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IX. ACOUSTO-OPTIC MODULATORS

A. Acousto-optic wave coupler

In an acousto-optic modulator an acoustic wave sets up a spatial modulation of the index of an acousto-optic
medium; an optical wave diffracts from the index modulation. In a linear acousto-optic medium, the change of index
n is proportional to the strain,

∇× (∇× E) = −ǫ0µ0
∂2E

∂ t2
− µ0

∂2P

∂ t2
. (IX.1)

The displacement density ǫ0E + P can be separated into a part due to the time-independent background index n,
and a part due to the space-time-dependent index ∆n produced by the acoustic wave,

ǫ0E + P = ǫ0[n + ∆(r, t)]2E ≈ ǫ0n
2E + 2ǫ0n∆(r, t)E, (IX.2)

under the assumption ∆n ≪ n. Then the equation for the electric field becomes,

∇× (∇× E) + ǫ0µ0n
2 ∂2E

∂ t2
= −µ0ǫ0

∂2

∂ t2
[2n∆n(r, t)E]. (IX.3)

We consider a plane acoustic wave with the propagation vector ks in the x− z plane, and the index change produced
by the acoustic wave of frequency ωs has the same spatial dependence as the plane wave,

∆n(r, t) = ∆n cos(ωst − ks · r), (IX.4)

=
∆n

2
[ej(ωst−ks·r) + e−j(ωst−ks·r)], (IX.5)

where ∆n is the peak amplitude of the index modulation. If E field is polarized along y direction, E · ∇ǫ = 0 and the
equation for the electric field becomes,

∇2E − µ0ǫ0n
2 ∂2E

∂ t2
= µ0ǫ0

∂2

∂ t2
[2n∆n(r, t)E]. (IX.6)

The time-dependent index multiplying the incident plane wave with the E field,

E ∝ exp[−j(ki · r − ωit)], (IX.7)

produces a source for the diffracted wave with the frequency,

ωd = ±ωs + ωi; energy conservation, (IX.8)

and with the spatial dependence,

ks + ki = kd; momentum conservation. (IX.9)

Usually, acoustic waves propagate at a velocity that is five or six orders of magnitude smaller than the speed of light,
acoustic wave have wavelengths comparable to optical waves if the acoustic frequency is five to six orders of magnitude
smaller than the optical frequency, ωs ≪ ωi, and thus |kd| ≈ |ki|.
An approximation solution for Eq. (IX.6) is writing the incident and diffracted waves in,

Ei = ~yAi(z)e−j(ki·r−ωit), (IX.10)

Ed = ~yAd(z)e−j(kd·r−ωdt), (IX.11)

where the z dependence of Ai(z) and Ad(z) are the result of the coupling of the incident and diffracted waves by the
index modulation. Disregarding second-order derivatives of Ad(z), we obtain

−(k2
d − ω2

dµ0ǫ0n
2)Ad − 2jkd · ∇Ad ≈ −ω2

d

c2
n∆nAi. (IX.12)

For

kd = ωd

√
µ0ǫ0n, (IX.13)
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and

kd · ∇Ad(z) = kd cos θ
dAd

d z
, (IX.14)

we obtain

dAd

d z
= −j

ωd

2c

∆n

cos θ
Ai. (IX.15)

Analogically, one may write an equation for the incident wave as affected by the diffracted wave,

dAi

d z
= −j

ωi

2c

∆n

cos θ
Ad. (IX.16)

These are coupling of modes equations in space. The coupling coefficients are

−j
ωd

2c

∆n

cos θ
and − j

ωi

2c

∆n

cos θ
. (IX.17)

They are not exactly equal, in that ωi 6= ωd, for the present system does not obey power conservation - it is driven
mechanically (acoustically). However, ωd differs from ωi by 1 part in 105 and the system behaves just like a lossless
coupled-wave system. The solutions are, for Ad(0) at z = 0,

Ai(z) = Ai(0) cos |κ|z, (IX.18)

Ai(z) = −jAi(0) sin |κ|z, (IX.19)

where

|κ| =

√
ωiωd

2c

∆n

cos θ
≈ ωi

2c

∆n

cos θ
. (IX.20)

1. The incident wave is depleted by the diffracted wave as it travels along the medium supporting the acoustic
wave.

2. The diffracted wave is shifted in frequency, ωd = ±ωs + ωi.

3. If the travel distance is long enough, |κ|z > π/2, the diffracted wave feeds back into the incident wave.

4. When ωs = 0, the acousto-optic modulator acts a time-independent ”bulk grating”, a cosinusoidal ”frozen”
index variation.

B. Acousto-optic amplitude modulator

The intensity of an incident wave is modulated if it interacts with a standing acoustic wave. In the acousto-optic
modulator, a transducer is excited electrically and sets up acoustic standing waves in the crystal with the index
variation,

n(r, t) = ∆n sin ωst cos(ks · r), (IX.21)

=
∆n

4j
{exp[j(ωst − ks · r)] + exp[j(ωst + ks · r)] + exp[−j(ωst − ks · r)] + exp[−j(ωst + ks · r)]}.(IX.22)

1. If we only have one acoustic wave, with the space-time dependence exp[±j(ωst − ks · r)], the incident wave at
ωi produced a diffracted wave at ωd = ωi + ωs with the propagation vector kd = ki + ks. And the diffracted
wave reacted back by producing ωd − ωs = ωi with propagation vector kd − ks = ki.

2. Now for a standing acoustic wave, we have four dependences introduced by the index variation, exp[±j(ωst±ks ·
r)]. The incident wave at frequency ωi can produce a diffracted wave at frequency ωi ±ωs with the propagation
vector kd = ki +ks, which reacts back to produce (ωi ±ωs)±ωs with the propagation vector ki = kd −ks. Since
the acoustic frequency ωs is small compared with the optical frequency, wave produced at ωi ± mωs remain
phase matched. The sidebands cascade.
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For the bulk grating, at z = l,

Ai(z) = Ai(0) cos(
ωi

2c

∆n sin ωst

cos θ
l), (IX.23)

Ai(z) = −jAi(0) sin(
ωi

2c

∆n sinωst

cos θ
l), (IX.24)

where ∆n now varies with time. By using the Bessel-function identity,

exp(jx sin ωst) =

∞
∑

m=−∞

Jm(x)ejmωst, (IX.25)

we have

cos(x sin ωst) =
∑

m=even

Jm(x)ejmωst, (IX.26)

sin(x sin ωst) = −j
∑

m=odd

Jm(x)ejmωst, (IX.27)

where we use the fact that Jm(−x) = (−1)mJm(x). The incident wave amplitude and diffracted wave amplitude
decomposed into Fourier components are,

Ai(l) = Ai(0)
∑

m=even

Jm(
ωi

2c

∆nl

cos θ
)ejmωst, (IX.28)

Ai(l) = Ai(0) −
∑

m=odd

Jm(
ωi

2c

∆nl

cos θ
)ejmωst. (IX.29)

1. The sidebands of the incident wave are at even harmonics, the modulation of the diffracted wave at odd har-
monics.

2. The fundamental is completely canceled if the modulation obeys the relation,

ωi

2c

∆nl

cos θ
= 2.405, (IX.30)

the first zero of the Bessel function J0.

C. Active modelocking
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An acousto-optic medium under acoustic standing wave excitation may be used to produce short pulses from a laser
oscillator - by the process of active modelocking. Consider the system of a ring fiber laser, which contains a laser gain
medium (Er-doped fiber), a lossy medium, and a modulator. The modulator modulates the loss of the resonator.
The operation of modelocking is that the radiation field in the resonator bouncing back and forth ”see” a time
dependent net gain. The part of the radiation that passes the modulator at an instant in time when it has minimum
loss experiences maximum net gain. The radiation passing at other times experiences less gain, and even net loss. A
pulse is formed which grows and narrows. In the steady state, the gain adjusts to equal the loss, and pulse narrowing
in one pass is compensated by pulse broadening due to dispersion of the gain medium.

1. Effect of gain, loss, and modulator

1. Gain: The gain medium of length lg is described by a frequency-dependent gain coefficient,

exp{ αg

1 + [(ω − ω0)/ωg]2
}a(ω) ≈ [1 + αglg(1 − (

ω − ω0

ωg

2

)]a(ω), (IX.31)

where ω0 is the center frequency of the gain medium, ωg is its width, and αglg is the integrated gain at line
center.

2. Loss: All of the losses due to unavoidable absorption, and power escape from the laser resonator are describe
by,

exp(−αlll)a(ω) ≈ (1 − αlll)a(ω). (IX.32)

3. Modulator: The wave traversing the modulation medium with the time-dependent modulation loss is described
in the time domain by,

exp[−αmlm(1 − cosωM t)]A(t), (IX.33)

where ωM is the modulation frequency.
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The wave passes the three elements twice in one round trip in the linear resonator, and once in the ring resonator.
Expanded to first order in net gain and loss, the combined effect on A(t) is,

[1 + αglg(1 +
1

ω2
g

d2

d t2
) − αlll − αmlm(1 − cosωM t)]A(t) = A(t + TR), (IX.34)

= A(t) − δTR

dA(t)

d t
, (IX.35)

where TR is the round-trip time and δTR is the change to the transit time wrought by pulse reshaping. This is the
equation of active modelocking. For strong modelocking - well separated pulses occurring near the time instant of
minimum loss, t = n 2π

ωM

, with n is an integer. Then, expanding cosωM t around the minimum at t = 0,

[αglg(1 +
1

ω2
g

d2

d t2
) − αlll −

αmlm
2

ω2
M t2 + δTR

d

d t
]A(t) = 0. (IX.36)

In the case of synchronism, δTR = 0, achieved by proper adjustment of the modulation frequency, the equation of
modelocking is the Schrödinger equation for a particle in a parabolic potential with the solutions,

A(t) = Hν(ωpt)exp(−
ω2

pt2

2
), (IX.37)

with

ω2
p =

√

αmlm
2αglg

ωMωg, (IX.38)

l − αlll
αglg

=
ω2

p

ω2
g

(2ν + 1), (IX.39)

where Hν is the Hermite polynomial of order ν.

1. Generally, ω2 ≪ |ωg|2, the gain will not exceed the loss by much, αglg ≈ αlll.

2. Saturation of the gain coefficient,

αg =
α0

g

1 + (I/Is)
, (IX.40)

leads to stability of the fundamental Gaussian solution and instability of the higher-order Hermite-Gaussians.

3. The pulse width is inversely proportional to the forth root of the modulation depth, αmlm, and the square root
of the gain bandwidth,

√
ωg.

4. The full width at half maximum intensity of the pulse is,

FWHM =
2
√

ln2

ωp

, (IX.41)

which is inversely proportional to the square of gain bandwidth, ωg, and in the order of ps for a typical laser.

D. Extended studies

1. Acoustic drive power for given modulation

2. Acousto-optic frequency modulator

3. Electro-optic modulators

4. Magnetic-optic modulators


