7, Finite Element Method

Elements

Mesh generation

Element assembly
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Mechanical problems
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Microwave circuit

A Microstrip Low Pass Filter
h-AMR at 9.25 GHz
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Ritz method

2 Fora boundary-value problem,
Lo =,

where L is a differential operator, f is the excitation or forcing function, and ¢ is
the unknown quantity.

9 the solution of this kind of boundary-value problem can be obtained by minimizing
the functional,

~

- 1 ~ 1 ~
F(o) = <£¢,¢>—5<¢,f>—§<f,¢>,

N | —

with respect to ¢, a trial function, and where

< Gop > /Q o™ de.

1 ~ ~ 1 ~ ~ 1 ~ 1 ~
SE = —/ £5¢¢*dﬂ+—/ £¢5¢*d9——/ 5¢fdQ——/ £66%Q

g‘ﬁé;_ﬁlilﬁl!ﬁgﬁ B
I
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Ritz method

2 Suppose that ¢ can be approximated by the expansion,
) N
¢ => cjv; ={c}{v}={v}"{c},
j=1

where the v; are the chosen expansion functions defined over the entire domain
and c; are constant coefficients to be determined.

2 the functional becomes

F= %{C}T/Q{V}E{V}Tdﬁ{c} — {C}T/Q{v}fdQ.

2 To minimize F(¢),

OF _ 1 V- T l T v B .
dc; Q/Q iYL{v}" d{c} + S {c} /Q{V}E ,dQ /Q . dQ

N
1
= — Z Cj / (’Uz'ﬁvj + Ujﬁ’Uz')dQ - / ’UifdQ
2 = Q Q
0,

gg_ﬁlﬂ% L =

i=1,2,3,...,N
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5
oF  _ 1/ vi}ﬁ{v}TdQ{c}Jrl{c}T/{V}EvidQ—/ v fdO
861' 2 Q 2 Q Q
1 N
— 5263'/(’0@'51}]' —I—vjﬁvi)dQ—/ v; fdQ)
= e Q

- 0, i=1,23...,N

2 written in the matrix form

[SH{c} = {b},
where the elements in [S] are given by
1
Sij = —/ (’Uiﬁ’l)j + ’Uj[/Ui)dQ,
2 Jo

and the elements in {b} are given by

EENTHU bi = /Q v fQ.
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Poisson equation

2 Consider two infinite parallel plates, one located at x = 0 with the potential ¢ = 0
and the other located at x = 1 with ¢ = 1. The space between the plates is filled
with a medium with a varying electric charge p(z) = —(z + 1).

2 Then we have
d2¢ +1 O<x<l1
-5 — X ) x )
dx2

in conjunction with the boundary conditions,

¢|$:O — 07
Qb‘x:l = 1.

2 The exact solution to this problem is

qb(x)—6a: —|—2:Iz —|—3x.

I
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Solution via the Ritz method
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For the Poisson equation

dz2 ’

the corresponding functional is

~ 1 ~
F<¢>=—/ <jﬁ> dx+/0 (z +1)dda,

the necessary condtion for F to be minimum when ¢(z) = ¢(z)is

6F(¢) =0,
with the integrating by parts, we obtain,

2
5¢—¢|w —/ (& Desdz = 0.

dz2

)
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Solution via the Ritz method

2 Expand ¢ in terms of polynomials,
qg(x) = co 4+ 1z + cax® + 323,

where ¢; (: = 0, 1, 2, 3) are the unknown constants to be determined.

2 With the boundary conditions, we have co = 0and ¢; = 1 — ¢c2 — c3, then

$(z) =z + c2(a® — x) + c3(z® — ),

2 the functional F becomes, F = 2c2+ 2c2 + Jcocs — 23c3 — 2co + 5, whose
derivatives with respect to c2 and c3 are given by
OF 1 n 1 1 0
— = —c —c3 — — =0,
deo A
OF 1 n 4 23 0
— = —c —c3 — — =0,
dea 227 5% 60
we have the solution c; = % and c3 = .
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Wrong trial function for Ritz method

E”NTHU

Expand ¢ in terms of polynomials,

d(x) = co + cr1x + cax?,

where ¢; (« = 0, 1, 2) are the unknown constants to be determined.

With the boundary conditions, we have co = 0 and ¢; = 1 — ¢2, then

¢(z) =z + c2(2” — ),

the functional F becomes,

2, 3 8
F=— 2—— —
32712

whose derivative with respect to c2 is given by

OF 4
— —c
Oco 3

9

we have the solution c2 = 5.

)
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Galerkin’s method

9 Assume that 6 is an approximation solution, and substitute of ¢ for ¢ would then
result in a nonzero residual,

r=2Lp—f#0,

2 The best approximation for ¢ will be the one that reduce the residula r to the least
value at all points of €2.

9 The weighted residual method enforce the condition,

R, = / ’LUrL'I‘dQ =0,
Q

where R; denote weighted residual integrals and w; are chosen weighting
functions.

9 |n Galerkin’s method, the weighting function are selected to be the same as those
used for expansion of the approximated solution,

Wi; = Vg, i:1,2,3,...,N

- 2 _the functional becomes R; = LIVYT LY — o, £)dO —-1.93 N
E"E’,NTHU Jo@il{v}T{c} —v; f)dQ,  i=1,2,3,...,
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Using subdomain expansion functions

9 The important step in the Ritz and Galerkin methods is the selection of rial
functions defined over the entire solution domain that can represent the true
solution, at least approximately.

2 To alleviate the difficulty, we can divide the entrie domain into small subdomains
and use trial functions defined over each subdomain.

2 For example, we divide the entire solution domain (0, 1) into tree subdomains
defined by (z1, z2), (z2,z3), and (x3,x4), where x1 = 0 and x4 = 1 being the
endpoints.

2 alinear variation of ¢(x) over the subdomain is defined

Tit1 — T T — Tit1
+ ¢i+1 )

Li+1 — Lg Ly — Ti41

b(z) = ¢

forz; <z <z;4+1 andi=1,2, 3, where the ¢, are the unknown constants to be
determined.

I
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Using subdomain expansion functions

2 From the boundary condition, we find ¢; = 0 and ¢4 = 1.

Apply the Ritz method,

3 | |
L [T+l piy1 — @4 Titl Tit1 — T T — T
F=Y o [T EE e [ @ T )
i—1 xT; LTi+1 — Ly x; Li+1 — Lq Li+1 — Lg
2 Evaluate the integrals, we obtain,
i 2 1
F = Z (%+1 [(¢ = )2 + ¢z+1( S Tit1+ Lot 1) + ¢i(zzi + S Tit
Li+4+1 — 3 3 3
22 49
= 3¢5 +3¢3 — 3 —pp — — —.
P35 + 393 ¢52¢3+9¢2 9¢3+27
2 Minimize F, we obtain ¢o = =2 and ¢3 = £2.
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FEM method for Poisson equation

in conjunction with the boundary conditions,

qutzzo — (L
Gle=1 = 1.
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Linear Elements for 1D

2 Linear elements: within the i-th element ¢(x) may be approximated by
¢'(z) = a' + bz,
where o' and b* are the constants to be determined. At the two nodes,

] = a*'+b'x],
¢ = a +bia,

subsitute a* and b* back to ¢*(z), one has,

2 .
=2 Nj(@)
j=1
where , .
i Ty — T ; x — xt
Ni(@)= ==, and Nj(a)= -

denote the interpolation or basis function, and N (z}) = d;%.
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Quadratic Elements for 1D

2 Quadratic elements: also known as second-order elements, within the ¢-th element
¢(x) may be approximated by ¢*(z) = a® + b'x + c'x?, where a* and b’ are the
constants to be determined. At the two nodes,

$1 = a'+bai+ci(@)?
¢ = a'+bah+c(wh)?
B = o +bial+ e,
subsitute a?, b*, and c¢* back to ¢*(x), one has, ¢*(x) = ?:1 N*(x)¢%, where

(x — z%)(z — ac'g)

i _ (x—x’i)(x—xé)
M= ek —ay)
i)~ EmaE—o)

(w5 —ay)(zh —27)

EE.NTHU
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@te the interpolation or basis function, and N (z},) = J;5.
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Elements for 2D

2 Cubic elements for 1D:;

o' (x) = a’ + bz + ctx? + d'a3,

9 Linear triangular element for 2D:

3
¢i(z,y) = Y Ni(z,y)e},
Jj=1

where
) 1 7
Nj(z,y) = 5= (a; -+ bl + chy).
]
"
K Ty,
ﬁ -. .-..
Ay
-, = =W
| - J . 3
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Elements for 3D

2 Linear tetrahedral element

(z,y) = Z Ni(z,y, 2
where
Ni(z,y,z) = G tbir+ciy +diz).
p4
p3
pl!
p2
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PDETOOL in Matlab

For the Poisson’s equation on unit disk,

ViU = 1, in Q,
U = 0, on the boundary, 02

where € Is the unit disk.
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Laplace’s equation

Consider the Laplace’s equation:

with the following conditions

u(0,y) = €Y —cosy,
u(4,y) = eYcosd —etcosy,
u(x,0) = cosxz —e”,
u(z,4) = etcosz — e® cos4.

JPT-5260, Spring 2006 — p.21/23




Laplace’s equation
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Photonic Crystals
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