4, Partial Differential Equations

$$A(x,y)\frac{\partial^2 u}{\partial x^2} + B(x,y)\frac{\partial^2 u}{\partial x \partial y} + C(x,y)\frac{\partial^2 u}{\partial y^2} = f(x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}),$$

- Euler method
- Crank-Nicholson method
- Beam Propagation Method
- Slit-Step Fast Fourier Transform
- Finite Difference Time Domain method
- Absorption Boundary Condition
- Periodic Boundary Condition
- Perfect Matching Layers

Maxwell's equations

Faraday's law:

$$\nabla \times E = -\frac{\partial}{\partial t}\mu_0 H - \frac{\partial}{\partial t}\mu_0 M.$$

Ampére's law:

$$\nabla \times H = \frac{\partial}{\partial t} \epsilon_0 E + \frac{\partial}{\partial t} P + J.$$

Gauss's law for the electric field:

$$\nabla \cdot \epsilon_0 E = -\nabla \cdot P + \rho.$$

Gauss's law for the magnetic field:

$$\nabla \cdot \mu_0 H = -\nabla \cdot \mu_0 M.$$

Schrödinger equation

Diffusion equation:

$$\frac{\partial}{\partial t}A(x,t) = \kappa \frac{\partial^2}{\partial x^2}A(x,t)$$

Schrödinger equation:

$$i\hbar\frac{\partial}{\partial t}\Psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t) + V(x)\Psi(x,t)$$

Nonlinear Schrödinger equation:

$$i\hbar\frac{\partial}{\partial t}\Psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t) + V(x)\Psi(x,t) + \gamma|\Psi(x,t)|^2\Psi(x,t)$$

Forward Time Centered Space

By finite difference,

$$\frac{\partial}{\partial t}A(x,t) = \kappa \frac{\partial}{\partial x}A(x,t)$$

this equation is approximated by

$$\frac{A_j^{n+1} - A_j^n}{\Delta t} + \mathbf{O}(\Delta t) \approx \kappa \frac{A_{j+1}^n - A_{j-1}^n}{2\Delta x} + \mathbf{O}(\Delta x^2).$$

For diffusion equation:

$$\frac{\partial}{\partial t}A(x,t) = \kappa \frac{\partial^2}{\partial x^2}A(x,t)$$

which is approximated by

$$\frac{A_j^{n+1} - A_j^n}{\Delta t} + \mathbf{O}(\Delta t) \approx \kappa \frac{A_{j+1}^n - 2A_j^n + A_{j-1}^n}{\Delta x^2} + \mathbf{O}(\Delta x^2).$$

This is a explicit scheme.

Implicit FTCS scheme

By finite difference,

$$\frac{\partial}{\partial t}A(x,t) = \kappa \frac{\partial}{\partial x}A(x,t)$$

this equation is approximated by

$$\frac{A_j^{n+1} - A_j^n}{\Delta t} + \mathbf{O}(\Delta t) \approx \kappa \frac{A_{j+1}^{n+1} - A_{j-1}^{n+1}}{2\Delta x} + \mathbf{O}(\Delta x^2).$$

For diffusion equation:

$$\frac{\partial}{\partial t}A(x,t) = \kappa \frac{\partial^2}{\partial x^2}A(x,t)$$

which is approximated by

$$\frac{A_{j}^{n+1} - A_{j}^{n}}{\Delta t} + \mathbf{O}(\Delta t) \approx \kappa \frac{A_{j+1}^{n+1} - 2A_{j}^{n+1} + A_{j-1}^{n+1}}{\Delta x^{2}} + \mathbf{O}(\Delta x^{2}).$$

This is a implicit scheme, but also with first-order accuracy.

For diffusion equation:

$$\frac{\partial}{\partial t}A(x,t) = \kappa \frac{\partial^2}{\partial x^2}A(x,t)$$

which is approximated by

$$\frac{A_j^{n+1} - A_j^n}{\Delta t} \approx \frac{\kappa}{2} \left(\frac{A_{j+1}^n - 2A_j^n + A_{j-1}^n}{\Delta x^2} + \frac{A_{j+1}^{n+1} - 2A_j^{n+1} + A_{j-1}^{n+1}}{\Delta x^2} \right)$$

This is a implicit scheme, but also with second-order accuracy.

Time and Space discretization

Diffusion equation

$$\frac{\partial}{\partial z}U(z,t) = \frac{i}{2}\frac{\partial^2}{\partial t^2}U(z,t)$$

Generalization to fourth-order

For j = 1, 2, ..., N:

• Let p_j be the unique polynomial of degree ≤ 2 with $p_j(x_{j\pm 1}) = u_{j\pm 1}, p_j(x_j) = u_j$, and $p_j(x_{j\pm 2}) = u_{j\pm 2}$.

Generalization to *N***th-order**

$$= \begin{pmatrix} \vdots & \vdots \\ \ddots & \frac{1}{2} \cot \frac{3h}{2} \\ \ddots & \frac{-1}{2} \cot \frac{2h}{2} \\ \ddots & \frac{1}{2} \cot \frac{1h}{2} \\ 0 \\ & \frac{-1}{2} \cot \frac{1h}{2} \\ \vdots \\ \frac{1}{2} \cot \frac{2h}{2} \\ \vdots \\ \vdots \\ \vdots \\ \end{pmatrix}$$

 D_N

Pseudo-spectral (collocation) method

- Given discrete data on a grid,
- Interpolate the data globally,
- Evaluate the derivative of the interpolant on the grid,
- Convergence at the rate $O(e^{-cN})$ or $O(e^{-c\sqrt{N}})$, provided the solution is smooth,
- Typical FD or FEM at the rate $O(N^{-2})$ or $O(N^{-4})$.

Some useful references:

- 1. C. Canuto, et al., "Spectral methods in fluid dynamics," Springer-Verleg (1988).
- 2. B. Fornberg, "A practical guide to pseudospectral methods," Cambridge Uni. Press (1996).
- 3. L. N. Trefethen, "Spectral methods in Matlab," SIAM (2000).
- 4. J. A. C. Weideman and S. C. Reddy, ACM Tran. on Math. Software 26, 465 (2000).
- 5. J. P. Boyd, "Chebyshev and Fourier spectral methods," Dover Publication (2001).

E.NTHU6. B. Costa and W. S. Don, *PseudoPack*, a software library for numerical differentiation.

Test of the convergence: FD

$$u(x) = e^{\sin(x)}, Du(x) = u'(x).$$

L. N. Trefethen, "Spectral methods in Matlab," SIAM (2000).

Test of the convergence: PS

$$u(x) = e^{\sin(x)}, Du(x) = u'(x).$$

L. N. Trefethen, "Spectral methods in Matlab," SIAM (2000).

PT-5260, Spring 2006 – p.13/34

- 1. Polynomial based:
 - [-1,1]: Chebyshev polynomials,
 - $(-\infty,\infty)$: Hermite polynomials,
 - **○** $[0,\infty)$: Laguerre polynomials,
- 2. Nonpolynomial based:

 - $(-\infty,\infty)$: Sinc series.

J. A. C. Weideman and S. C. Reddy, ACM Tran. on Math. Software 26, 465 (2000).

J. P. Boyd, "Chebyshev and Fourier spectral methods," Dover Publication (2001).

Spectral method

The unknown functio $\phi(x,t) \equiv \phi(x)$ is expanded in terms of a set of N known interpolating orthogonal function, $\{f_j(x)\}_{j=0}^{N-1}$, as follows,

$$\phi(x) \approx p_{N-1}(x) = \sum_{j=0}^{N-1} \frac{\alpha(x)}{\alpha(x_j)} f_j(x)\phi(x_j),$$

where $\{x_j\}_{j=0}^{N-1}$ is a set of distinct interpolation nodes, $\alpha(x)$ is a weight function and the functions $\{f_j(x)\}_{j=0}^{N-1}$ satify $f_j(x_k) = \delta_{jk}$.

The differential matrix can be defined directly, take second-order for example,

$$D_{k,j}^2 = \frac{\mathsf{d}^2}{\mathsf{d}\,x^2} [\frac{\alpha(x)}{\alpha(x_j)} f_j(x)]_{x=x_k}.$$

1D scalar wave equation

One-dimensional scalar wave equation:

$$\frac{\partial^2}{\partial t^2}u(x,t) = c^2 \frac{\partial^2}{\partial x^2}u(x,t),$$

has the solution

$$u(x,t) = F(x+ct) + G(x-ct),$$

where F and G are arbitrary function. Finite-difference approximation:

$$\frac{u_i^{n+1} - 2u_i^n + u_i^{n-1}}{\Delta t^2} + \mathbf{O}(\Delta t^2) = c^2 \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2} + \mathbf{O}(\Delta x^2),$$

for the latest value of u at grid point i,

$$u_i^{n+1} = (c\Delta t)^2 \left[\frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2}\right] + 2u_i^n - u_i^{n-1} + \mathbf{O}(\Delta t^2) + \mathbf{O}(\Delta x^2).$$

FD-TD solution of the scalar wave equation

- This is a *fully explicit* second-order acuurate expression for u_i^{n+1} .
- All wave quantities on the RHS are known, obtained during the previous time steps, n and n-1.
- Upon performing FDTD approximation for all space points, yielding the complete set of u_i^{n+1} .

For the magic time step: $c\Delta t/\Delta x = 1$,

$$u_i^{n+1} = (u_{i+1}^n - 2u_i^n + u_{i-1}^n) + 2u_i^n - u_i^{n-1}$$

= $u_{i+1}^n + u_{i-1}^n - u_i^{n-1}$,

EXAMPLE that there is *no* remainder (error) term here.

Magic time step

Consider the exact propagating-wave solutions to the 1D scalar wave equation,

$$u_j^n = F(x_i + ct_n) + G(x_i - ct_n),$$

where $x_i = i\Delta x$ and $t_n = n\Delta t$. Then

$$\begin{aligned} u_i^{n+1} &= u_{i+1}^n + u_{i-1}^n - u_i^{n-1} \\ F(x_i + ct_{n+1}) \\ + G(x_i - ct_{n+1}) \end{aligned} = \begin{bmatrix} F(x_{i+1} + ct_n) \\ + G(x_{i+1} - ct_n) \end{bmatrix} + \begin{bmatrix} F(x_{i-1} + ct_n) \\ + G(x_{i-1} - ct_n) \end{bmatrix} - \begin{bmatrix} F(x_i + ct_{n-1}) \\ + G(x_i - ct_{n-1}) \end{bmatrix} \end{aligned}$$

$$\begin{aligned} \mathsf{RHS} &= \left\{ \begin{array}{l} F[(i+1)\Delta x + cn\Delta t] \\ +G[(i+1)\Delta x - cn\Delta t] \end{array} \right\} + \left\{ \begin{array}{l} F[(i-1)\Delta x + cn\Delta t] \\ +G[(i-1)\Delta x - cn\Delta t] \end{array} \right\} \\ &- \left\{ \begin{array}{l} F[i\Delta x + c(n-1)\Delta t] \\ +G[i\Delta x - c(n-1)\Delta t] \end{array} \right\} \\ &+ G[i\Delta x - c(n-1)\Delta t] \end{array} \right\} \end{aligned}$$

PT-5260, Spring 2006 – p.18/34

Dispersion relation, phase velocity, and group velocity

For a continuous sinusoidal-travelling-wave solution

$$u(x,t) = e^{j(\omega t - kx)},$$

we have

dispersion relation:

$$\omega^2 = c^2 k^2,$$

phase velocity:

$$v_p = \frac{\omega}{k} = \pm c,$$

group velocity:

$$v_g = \frac{\mathsf{d}\omega}{\mathsf{d}k} = \pm c.$$

Numerical dispersion relation

Finite-difference approximation:

$$u_i^{n+1} \approx (c\Delta t)^2 \left[\frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2}\right] + 2u_i^n - u_i^{n-1},$$

and at the discrete space-time point (x_i, t_n) ,

$$u_i^n = u(x_i, t_n) = e^{j(\omega n \Delta t - \bar{k}i\Delta x)},$$

where \bar{k} is the numerical wavenumber.

$$e^{j[\omega(n+1)\Delta t - \bar{k}i\Delta x]} = \left(\frac{c\Delta t}{\Delta x}\right)^2 \left\{ e^{j[\omega n\Delta t - \bar{k}(i+1)\Delta x]} - 2e^{j[\omega n\Delta t - \bar{k}i\Delta x]} + e^{j[\omega n\Delta t - \bar{k}(i-1)\Delta t - \bar{k}i\Delta x]} + \left(2e^{j[\omega n\Delta t - \bar{k}i\Delta x]} - e^{j[\omega(n-1)\Delta t - \bar{k}i\Delta x]}\right) \right\}$$

After factoring out the complex expoential term,

$$e^{j\omega\Delta t} = \left(\frac{c\Delta t}{\Delta x}\right)^2 \cdot \left(e^{-j\bar{k}\Delta x} - 2 + e^{j\bar{k}\Delta x}\right) + \left(2 - e^{-j\omega\Delta t}\right)^2$$
$$\to \cos(\omega\Delta t) = \left(\frac{c\Delta t}{\Delta x}\right)^2 \cdot \left[\cos(\bar{k}\Delta x) - 1\right] + 1.$$

● Very Fine Mesh: $\Delta t \rightarrow 0, \Delta x \rightarrow 0$,

$$1 - \frac{(\omega \Delta t)^2}{2} \approx \left(\frac{c\Delta t}{\Delta x}\right)^2 \cdot \left[1 - \frac{(\bar{k}\Delta x)^2}{2} - 1\right] + 1$$

then

$$\omega^2 = c^2 \bar{k}^2.$$

• Magic Time Step: $c\Delta t = \Delta x$,

$$\cos(\omega\Delta t) = 1 \cdot [\cos(\bar{k}\Delta x) - 1] + 1 = \cos(\bar{k}\Delta x),$$

then

$$\bar{k}\Delta x = \pm \omega \Delta t.$$

Dispersive wave

The general solution for FD dispersion relation is

$$\bar{k} = \frac{1}{\Delta x} \cos^{-1} \left\{ 1 + \left(\frac{c\Delta t}{\Delta x}\right)^2 \cdot \left[\cos(\omega\Delta t) - 1\right] \right\}.$$

For example, $c\Delta t = \Delta x/2$, and $\Delta x = \lambda_0/10$, one has

$$\bar{k} = \frac{1}{\Delta x} \cos^{-1} \{ 1 + 4 \cdot \left[\cos\left(\frac{2\pi}{\lambda_0} \cdot \frac{\Delta x}{2}\right) - 1 \right] \}$$
$$= \frac{1}{\Delta x} \cos^{-1}(0.8042) = \frac{0.63642}{\Delta x},$$

Then the numerical phase velocity

$$\overline{v}_p = \omega/\overline{k}$$
$$= \frac{2\pi(c/\lambda_0)\Delta x}{0.63642} = 0.9873c.$$

Maxwell equations

Faraday's law:

$$\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B} - \mathbf{J}_m$$

Ampére's law:

$$\nabla \times \mathbf{H} = \frac{\partial}{\partial t} \mathbf{D} + \mathbf{J}_e.$$

Gauss's law for the electric field:

$$\nabla \cdot \mathbf{D} = 0$$

Gauss's law for the magnetic field:

$$\nabla \cdot \mathbf{B} = 0$$

Maxwell equations

For a linear, isotropic nondispersive material,

$$\mathbf{B} = \boldsymbol{\mu}\mathbf{H},$$
$$\mathbf{D} = \boldsymbol{\epsilon}\mathbf{E}.$$

magnetic conduction current:

$$\mathbf{J}_m = \rho' \mathbf{H}.$$

electric conduction current:

$$\mathbf{J}_e = \sigma \mathbf{E}$$

Then the Maxwell's curl equations becom

$$\frac{\partial}{\partial t} \mathbf{H} = -\frac{1}{\mu} \nabla \times \mathbf{E} - \frac{\rho'}{\mu} \mathbf{H}$$
$$\frac{\partial}{\partial t} \mathbf{E} = \frac{1}{\epsilon} \nabla \times \mathbf{H} - \frac{\sigma}{\epsilon} \mathbf{E}.$$

3D Maxwell equations in rectangular coordinates

$$\frac{\partial H_x}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y} - \rho' H_x \right)$$

$$\frac{\partial H_y}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_z}{\partial x} - \frac{\partial E_x}{\partial z} - \rho' H_y \right)$$

$$\frac{\partial H_z}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} - \rho' H_z \right)$$

$$\frac{\partial E_x}{\partial t} = \frac{1}{\epsilon} \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} - \sigma E_x \right)$$

$$\frac{\partial E_y}{\partial t} = \frac{1}{\epsilon} \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} - \sigma E_y \right)$$

$$\frac{\partial E_z}{\partial t} = \frac{1}{\epsilon} \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_z}{\partial y} - \sigma E_z \right)$$

The system of six coupled partial differential equations forms the basis of the FD-TD al-

gorithm for EM wave interactions in 3D. The FD-TD algorithm need not *explicitly* enforce the

Guass's Law, however, the FD-TD space grid must be structured so that the Gauss's Law

and magnetic field vector components.

Reduction to 2D

Assume that neigher the EM field excitation nor the modeled geometry has any variation in the *z*-direction, i.e. $\partial/\partial z = 0$,

TM mode:

$$\frac{\partial H_x}{\partial t} = \frac{1}{\mu} \left(-\frac{\partial E_z}{\partial y} - \rho' H_x \right)$$
$$\frac{\partial H_y}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_z}{\partial x} - \rho' H_y \right)$$
$$\frac{\partial E_z}{\partial t} = \frac{1}{\epsilon} \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} - \sigma E_z \right)$$

TE mode:

$$\frac{\partial E_x}{\partial t} = \frac{1}{\epsilon} \left(\frac{\partial H_z}{\partial y} - \sigma E_x \right)$$
$$\frac{\partial E_y}{\partial t} = \frac{1}{\epsilon} \left(-\frac{\partial H_z}{\partial x} - \sigma E_y \right)$$
$$\frac{\partial H_z}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} - \rho' H_z \right)$$

E.NTHU 國立清華大學電機工程學系及研究所

TM and TE modes are decoupled.

Assume further that neigher the EM field excitation nor the modeled geometry has any variation in the *y*-direction, i.e. $\partial/\partial y = 0$,

TM mode:

$$\frac{\partial H_x}{\partial t} = \frac{1}{\mu} (-\rho' H_x)$$
$$\frac{\partial H_y}{\partial t} = \frac{1}{\mu} (\frac{\partial E_z}{\partial x} - \rho' H_y)$$
$$\frac{\partial E_z}{\partial t} = \frac{1}{\epsilon} (\frac{\partial H_y}{\partial x} - \sigma E_z)$$

assuming initial conditions of zero fields, $H_x(t=0) = 0$, then we have only two equations involving H_y and E_x ,

$$\frac{\partial H_y}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_z}{\partial x} - \rho' H_y \right)$$
$$\frac{\partial E_z}{\partial t} = \frac{1}{\epsilon} \left(\frac{\partial H_y}{\partial x} - \sigma E_z \right)$$

Equivalence to 1D wave equation

Assume magnetic loss $\rho' = 0$ and electrical loss $\sigma = 0$, **>** For H_y :

$$\frac{\partial}{\partial t} \left(\frac{\partial H_y}{\partial t} \right) = \frac{1}{\mu} \frac{\partial^2 E_z}{\partial t \partial x} \\ = \frac{1}{\mu \epsilon} \frac{\partial^2 H_y}{\partial x^2}$$

> For E_z :

$$\frac{\partial}{\partial t} \left(\frac{\partial E_z}{\partial t} \right) = \frac{1}{\epsilon} \frac{\partial^2 H_y}{\partial t \partial x} \\ = \frac{1}{\epsilon \mu} \frac{\partial^2 E_z}{\partial x^2}$$

Yee's algorithm

Space-Time chart for Yee's algorithm

Finite-difference expression for 3D Maxwell equations

$$\frac{\partial H_x}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y} - \rho' H_x \right)$$

discritize at time step n and at space lattice point (i, j, k):

$$\frac{H_x|_{i,j,k}^{n+1/2} - H_x|_{i,j,k}^{n-1/2}}{\Delta t} = \frac{1}{\frac{\mu_{i,j,k}}{\mu_{i,j,k}}} \cdot \left(\frac{E_y|_{i,j,k+1/2}^n - E_y|_{i,j,k-1/2}^n}{\Delta z} - \frac{E_y|_{i,j+1/2,k}^n - E_y|_{i,j-1/2,k}^n}{\Delta z} - \rho'_{i,j,k} \cdot H_x|_{i,j,k}^n\right)$$

FDTD: example

From: http://www.bay-technology.com

FDTD: example

From: http://www.fdtd.org

Metallic Waveguide

by ToyFDTD