
8, Monte Carlo Method

Random numbers with uniform deviates

Transformation method

Rejection method

Random bits

Monte Carlo methods
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Random Numbers

Philosophers: Any program will produce output that is entirely preditable, hence
not truly "random".

Random number generators: pseudo-random.

A good generator: to produce statistically the same results.

1. Uniform Deviates

2. Exponential Deviates

3. Normal Deviates
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Uniform Deviates

Uniform deviates are just random numbers that line within a specified range (typically 0

to 1), with any one number in the range just as likely as any other.

in C:
void srand(unsigned seed);
int rand(void);

in Matlab
s = rand(’state’);
rand(’state’,s);

System-supplied rand() s are almost always linear congruential generators, which generate a
sequence of integers I1, I2, I3, . . . , each between 0 and m − 1 (e.g. RANDMAX) by
the recurrence relation,

Ij+1 = aIj + c (mod m),

for example, a = 1103515245, c = 12345, and m = 232.

IPT-5260, Spring 2006 – p.3/29



Uniform Deviates

a = 1103515245;

c = 12345;

m = 2ˆ32;

xj = 10000.0;

yj = xj/(m-1);

for indi = 1:1000

xj1 = mod(a*xj+c, m);

yj = [yj; xj1/(m-1)];

xj = xj1;

end

hist(yj);
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Quick and Dirty Random Number Generators
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Transformation method

For a unifrom probability distribution,

p(x)dx = { dx, 0 < x < 1;

0, otherwise;

with the normalization condition,

∫

∞

−∞

p(x)dx = 1.

Transformation law of probabilities,

|p(y)dy| = |p(x)dx|,

or

p(y) = p(x)| dy

dx
|.
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Exponential Deviates

Exponential deviates:

y(x) ≡ − ln(x),

and p(x) is a uniform deviate,

p(y)dy = | dy

dx
|dy = e−ydy,

which is distributed exponentially.
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Transformation method

For the transformation method,

dx

dy
= f(y),

has the solution x = F (y), where F (y) is the indefinite integral of f(y).

To make a uniform deviate into one distributed as f(y) is therefore,

y(x) = F−1(x).

The transformation method is to transform the inverse function of the ingegral of f(y).
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Normal (Gaussian) Deviates

More than one dimension,

p(y1, y2, . . . )dy1dy2 · · · = p(x1, x2, . . . )|∂(x1, x2, . . . )

∂(y1, y2, . . . )
|dy1dy2 . . . ,

where |∂()/∂()| is the Jacobian determinant of x’s with respect to the y’s.

Box-Muller method for normal (Gaussian) distribution,

p(y)dy =
1√
2π

e−y2/2dy,

Consider the transformation between two uniform deviates on (0, 1), x1 and x2,

y1 =
√

−2 ln x1 cos 2πx2,

y2 =
√

−2 ln x1 sin 2πx2,
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Box-Muller method

Box-Muller method for normal (Gaussian) distribution,

p(y)dy =
1√
2π

e−y2/2dy,

Equivalently, consider the transformation between two uniform deviates on (0, 1),
x1 and x2,

x1 = exp[−1

2
(y2

1 + y2
2)],

x2 =
1

2π
arctan

y2

y1
,

The Jacobian determinant is

∂(x1, x2)

∂(y1, y2)
=

∣
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∣
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∣

∣

∣

∣

∣

∣

= −[
1

2π
e−y2

1
/2][

1

2π
e−y2

2
/2]

i.e. d arctan(x)
dx

= 1/(1 + x2).
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Normal (Gaussian) Deviats

By Box-Muller method
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Using Matlab build-in randn
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Entangled sources for Quantum Information Science

In QIS, you need non-classical states as qbits.

Low-intensity limit:
Single photon sources, with definite photon number but
largest fluctuation in phase, which is intrinsic
non-classical states.

High-intensity limit:
Squeezed states, which are macroscopic,
continuous-variables, i.e.

M̂ = M0 + ∆M̂,

where M0 is the classical (mean-field) variables, such
as photon-number, phase, position, and momentum etc.

IPT-5260, Spring 2006 – p.12/29



Phase diagram for EM waves

Electromagnetic waves can be represented by

Ê(t) = E0[X̂1 sin(ωt) − X̂2 cos(ωt)]

where

X̂1 = amplitude quadrature

X̂2 = phase quadrature
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Phase diagram for coherent states
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2005 Nobel Laureates

Glauber(Harvard) Hall(JILA) Hänsch(MPI)

Roy J. Glauber: "for his contribution to the quantum theory of optical coherence,"

John L. Hall and Theodor W. Hänsch: "for their contributions to the development of
laser-based precision spectroscopy, including the optical frequency comb technique."

from: http://nobelprize.org/
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Coherent and Squeezed States

Uncertainty Principle: ∆X̂1∆X̂2 ≥ 1.

1. Coherent states: ∆X̂1 = ∆X̂2 = 1,

2. Amplitude squeezed states: ∆X̂1 < 1,

3. Phase squeezed states: ∆X̂2 < 1,

4. Quadrature squeezed states.
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Phase diagram for squeezed states
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Generations of Squeezed States

Nonlinear optics:

Courtesy of P. K. Lam
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Interference of Coherent States

Coherent States
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Generation of Continuous Variables Entanglement

Preparation EPR pairs by Squeezed Sates
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δn̂3 = −δn̂4, δθ̂3 = δθ̂4.
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Definition of Squeezing and Correlation

Squeezing Ratio

M̂ = M + ∆M̂

SR =
〈∆M̂ 2〉

〈∆M̂ 2〉c.s. SR < 1 : Squeezing

SR > 1 : Anti − Squeezing

Correlation

C =
〈: ∆Â∆B̂ :〉

√

〈∆Â2〉〈∆B̂2〉
0 ≤ C ≤ 1 : Positive Correlation

C = 0 : No Correlation

−1 ≤ C ≤ 0 : Negative Correlation
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Bound-soliton pairs in fiber lasers

Recently, formation of stable double-, triple-, and multi-
soliton bound states has been observed experimentally in
various passively mode-locked fiber lasers.

N. H. Seong and Dug Y. Kim, Opt. Lett. 27, 1321 (2002); (Source of figures.)
D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, Phys. Rev. A 64, 033814 (2001).
P. Grelu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, J. Opt. Soc. Am. B 20, 863 (2003).
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Complex Ginzburg-Landau equation

Multiple-pulse generation in the passively mode-lock fiber
lasers is quite accurately described by the quintic Complex
Ginzburg-Landau equation (CGLE):

iUz +
D

2
Utt + |U |2U = iδU + iǫ|U |2U + iβUtt

+ iµ|U |4U − ν|U |4U,

U is the local amplitude,

D corresponds to dispersion (+1 for anomalous),

ν account for the quintic correction to the Kerr effect,

δ, µ, and ǫ are linear, cubic, and quintic loss/gain,

and β accounts spectral filtering.
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Degenerate bound-state soliton pair solutions

There exist three bound pair solutions with the same
separation and amplitude but different relative phases, i.e.
θ = 0 (in-phase), π/2, and θ = π (out-of-phase).

U(z, t) = U0(z, t + ρ) + U0(z, t − ρ)eiθ,
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Simulation parameters: D = 1, δ = −0.01, ǫ = 1.8, β = 0.5, µ = −0.05, and ν = 0.

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, Phys. Rev. Lett. 79, 4047 (1997).
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Quantum theory of bound-soliton in CGLE model, 1/2

1, we linearize the equation around the classical solution,
i.e. Û(z, t) = U0 + û(z, t), for the photon number in fiber
lasers are large enough,

d

dz
û(z, t) = P1(z, t)û(z, t) + P2(z, t)û

†(z, t) + n̂(z, t),

where P1 and P2 are two special operators defined as
follows,

P1(z, t) = i
D

2

∂2

∂t2
+ 2i|U0|

2 + δ + 2ǫ|U0|
2 + β

∂2

∂t2

+ 3µ|U0|
4 + 3iν|U0|

4,

P2(z, t) = iU2
0 + ǫU2

0 + 2µU3
0 U∗

0 + 2iνU3
0 U∗

0 .
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Quantum theory of bound-soliton in CGLE model, 2/2

2, to make perturbed quantum field, û, satisfies the Bosonic
communication relations in the linearized equation,

[û(z, t1), û
†(z, t2)] = δ(t1 − t2),

[û(z, t1), û(z, t2)] = [û†(z, t1), û
†(z, t2)] = 0

3, we introduce a zero-mean additional noise operator,
n̂(z, t), which satisfy following commutation relations,

[n̂(z, t1), n̂
†(z′, t2)] = {−P1(z, t1) − P∗

1 (z′, t2)}δ(z − z′)δ(t1 − t2),

[n̂(z, t1), n̂(z′, t2)] = [n̂†(z, t1), n̂
†(z′, t2)] = 0.

R.-K. Lee, Y. Lai, and B. A. Malomed, Phys. Rev. A 70, 063817 (2004).
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Photon-number correlation parameters
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Photon-number correlation spectra in t-domain

ηij ≡
〈: ∆n̂i∆n̂j :〉
√

∆n̂2

i ∆n̂2
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(B) θ = π/2
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Total photon-number fluctuations

Normalized distance (z)
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R.-K. Lee, Y. Lai, and B. A. Malomed, Opt. Lett. 34, 3084 (2005).
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