7, Finite Element Method

- Elements
- Mesh generation
- Element assembly
- Boundary condition

Examples

Mechanical problems

Microwave circuit

Ritz method

For a boundary-value problem,

$$\mathcal{L}\phi=f,$$

where \mathcal{L} is a differential operator, f is the excitation or forcing function, and ϕ is the unknown quantity.

the solution of this kind of boundary-value problem can be obtained by minimizing the functional,

$$\mathbf{F}(\tilde{\phi}) = \frac{1}{2} < \mathcal{L}\tilde{\phi}, \tilde{\phi} > -\frac{1}{2} < \tilde{\phi}, f > -\frac{1}{2} < f, \tilde{\phi} >,$$

with respect to $\tilde{\phi},$ a trial function, and where

$$<\phi,\psi>=\int_{\Omega}\phi\psi^{*}\mathrm{d}\Omega.$$

Э

$$\delta \mathbf{F} = \frac{1}{2} \int_{\Omega} \mathcal{L}\delta\tilde{\phi}\tilde{\phi}^* \mathrm{d}\Omega + \frac{1}{2} \int_{\Omega} \mathcal{L}\tilde{\phi}\delta\tilde{\phi}^* \mathrm{d}\Omega - \frac{1}{2} \int_{\Omega} \delta\tilde{\phi}f \mathrm{d}\Omega - \frac{1}{2} \int_{\Omega} f\delta\tilde{\phi}^*\Omega$$
$$= 0$$

Ritz method

Suppose that ϕ can be approximated by the expansion,

$$\tilde{\boldsymbol{\phi}} = \sum_{j=1}^{N} c_j v_j = \{\mathbf{C}\}^T \{\mathbf{V}\} = \{\mathbf{V}\}^T \{\mathbf{C}\},$$

where the v_j are the chosen expansion functions defined over the entire domain and c_j are constant coefficients to be determined.

the functional becomes

$$\mathbf{F} = \frac{1}{2} \{\mathbf{c}\}^T \int_{\Omega} \{\mathbf{v}\} \mathcal{L}\{\mathbf{v}\}^T \mathrm{d}\Omega\{\mathbf{c}\} - \{\mathbf{c}\}^T \int_{\Omega} \{\mathbf{v}\} f \mathbf{d}\Omega.$$

? To minimize $\mathbf{F}(\tilde{\phi})$,

$$\begin{split} \frac{\partial \mathbf{F}}{\partial c_i} &= \frac{1}{2} \int_{\Omega} v_i \} \mathcal{L}\{\mathbf{v}\}^T \mathrm{d}\Omega\{\mathbf{c}\} + \frac{1}{2} \{\mathbf{c}\}^T \int_{\Omega} \{\mathbf{v}\} \mathcal{L} v_i \mathrm{d}\Omega - \int_{\Omega} v_i f \mathrm{d}\Omega \\ &= \frac{1}{2} \sum_{j=1}^N c_j \int_{\Omega} (v_i \mathcal{L} v_j + v_j \mathcal{L} v_i) \mathrm{d}\Omega - \int_{\Omega} v_i f \mathrm{d}\Omega \\ &= 0, \qquad i = 1, 2, 3, \dots, N \end{split}$$

Э

Matrix form

Э

$$\begin{aligned} \frac{\partial \mathbf{F}}{\partial c_i} &= \frac{1}{2} \int_{\Omega} v_i \} \mathcal{L}\{\mathbf{v}\}^T d\Omega\{\mathbf{c}\} + \frac{1}{2} \{\mathbf{c}\}^T \int_{\Omega} \{\mathbf{v}\} \mathcal{L} v_i d\Omega - \int_{\Omega} v_i f d\Omega \\ &= \frac{1}{2} \sum_{j=1}^N c_j \int_{\Omega} (v_i \mathcal{L} v_j + v_j \mathcal{L} v_i) d\Omega - \int_{\Omega} v_i f d\Omega \\ &= 0, \qquad i = 1, 2, 3, \dots, N \end{aligned}$$

written in the matrix form

$$[\mathbf{S}]\{\mathbf{c}\}=\{\mathbf{b}\},$$

where the elements in $[\mathbf{S}]$ are given by

$$S_{ij} = \frac{1}{2} \int_{\Omega} (v_i \mathcal{L} v_j + v_j \mathcal{L} v_i) \mathrm{d}\Omega,$$

and the elements in $\{b\}$ are given by

$$b_i = \int_{\Omega} v_i f \mathrm{d}\Omega$$

Poisson equation

- Consider two infinite parallel plates, one located at x = 0 with the potential $\phi = 0$ and the other located at x = 1 with $\phi = 1$. The space between the plates is filled with a medium with a varying electric charge $\rho(x) = -(x + 1)$.
- Then we have

$$\frac{\mathsf{d}^2\phi}{\mathsf{d}x^2} = x + 1, \qquad 0 < x < 1,$$

in conjunction with the boundary conditions,

$$\phi|_{x=0} = 0,$$

 $\phi|_{x=1} = 1.$

The exact solution to this problem is

$$\phi(x) = \frac{1}{6}x^3 + \frac{1}{2}x^2 + \frac{1}{3}x.$$

Solution via the Ritz method

For the Poisson equation

$$\frac{\mathrm{d}^2\phi}{\mathrm{d}x^2} = x + 1, \qquad 0 < x < 1,$$

$$\mathbf{F}(\tilde{\phi}) = \frac{1}{2} \int_0^1 (\frac{\mathrm{d}\tilde{\phi}}{\mathrm{d}x})^2 \mathrm{d}x + \int_0^1 (x+1)\tilde{\phi}\mathrm{d}x,$$

the necessary condition for **F** to be minimum when $\tilde{\phi}(x) = \phi(x)$ is

$$\delta \mathbf{F}(\phi) = 0,$$

with the integrating by parts, we obtain,

$$\delta\phi \frac{\mathrm{d}\phi}{\mathrm{d}x}|_{x=0}^{x=1} - \int_0^1 (\frac{\mathrm{d}^2\phi}{\mathrm{d}x^2} - x - 1)\delta\phi \mathrm{d}x = 0.$$

Solution via the Ritz method

Expand $\tilde{\phi}$ in terms of polynomials,

$$\tilde{\phi}(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3,$$

where c_i (i = 0, 1, 2, 3) are the unknown constants to be determined.

With the boundary conditions, we have $c_0 = 0$ and $c_1 = 1 - c_2 - c_3$, then

$$\tilde{\phi}(x) = x + c_2(x^2 - x) + c_3(x^3 - x),$$

the functional **F** becomes, $\mathbf{F} = \frac{2}{5}c_3^2 + \frac{1}{6}c_2^2 + \frac{1}{2}c_2c_3 - \frac{23}{60}c_3 - \frac{1}{4}c_2 + \frac{4}{3}$, whose derivatives with respect to c_2 and c_3 are given by

$$\frac{\partial \mathbf{F}}{\partial c_2} = \frac{1}{3}c_2 + \frac{1}{2}c_3 - \frac{1}{4} = 0,$$

$$\frac{\partial \mathbf{F}}{\partial c_3} = \frac{1}{2}c_2 + \frac{4}{5}c_3 - \frac{23}{60} = 0,$$

we have the solution $c_2 = \frac{1}{2}$ and $c_3 = \frac{1}{6}$.

Wrong trial function for Ritz method

Expand $\tilde{\phi}$ in terms of polynomials,

$$\tilde{\phi}(x) = c_0 + c_1 x + c_2 x^2,$$

where c_i (i = 0, 1, 2) are the unknown constants to be determined.

With the boundary conditions, we have $c_0 = 0$ and $c_1 = 1 - c_2$, then

$$\tilde{\phi}(x) = x + c_2(x^2 - x),$$

the functional **F** becomes,

$$\mathbf{F} = \frac{2}{3}c_2^2 - \frac{3}{4}c_2 + \frac{8}{6},$$

whose derivative with respect to c_2 is given by

$$\frac{\partial \mathbf{F}}{\partial c_2} \quad = \quad \frac{4}{3}c_2 - \frac{3}{4} = 0,$$

Galerkin's method

Assume that $\tilde{\phi}$ is an approximation solution, and substitute of $\tilde{\phi}$ for ϕ would then result in a nonzero residual,

$$\mathbf{r} = \mathcal{L}\tilde{\phi} - f \neq 0,$$

- The best approximation for $\tilde{\phi}$ will be the one that reduce the residula **r** to the least value at all points of Ω .
- The weighted residual method enforce the condition,

$$\mathbf{R}_i = \int_{\Omega} w_i \mathbf{r} \mathrm{d}\Omega = 0,$$

where \mathbf{R}_i denote weighted residual integrals and w_i are chosen weighting functions.

In Galerkin's method, the weighting function are selected to be the same as those used for expansion of the approximated solution,

$$w_i = v_i, \qquad i = 1, 2, 3, \dots, N$$

the functional becomes $\mathbf{R}_i = \int_{\Omega} (v_i \mathcal{L}\{\mathbf{v}\}^T \{\mathbf{c}\} - v_i f) d\Omega, \quad i = 1, 2, 3, \dots, N$

Using subdomain expansion functions

- The important step in the Ritz and Galerkin methods is the selection of rial functions defined over the entire solution domain that can represent the true solution, at least approximately.
- To alleviate the difficulty, we can divide the entrie domain into small subdomains and use trial functions defined over each subdomain.
- For example, we divide the entire solution domain (0,1) into tree subdomains defined by (x_1, x_2) , (x_2, x_3) , and (x_3, x_4) , where $x_1 = 0$ and $x_4 = 1$ being the endpoints.
- **a** linear variation of $\phi(x)$ over the subdomain is defined

$$\tilde{\phi}(x) = \phi_i \frac{x_{i+1} - x}{x_{i+1} - x_i} + \phi_{i+1} \frac{x - x_{i+1}}{x_i - x_{i+1}},$$

for $x_i \leq x \leq x_{i+1}$ and i = 1, 2, 3, where the ϕ_i are the unknown constants to be determined.

Using subdomain expansion functions

- From the boundary condition, we find $\phi_1 = 0$ and $\phi_4 = 1$.
- Apply the Ritz method,

$$\mathbf{F} = \sum_{i=1}^{3} \left[\frac{1}{2} \int_{x_i}^{x_{i+1}} \left(\frac{\phi_{i+1} - \phi_i}{x_{i+1} - x_i} \right)^2 \mathrm{d}x + \int_{x_i}^{x_{i+1}} (x+1) \left(\phi_i \frac{x_{i+1} - x}{x_{i+1} - x_i} + \phi_{i+1} \frac{x - x_i}{x_{i+1} - x_i} \right) \mathrm{d}x \right],$$

Evaluate the integrals, we obtain,

$$\mathbf{F} = \sum_{i=1}^{3} \frac{1}{2} (x_{i+1} - x_i) \left[\left(\frac{\phi_{i+1} - \phi_i}{x_{i+1} - x_i} \right)^2 + \phi_{i+1} \left(\frac{2}{3} x_{i+1} + \frac{1}{3} x_i + 1 \right) + \phi_i \left(\frac{2}{3} x_i + \frac{1}{3} x_{i+1} + \frac{1}{3} x_i \right)^2 \right]$$

$$= 3\phi_2^2 + 3\phi_3^2 - 3\phi_2\phi_3 + \frac{4}{9}\phi_2 - \frac{22}{9}\phi_3 + \frac{49}{27}.$$

• Minimize **F**, we obtain
$$\phi_2 = \frac{14}{81}$$
 and $\phi_3 = \frac{40}{81}$.

FEM method for Poisson equation

$$\frac{\mathsf{d}^2\phi}{\mathsf{d}x^2} = x + 1, \qquad 0 < x < 1,$$

in conjunction with the boundary conditions,

$$\phi|_{x=0} = 0,$$

 $\phi|_{x=1} = 1.$

Linear Elements for 1D

2 Linear elements: within the *i*-th element $\phi(x)$ may be approximated by

$$\phi^i(x) = a^i + b^i x,$$

where a^i and b^i are the constants to be determined. At the two nodes,

$$\begin{aligned} \phi_1^i &= a^i + b^i x_1^i, \\ \phi_2^i &= a^i + b^i x_2^i, \end{aligned}$$

subsitute a^i and b^i back to $\phi^i(x)$, one has,

$$\phi^i(x) = \sum_{j=1}^2 N^i_j(x)\phi^i_j,$$

where

$$N_1^i(x) = rac{x_2^i - x}{\Delta x}, \quad ext{and} \quad N_2^i(x) = rac{x - x_1^i}{\Delta x},$$

denote the interpolation or basis function, and $N_j^i(x_k^i) = \delta_{jk}$.

Quadratic Elements for 1D

Quadratic elements: also known as second-order elements, within the *i*-th element $\phi(x)$ may be approximated by $\phi^i(x) = a^i + b^i x + c^i x^2$, where a^i and b^i are the constants to be determined. At the two nodes,

$$\begin{aligned}
\phi_1^i &= a^i + b^i x_1^i + c^i (x_1^i)^2, \\
\phi_2^i &= a^i + b^i x_2^i + c^i (x_2^i)^2, \\
\phi_3^i &= a^i + b^i x_1^i + c^i (x_3^i)^2,
\end{aligned}$$

subsitute a^i , b^i , and c^i back to $\phi^i(x)$, one has, $\phi^i(x) = \sum_{j=1}^3 N^i_j(x)\phi^i_j$, where

$$N_1^i(x) = \frac{(x - x_2^i)(x - x_3^i)}{(x_1^i - x_2^i)(x_1^i - x_3^i)},$$

$$N_2^i(x) = \frac{(x - x_1^i)(x - x_3^i)}{(x_2^i - x_1^i)(x_2^i - x_3^i)},$$

$$N_3^i(x) = \frac{(x - x_1^i)(x - x_2^i)}{(x_3^i - x_1^i)(x_3^i - x_1^i)},$$

NTHIL denote the interpolation or basis function, and $N_j^i(x_k^i) = \delta_{jk}$.

Elements for 2D

Cubic elements for 1D:

$$\phi^{i}(x) = a^{i} + b^{i}x + c^{i}x^{2} + d^{i}x^{3},$$

Linear triangular element for 2D:

$$\phi_i(x,y) = \sum_{j=1}^3 N_j^i(x,y)\phi_j^i,$$

where

$$N_{j}^{i}(x,y) = \frac{1}{2\Delta^{i}}(a_{j}^{i} + b_{j}^{i}x + c_{j}^{i}y).$$

Elements for 3D

Linear tetrahedral element

$$\phi_i(x,y) = \sum_{j=1}^4 N_j^i(x,y,z)\phi_j^i,$$

where

$$N_{j}^{i}(x, y, z) = \frac{1}{6\mathbf{V}^{i}}(a_{j}^{i} + b_{j}^{i}x + c_{j}^{i}y + d_{j}^{i}z).$$

For the Poisson's equation on unit disk,

$$abla^2 U = 1, \quad \text{in } \Omega,$$

 $U = 0, \quad \text{on the boundary}, \quad \partial \Omega$

where Ω is the unit disk.

Laplace's equation

Consider the Laplace's equation:

$$\nabla^2 u(x,y) = \frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0, \quad \text{for} \quad 0 \le x \le 4, 0 \le y \le 4,$$

with the following conditions

$$u(0,y) = e^{y} - \cos y,$$

$$u(4,y) = e^{y} \cos 4 - e^{4} \cos y,$$

$$u(x,0) = \cos x - e^{x},$$

$$u(x,4) = e^{4} \cos x - e^{x} \cos 4.$$

Laplace's equation

Photonic Crystals

