8, Monte Carlo Method

- Random numbers with uniform deviates
- Transformation method
- Rejection method
- Random bits

Random Numbers

- Philosophers: Any program will produce output that is entirely preditable, hence not truly "random".
- Random number generators: *pseudo-random*.
- A good generator: to produce statistically the same results.
- 1. Uniform Deviates
- 2. Exponential Deviates
- 3. Normal Deviates

Uniform Deviates

Uniform deviates are just random numbers that line within a specified range (typically 0 to 1), with any one number in the range just as likely as any other.

```
    in C:
    void srand(unsigned seed);
    int rand(void);
```

```
in Matlab
s = rand('state');
rand('state',s);
```

System-supplied rand()s are almost always *linear congruential generators*, which generate a sequence of integers I_1, I_2, I_3, \ldots , each between 0 and m - 1 (e.g. $RAND_MAX$) by the recurrence relation,

$$I_{j+1} = aI_j + c \qquad (\text{mod} \quad m),$$

for example, a = 1103515245, c = 12345, and $m = 2^{32}$.

Uniform Deviates

```
a = 1103515245;
c = 12345;
m = 2^32;
xj = 10000.0;
yj = xj/(m-1);
for indi = 1:1000
xj1 = mod(a*xj+c, m);
yj = [yj; xj1/(m-1)];
xj = xj1;
end
hist(yj); 14
```


Quick and Dirty Random Number Generators

Constants for Quick and Dirty Random Number Generators							
overflow at	im	ia	ic	overflow at	im	ia	ic
	6075	106	1283		86436	1093	18257
2 ²⁰					121500	1021	25673
	7875	211	1663		259200	421	54773
2^{21}				2 ²⁷			
-00	7875	421	1663		117128	1277	24749
222					121500	2041	25673
	6075	1366	1283	- 28	312500	741	66037
	6655	936	1399	22°			
- 09	11979	430	2531		145800	3661	30809
2 ²³					175000	2661	36979
	14406	967	3041		233280	1861	49297
	29282	419	6173	- 20	244944	1597	51749
- 94	53125	171	11213	229			
2^{24}					139968	3877	29573
	12960	1741	2731		214326	3613	45289
	14000	1541	2957	- 00	714025	1366	150889
	21870	1291	4621	230			
	31104	625	6571		134456	8121	28411
05	139968	205	29573	01	259200	7141	54773
2 ²⁵				2 ³¹			
	29282	1255	6173		233280	9301	49297
	81000	421	17117		714025	4096	150889
-06	134456	281	28411	2 ³²			
2 ²⁶							

Transformation method

For a unifrom probability distribution,

$$p(x)dx = \{ egin{array}{cc} dx, & 0 < x < 1; \\ 0, & ext{otherwise}; \end{array}$$

with the normalization condition,

$$\int_{-\infty}^{\infty} p(x) \mathrm{d}x = 1.$$

Transformation law of probabilities,

$$|p(y)\mathsf{d} y| = |p(x)\mathsf{d} x|,$$

or

$$p(y) = p(x) |\frac{\mathsf{d}y}{\mathsf{d}x}|.$$

Exponential Deviates

Exponential deviates:

$$y(x) \equiv -\ln(x),$$

and p(x) is a uniform deviate,

$$p(y)dy = |\frac{dy}{dx}|dy = e^{-y}dy,$$

which is distributed exponentially.

Transformation method

For the transformation method,

$$\frac{\mathsf{d}x}{\mathsf{d}y} = f(y),$$

has the solution x = F(y), where F(y) is the indefinite integral of f(y).

To make a uniform deviate into one distributed as f(y) is therefore,

$$y(x) = F^{-1}(x).$$

The transformation method is to transform the *inverse function of the ingegral of* f(y).

Normal (Gaussian) Deviates

More than one dimension,

$$p(y_1, y_2, \dots) \mathsf{d} y_1 \mathsf{d} y_2 \dots = p(x_1, x_2, \dots) | \frac{\partial(x_1, x_2, \dots)}{\partial(y_1, y_2, \dots)} | \mathsf{d} y_1 \mathsf{d} y_2 \dots,$$

where $|\partial()/\partial()|$ is the Jacobian determinant of x's with respect to the y's.

Box-Muller method for normal (Gaussian) distribution,

$$p(y)\mathsf{d}y = \frac{1}{\sqrt{2\pi}}e^{-y^2/2}\mathsf{d}y,$$

Consider the transformation between two uniform deviates on (0, 1), x_1 and x_2 ,

$$y_1 = \sqrt{-2\ln x_1} \cos 2\pi x_2, y_2 = \sqrt{-2\ln x_1} \sin 2\pi x_2,$$

Box-Muller method

Box-Muller method for normal (Gaussian) distribution,

$$p(y)\mathsf{d}y = \frac{1}{\sqrt{2\pi}}e^{-y^2/2}\mathsf{d}y,$$

Equivalently, consider the transformation between two uniform deviates on (0, 1), x_1 and x_2 ,

$$x_1 = \exp[-\frac{1}{2}(y_1^2 + y_2^2)],$$

$$x_2 = \frac{1}{2\pi}\arctan\frac{y_2}{y_1},$$

The Jacobian determinant is

$$\frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} = -\left[\frac{1}{2\pi}e^{-y_1^2/2}\right]\left[\frac{1}{2\pi}e^{-y_2^2/2}\right]$$

Normal (Gaussian) Deviats

By Box-Muller method

Using Matlab build-in randn

In QIS, you need non-classical states as qbits.

Low-intensity limit:

Single photon sources, with definite *photon number* but largest fluctuation in phase, which is intrinsic *non-classical* states.

High-intensity limit:

Squeezed states, which are *macroscopic*, continuous-variables, i.e.

$$\hat{M} = M_0 + \Delta \hat{M},$$

where M_0 is the classical (mean-field) variables, such

Phase diagram for EM waves

Electromagnetic waves can be represented by

$$\hat{E}(t) = E_0[\hat{X}_1 \sin(\omega t) - \hat{X}_2 \cos(\omega t)]$$

where

 \hat{X}_1 = amplitude quadrature \hat{X}_2 = phase quadrature

Phase diagram for coherent states

2005 Nobel Laureates

Roy J. Glauber: "for his contribution to the quantum theory of optical coherence,"

John L. Hall and Theodor W. Hänsch: "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique."

from: http://nobelprize.org/

Uncertainty Principle: $\Delta \hat{X}_1 \Delta \hat{X}_2 \ge 1$.

- 1. Coherent states: $\Delta \hat{X}_1 = \Delta \hat{X}_2 = 1$,
- 2. Amplitude squeezed states: $\Delta \hat{X}_1 < 1$,
- 3. Phase squeezed states: $\Delta \hat{X}_2 < 1$,
- 4. Quadrature squeezed states.

Phase diagram for squeezed states

Generations of Squeezed States

Nonlinear optics:

E.NTHU

Generation of Continuous Variables Entanglement

Preparation EPR pairs by Squeezed Sates

F.NTHU

PT-5260, Spring 2006 – p.20/29

Definition of Squeezing and Correlation

Squeezing Ratio

$$\hat{M} = M + \Delta \hat{M}$$
$$SR = \frac{\langle \Delta \hat{M}^2 \rangle}{\langle \Delta \hat{M}^2 \rangle c.s.}$$

SR < 1 : SqueezingSR > 1 : Anti - Squeezing

Correlation

$$C = \frac{\langle : \Delta \hat{A} \Delta \hat{B} : \rangle}{\sqrt{\langle \Delta \hat{A}^2 \rangle \langle \Delta \hat{B}^2 \rangle}}$$

$$0 \le C \le 1 : \text{Positive Correlation}$$

$$C = 0 : \text{No Correlation}$$

$$-1 \le C \le 0 : \text{Negative Correlation}$$
PT-5260, Spring 2006 - p.21/29

Recently, formation of stable double-, triple-, and multisoliton bound states has been observed experimentally in various passively mode-locked fiber lasers.

N. H. Seong and Dug Y. Kim, *Opt. Lett.* **27**, 1321 (2002); (Source of figures.) D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, *Phys. Rev. A* **64**, 033814 (2001). CF.NTHU F. Greiu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, *J. Opt. Soc. Am. B* **20**, 863 (2003). PT-5260, Spring 2006 – p.22/29 Multiple-pulse generation in the passively mode-lock fiber lasers is quite accurately described by the quintic Complex Ginzburg-Landau equation (CGLE):

$$iU_{z} + \frac{D}{2}U_{tt} + |U|^{2}U = i\delta U + i\epsilon |U|^{2}U + i\beta U_{tt} + i\mu |U|^{4}U - \nu |U|^{4}U,$$

- U is the local amplitude,
- \circ D corresponds to dispersion (+1 for anomalous),
- \circ ν account for the quintic correction to the Kerr effect,
- δ , μ , and ϵ are linear, cubic, and quintic loss/gain,

 β accounts spectral filtering.

There exist three bound pair solutions with the same separation and amplitude but different relative phases, i.e. $\theta = 0$ (in-phase), $\pi/2$, and $\theta = \pi$ (out-of-phase).

$$U(z,t) = U_0(z,t+\rho) + U_0(z,t-\rho)e^{i\theta},$$

1, we linearize the equation around the classical solution, i.e. $\hat{U}(z,t) = U_0 + \hat{u}(z,t)$, for the photon number in fiber lasers are large enough,

$$\frac{d}{dz}\hat{u}(z,t) = \mathcal{P}_1(z,t)\hat{u}(z,t) + \mathcal{P}_2(z,t)\hat{u}^{\dagger}(z,t) + \hat{n}(z,t),$$

where \mathcal{P}_1 and \mathcal{P}_2 are two special operators defined as follows,

$$\mathcal{P}_{1}(z,t) = i\frac{D}{2}\frac{\partial^{2}}{\partial t^{2}} + 2i|U_{0}|^{2} + \delta + 2\epsilon|U_{0}|^{2} + \beta\frac{\partial^{2}}{\partial t^{2}} + 3\mu|U_{0}|^{4} + 3i\nu|U_{0}|^{4}, \mathcal{P}_{2}(z,t) = iU_{0}^{2} + \epsilon U_{0}^{2} + 2\mu U_{0}^{3}U_{0}^{*} + 2i\nu U_{0}^{3}U_{0}^{*}.$$

2, to make perturbed quantum field, \hat{u} , satisfies the Bosonic communication relations in the linearized equation,

$$[\hat{u}(z,t_1), \hat{u}^{\dagger}(z,t_2)] = \delta(t_1 - t_2),$$

$$[\hat{u}(z,t_1), \hat{u}(z,t_2)] = [\hat{u}^{\dagger}(z,t_1), \hat{u}^{\dagger}(z,t_2)] = 0$$

3, we introduce a zero-mean additional noise operator, $\hat{n}(z,t)$, which satisfy following commutation relations,

$$[\hat{n}(z,t_1), \hat{n}^{\dagger}(z',t_2)] = \{ -\mathcal{P}_1(z,t_1) - \mathcal{P}_1^*(z',t_2) \} \delta(z-z') \delta(t_1-t_2)$$

$$[\hat{n}(z,t_1), \hat{n}(z',t_2)] = [\hat{n}^{\dagger}(z,t_1), \hat{n}^{\dagger}(z',t_2)] = 0.$$

E.NTHU 國立清華大學電機工程學系及研究所

R.-K. Lee, Y. Lai, and B. A. Malomed, Phys. Rev. A 70, 063817 (2004).

Photon-number correlation parameters

E.NTHU

PT-5260, Spring 2006 – p.27/29

Photon-number correlation spectra in *t***-domain**

$$\eta_{ij} \equiv \frac{\langle :\Delta \hat{n}_i \Delta \hat{n}_j : \rangle}{\sqrt{\Delta \hat{n}_i^2 \Delta \hat{n}_j^2}} \,,$$

Total photon-number fluctuations

R.-K. Lee, Y. Lai, and B. A. Malomed, Opt. Lett. 34, 3084 (2005).

PT-5260, Spring 2006 – p.29/29