
7, Finite Element Method

Elements

Mesh generation

Element assembly
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Examples
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Mechanical problems
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Microwave circuit
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Ritz method

For a boundary-value problem,

Lφ = f,

where L is a differential operator, f is the excitation or forcing function, and φ is
the unknown quantity.

the solution of this kind of boundary-value problem can be obtained by minimizing
the functional,

F(φ̃) =
1

2
< Lφ̃, φ̃ > −

1

2
< φ̃, f > −

1

2
< f, φ̃ >,

with respect to φ̃, a trial function, and where

< φ,ψ >=

∫
Ω

φψ∗dΩ.

δF =
1

2

∫
Ω

Lδφ̃φ̃∗dΩ +
1

2

∫
Ω

Lφ̃δφ̃∗dΩ −
1

2

∫
Ω

δφ̃fdΩ −
1

2

∫
Ω

fδφ̃∗Ω

= 0
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Ritz method

Suppose that φ can be approximated by the expansion,

φ̃ =
N∑

j=1

cjvj = {c}T {v} = {v}T {c},

where the vj are the chosen expansion functions defined over the entire domain
and cj are constant coefficients to be determined.

the functional becomes

F =
1

2
{c}T

∫
Ω

{v}L{v}T dΩ{c} − {c}T

∫
Ω

{v}fdΩ.

To minimize F(φ̃),

∂F
∂ci

=
1

2

∫
Ω

vi}L{v}T dΩ{c} +
1

2
{c}T

∫
Ω

{v}LvidΩ −

∫
Ω

vifdΩ

=
1

2

N∑
j=1

cj

∫
Ω

(viLvj + vjLvi)dΩ −

∫
Ω

vifdΩ

= 0, i = 1, 2, 3, . . . , N
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Matrix form

∂F
∂ci

=
1

2

∫
Ω

vi}L{v}T dΩ{c} +
1

2
{c}T

∫
Ω

{v}LvidΩ −

∫
Ω

vifdΩ

=
1

2

N∑
j=1

cj

∫
Ω

(viLvj + vjLvi)dΩ −

∫
Ω

vifdΩ

= 0, i = 1, 2, 3, . . . , N

written in the matrix form

[S]{c} = {b},

where the elements in [S] are given by

Sij =
1

2

∫
Ω

(viLvj + vjLvi)dΩ,

and the elements in {b} are given by

bi =

∫
Ω

vifdΩ.
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Poisson equation

Consider two infinite parallel plates, one located at x = 0 with the potential φ = 0

and the other located at x = 1 with φ = 1. The space between the plates is filled
with a medium with a varying electric charge ρ(x) = −(x+ 1).

Then we have
d2φ

dx2
= x+ 1, 0 < x < 1,

in conjunction with the boundary conditions,

φ|x=0 = 0,

φ|x=1 = 1.

The exact solution to this problem is

φ(x) =
1

6
x3 +

1

2
x2 +

1

3
x.
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Solution via the Ritz method

For the Poisson equation

d2φ

dx2
= x+ 1, 0 < x < 1,

the corresponding functional is

F(φ̃) =
1

2

∫ 1

0

(
dφ̃
dx

)2dx+

∫ 1

0

(x+ 1)φ̃dx,

the necessary condtion for F to be minimum when φ̃(x) = φ(x)is

δF(φ) = 0,

with the integrating by parts, we obtain,

δφ
dφ
dx

|x=1
x=0 −

∫ 1

0

(
d2φ

dx2
− x− 1)δφdx = 0.

IPT-5260, Spring 2006 – p.9/23



Solution via the Ritz method

Expand φ̃ in terms of polynomials,

φ̃(x) = c0 + c1x+ c2x
2 + c3x

3,

where ci (i = 0, 1, 2, 3) are the unknown constants to be determined.

With the boundary conditions, we have c0 = 0 and c1 = 1 − c2 − c3, then

φ̃(x) = x+ c2(x2 − x) + c3(x3 − x),

the functional F becomes, F = 2

5
c23 + 1

6
c22 + 1

2
c2c3 − 23

60
c3 − 1

4
c2 + 4

3
, whose

derivatives with respect to c2 and c3 are given by

∂F
∂c2

=
1

3
c2 +

1

2
c3 −

1

4
= 0,

∂F
∂c3

=
1

2
c2 +

4

5
c3 −

23

60
= 0,

we have the solution c2 = 1

2
and c3 = 1

6
.
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Wrong trial function for Ritz method

Expand φ̃ in terms of polynomials,

φ̃(x) = c0 + c1x+ c2x
2,

where ci (i = 0, 1, 2) are the unknown constants to be determined.

With the boundary conditions, we have c0 = 0 and c1 = 1 − c2, then

φ̃(x) = x+ c2(x2 − x),

the functional F becomes,

F =
2

3
c22 −

3

4
c2 +

8

6
,

whose derivative with respect to c2 is given by

∂F
∂c2

=
4

3
c2 −

3

4
= 0,

we have the solution c2 = 9

16
.
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Galerkin’s method

Assume that φ̃ is an approximation solution, and substitute of φ̃ for φ would then
result in a nonzero residual,

r = Lφ̃− f 6= 0,

The best approximation for φ̃ will be the one that reduce the residula r to the least
value at all points of Ω.

The weighted residual method enforce the condition,

Ri =

∫
Ω

wirdΩ = 0,

where Ri denote weighted residual integrals and wi are chosen weighting
functions.

In Galerkin’s method, the weighting function are selected to be the same as those
used for expansion of the approximated solution,

wi = vi, i = 1, 2, 3, . . . , N

the functional becomes Ri =
∫
Ω

(viL{v}T {c} − vif)dΩ, i = 1, 2, 3, . . . , N
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Using subdomain expansion functions

The important step in the Ritz and Galerkin methods is the selection of rial
functions defined over the entire solution domain that can represent the true
solution, at least approximately.

To alleviate the difficulty, we can divide the entrie domain into small subdomains
and use trial functions defined over each subdomain.

For example, we divide the entire solution domain (0, 1) into tree subdomains
defined by (x1, x2), (x2, x3), and (x3, x4), where x1 = 0 and x4 = 1 being the
endpoints.

a linear variation of φ(x) over the subdomain is defined

φ̃(x) = φi

xi+1 − x

xi+1 − xi

+ φi+1

x− xi+1

xi − xi+1

,

for xi ≤ x ≤ xi+1 and i = 1, 2, 3, where the φi are the unknown constants to be
determined.
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Using subdomain expansion functions

From the boundary condition, we find φ1 = 0 and φ4 = 1.

Apply the Ritz method,

F =
3∑

i=1

[
1

2

∫ xi+1

xi

(
φi+1 − φi

xi+1 − xi

)2dx+
∫ xi+1

xi

(x+1)(φi

xi+1 − x

xi+1 − xi

+φi+1

x− xi

xi+1 − xi

)dx],

Evaluate the integrals, we obtain,

F =
3∑

i=1

1

2
(xi+1 − xi)[(

φi+1 − φi

xi+1 − xi

)2 + φi+1(
2

3
xi+1 +

1

3
xi + 1) + φi(

2

3
xi +

1

3
xi+1 + 1)]

= 3φ2
2 + 3φ2

3 − 3φ2φ3 +
4

9
φ2 −

22

9
φ3 +

49

27
.

Minimize F, we obtain φ2 = 14

81
and φ3 = 40

81
.
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FEM method for Poisson equation

d2φ

dx2
= x+ 1, 0 < x < 1,

in conjunction with the boundary conditions,

φ|x=0 = 0,

φ|x=1 = 1.
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Linear Elements for 1D

Linear elements: within the i-th element φ(x) may be approximated by

φi(x) = ai + bix,

where ai and bi are the constants to be determined. At the two nodes,

φi
1 = ai + bixi

1,

φi
2 = ai + bixi

2,

subsitute ai and bi back to φi(x), one has,

φi(x) =
2∑

j=1

N i
j (x)φi

j ,

where

N i
1(x) =

xi
2 − x

∆x
, and N i

2(x) =
x− xi

1

∆x
,

denote the interpolation or basis function, and N i
j(x

i
k
) = δjk.
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Quadratic Elements for 1D

Quadratic elements: also known as second-order elements, within the i-th element
φ(x) may be approximated by φi(x) = ai + bix+ cix2, where ai and bi are the
constants to be determined. At the two nodes,

φi
1 = ai + bixi

1 + ci(xi
1)2,

φi
2 = ai + bixi

2 + ci(xi
2)2,

φi
3 = ai + bixi

1 + ci(xi
3)2,

subsitute ai, bi, and ci back to φi(x), one has, φi(x) =
∑3

j=1N
i
j(x)φ

i
j , where

N i
1(x) =

(x− xi
2)(x− xi

3)

(xi
1
− xi

2
)(xi

1
− xi

3
)
,

N i
2(x) =

(x− xi
1)(x− xi

3)

(xi
2
− xi

1
)(xi

2
− xi

3
)
,

N i
3(x) =

(x− xi
1)(x− xi

2)

(xi
3
− xi

1
)(xi

3
− xi

1
)
,

denote the interpolation or basis function, and N i
j(x

i
k
) = δjk.
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Elements for 2D

Cubic elements for 1D:

φi(x) = ai + bix+ cix2 + dix3,

Linear triangular element for 2D:

φi(x, y) =
3∑

j=1

N i
j (x, y)φi

j ,

where

N i
j(x, y) =

1

2∆i
(ai

j + bijx+ cijy).
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Elements for 3D

Linear tetrahedral element

φi(x, y) =
4∑

j=1

N i
j(x, y, z)φ

i
j ,

where

N i
j (x, y, z) =

1

6Vi
(ai

j + bijx+ cijy + di
jz).
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PDETOOL in Matlab

For the Poisson’s equation on unit disk,

∇
2U = 1, in Ω,

U = 0, on the boundary, ∂Ω

where Ω is the unit disk.
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Laplace’s equation

Consider the Laplace’s equation:

∇2u(x, y) =
∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
= 0, for 0 ≤ x ≤ 4, 0 ≤ y ≤ 4,

with the following conditions

u(0, y) = ey − cos y,

u(4, y) = ey cos 4 − e4 cos y,

u(x, 0) = cosx− ex,

u(x, 4) = e4 cosx− ex cos 4.
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Laplace’s equation
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Photonic Crystals
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