz + B−e+γz, (VIII.20)

where only two of the four constants are independent, i.e.

B± =
∓γ + jδ

κ
A±. (VIII.21)

At z = 0 there is no reflected wave, B+ = −B−, and thus

B = −2B+ sinh γz. (VIII.22)

Then the solutions for A become,

A =
1

κ∗
(

d

d z
B − jδB), (VIII.23)

= −2B+(
γ

κ∗
cosh γz −

jδ

κ∗
sinh γz). (VIII.24)

The reflection coefficient Γ = B/A at z = −l is

Γ(−l) = −
sinh γz

(γ/κ∗) cosh γl + (jδ/κ∗) sinh γl
. (VIII.25)

Generalize to an arbitrary reflection at z = 0, Γ(0), one find,

Γ(z) =
(κ∗/κ) + Γ(0)[(γ/κ) cothγz + (jδ/κ)]

Γ(0) + [(γ/κ) cothγz − (jδ/κ)]
. (VIII.26)

The distributed feedback structure acts as a reflector in its stop band, |δ| < |κ|, and has a set of transmission
resonance in the passband, |δ| > |κ|. One can also use an apodization function for the coupling constant, with
another modulation function, to suppress the side bands of reflection. The design for a DFB structure with specific
reflection/transmission is called the synthesis, which is an inverse problem.
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FIG. 2: Reflection |Γ|2 as a function of the detuning δ for uniform distributed feed back structure.
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FIG. 3: Reflection |Γ|2 as a function of the detuning δ for non-uniform distributed feed back structure, with a Gaussian

apodization function.

C. High-Q transmission resonator

It is possible to achieve transmission within the stopband, if one spaces two periodic structures

1. by a phase shift between them,

2. by one (or an odd multiple of) quarter wave length(s).

The idea of making a high-Q transmission resonator can be constituted by two periodic structures, separated by a
phase shift or by a space. Since the periodic structure offer an additional space harmonic to couple the forward wave,
a, into the backward wave, b, two periodic structures have the same grating wavevector, kg = 2π

Λ , but with different
directions. For a phase shift DFB structure with a phase shift φ = π, two grating wavevector would cancel out with
each other, the result makes the transmission at the wavelength δ = 0 possible. For the center of the stop band is,

2π

λ
=

π

Λ
, (VIII.27)

DFB structures with a quarter-wave section, λ/4, in the space would also has the transmission window at the center
of the stop band.
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FIG. 4: A high-Q transmission resonators can be constructed by two DFB structures, with a discontinuation in their phase or

with a space between them.
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FIG. 5: Reflection |Γ|2 as a function of the detuning δ for phase-shift distributed feed back structure, from left to right:

φ = π/4, π/2, π, 3π/2.

D. Extended studies

1. Coupling coefficient

2. Distributed FeedBack lasers

3. DBR lasers

4. Vertical Cavity Surface-Emitting laser

5. Photonic bandgap crystals
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FIG. 6: Left: Typical structure for a DFB laser; Right: point-defect in photonic crystals


