8, Monte Carlo Method

- Random numbers with uniform deviates
- Э Transformation method
- Rejection method
- Э Random bits

Random Numbers

- Э Philosophers: Any program will produce output that is entirely preditable, hencenot truly "random".
- Э Random number generators: pseudo-random.
- Э A good generator: to produce statistically the same results.
- 1. Uniform Deviates
- 2. Exponential Deviates
- 3. Normal Deviates

Uniform Deviates

Uniform deviates are just random numbers that line within a specified range (typically 0 to ¹), with any one number in the range just as likely as any other.

- \bullet in C: void srand(unsigned seed); int rand(void);
- Э in Matlab ^s ⁼ rand('state'); rand('state',s);

System-supplied **rand()**^s are almost always linear congruential generators, which generate ^a sequence of integers I_1, I_2, I_3, \ldots , each between 0 and $m-1$ (e.g. $RAND_MAX$) by
the requirence relation the recurrence relation,

$$
I_{j+1} = aI_j + c \qquad (\text{mod} \quad m),
$$

for example, $a = 1103515245$, $c = 12345$, and $m = 2^{32}$.

Uniform Deviates

```
a = 1103515245;c = 12345;m = 2^{\circ}32;xj = 10000.0;yj = xj/(m-1);for indi = 1:1000xjl = mod(a*xj+c, m);yj = [yj; xj1/(m-1)];
xj = xj1;end
```
hist(yj);

Quick and Dirty Random Number Generators

Transformation method

Э For ^a unifrom probability distribution,

$$
p(x)dx = \begin{cases} dx, & 0 < x < 1; \\ 0, & \text{otherwise}; \end{cases}
$$

with the normalization condition,

$$
\int_{-\infty}^{\infty} p(x) \mathsf{d} x = 1.
$$

€ Transformation law of probabilities,

$$
|p(y)\mathrm{d}y| = |p(x)\mathrm{d}x|,
$$

or

$$
p(y) = p(x)|\frac{dy}{dx}|.
$$

Exponential Deviates

Э Exponential deviates:

$$
y(x) \equiv -\ln(x),
$$

and $p(x)$ is a uniform deviate,

$$
p(y)\mathrm{d}y = |\frac{\mathrm{d}y}{\mathrm{d}x}|\mathrm{d}y = e^{-y}\mathrm{d}y,
$$

which is distributed exponentially.

Transformation method

Э For the transformation method,

$$
\frac{\mathrm{d}x}{\mathrm{d}y} = f(y),
$$

has the solution $x=F(y)$, where $F(y)$ is the indefinite integral of $f(y).$

To make a uniform deviate into one distributed as $f(y)$ is therefore,

$$
y(x) = F^{-1}(x).
$$

The transformation method is to transform the *inverse function of the ingegral of* $f(y).$

Э

Normal (Gaussian) Deviates

Э More than one dimension,

$$
p(y_1, y_2, \dots) \mathrm{d} y_1 \mathrm{d} y_2 \dots = p(x_1, x_2, \dots) \big| \frac{\partial (x_1, x_2, \dots)}{\partial (y_1, y_2, \dots)} \big| \mathrm{d} y_1 \mathrm{d} y_2 \dots,
$$

where $|\partial() / \partial()|$ is the Jacobian determinant of x 's with respect to the y 's.

Э Box-Muller method for normal (Gaussian) distribution,

$$
p(y)\mathrm{d}y=\frac{1}{\sqrt{2\pi}}e^{-y^2/2}\mathrm{d}y,
$$

Consider the transformation between two uniform deviates on $(0,1)$, x_1 and x_2 ,

$$
y_1 = \sqrt{-2 \ln x_1} \cos 2\pi x_2, \n y_2 = \sqrt{-2 \ln x_1} \sin 2\pi x_2,
$$

Box-Muller method

Box-Muller method for normal (Gaussian) distribution,

$$
p(y)\mathrm{d}y = \frac{1}{\sqrt{2\pi}}e^{-y^2/2}\mathrm{d}y,
$$

Equivalently, consider the transformation between two uniform deviates on $(0,1),$ x_1 and x_2 ,

$$
x_1 = \exp[-\frac{1}{2}(y_1^2 + y_2^2)],
$$

$$
x_2 = \frac{1}{2\pi} \arctan{\frac{y_2}{y_1}},
$$

The Jacobian determinant is

$$
\frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} = -\left[\frac{1}{2\pi}e^{-y_1^2/2}\right] \left[\frac{1}{2\pi}e^{-y_2^2/2}\right]
$$

$$
\mathbf{E}.\mathsf{NTHU}_{\mathsf{M}} \qquad \qquad \frac{\mathrm{i.e}}{\mathrm{d}x} \qquad \qquad \frac{\mathrm{d}\arctan(x)}{\mathrm{d}x} = 1/(1+x^2).
$$

Normal (Gaussian) Deviats

By Box-Muller method

Using Matlab build-in **randn**

In QIS, you need *non-classical* states as *qbits*.

3 Low-intensity limit:

Single photon sources, with definite *photon number* but largest fluctuation in phase, which is intrinsicnon-classical states.

3 High-intensity limit:

Squeezed states, which are macroscopic, continuous-variables, i.e.

$$
\hat{M} \;\; = \;\; M_0 + \Delta \hat{M},
$$

where M_0 is the classical (mean-field) variables, such as photon-number, phase, position, and momentum etc.

Phase diagram for EM waves

Electromagnetic waves can be represented by

$$
\hat{E}(t) = E_0[\hat{X}_1 \sin(\omega t) - \hat{X}_2 \cos(\omega t)]
$$

where

 $\hat{X_1}$ = $\hat{X_2}$ = amplitude quadrature phase quadrature

Phase diagram for coherent states

2005 Nobel Laureates

Roy J. Glauber: "for his contribution to the quantum theory of optical coherence,"

John L. Hall and Theodor W. Hänsch: "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique."

from: http://nobelprize.org/

Uncertainty Principle: $\Delta \hat{X_1} \Delta \hat{X_2} \geq 1.$

- 1. Coherent states: $\Delta \hat{X_1} = \Delta \hat{X_2} = 1$,
- 2. Amplitude squeezed states: $\Delta \hat{X_1} < 1,$
- 3. Phase squeezed states: $\Delta \hat{X_2} < 1,$
- 4. Quadrature squeezed states.

Phase diagram for squeezed states

Generations of Squeezed States

Nonlinear optics:

IPT-5260, Spring 2006 – p.18/29

E.NTHU

Generation of Continuous Variables Entanglement

Preparation EPR pairs by Squeezed Sates

 \blacktriangleright F. NTHU

IPT-5260, Spring 2006 – p.20/29

Squeezing Ratio

$$
\hat{M} = M + \Delta \hat{M}
$$

$$
SR = \frac{\langle \Delta \hat{M}^2 \rangle}{\langle \Delta \hat{M}^2 \rangle_{\text{C.S.}}}
$$

 $\mathsf{SR} < 1$: Squeezing $\mathsf{SR} > 1 : Anti-Squeezing$

Correlation

$$
C = \frac{\langle : \Delta \hat{A} \Delta \hat{B} : \rangle}{\sqrt{\langle \Delta \hat{A}^2 \rangle \langle \Delta \hat{B}^2 \rangle}}
$$

\n
$$
0 \leq C \leq 1
$$
 : Positive Correlation
\n
$$
C = 0
$$
 : No Correlation
\n
$$
-1 \leq C \leq 0
$$
 : Negative Correlation
\n
$$
P_{T-5260, Spring 2006 - p.21/29}
$$

Recently, formation of stable <mark>double-, triple-,</mark> and <mark>multi</mark> soliton bound states has been observed experimentally invarious passively mode-locked fiber lasers.

N. H. Seong and Dug Y. Kim, Opt. Lett. **²⁷**, 1321 (2002); (Source of figures.)D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, Phys. Rev. ^A **⁶⁴**, ⁰³³⁸¹⁴ (2001). P. Grelu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, J. Opt. Soc. Am. ^B **²⁰**, ⁸⁶³ (2003). IPT-5260, Spring 2006 – p.22/29 Multiple-pulse generation in the passively mode-lock fiberlasers is quite accurately described by the quintic ComplexGinzburg-Landau equation (CGLE):

$$
iU_z + \frac{D}{2}U_{tt} + |U|^2U = i\delta U + i\epsilon |U|^2U + i\beta U_{tt}
$$

$$
+ i\mu |U|^4U - \nu |U|^4U,
$$

- U is the local amplitude,
- \overline{D} corresponds to dispersion ($+1$ for anomalous),
- Э ν account for the quintic correction to the Kerr effect,
- δ , μ , and ϵ are linear, cubic, and quintic loss/gain,

and β accounts spectral filtering.

There exist three bound pair solutions with the sameseparation and amplitude but different relative phases, i.e. $\theta=0$ (in-phase), $\pi/2$, and $\theta=\pi$ (out-of-phase).

$$
U(z,t)=U_0(z,t+\rho)+U_0(z,t-\rho)e^{i\theta},
$$

¹, we linearize the equation around the classical solution, i.e. $\hat{U}(z, t) = U_0 + \hat{u}(z, t)$, for the photon number in fiber lasers are large enough,

$$
\frac{d}{dz}\hat{u}(z,t) = \mathcal{P}_1(z,t)\hat{u}(z,t) + \mathcal{P}_2(z,t)\hat{u}^\dagger(z,t) + \hat{n}(z,t),
$$

where \mathcal{P}_1 follows, \mathcal{P}_1 and \mathcal{P}_2 are two special operators defined as

$$
\mathcal{P}_1(z,t) = i\frac{D}{2}\frac{\partial^2}{\partial t^2} + 2i|U_0|^2 + \delta + 2\epsilon|U_0|^2 + \beta\frac{\partial^2}{\partial t^2} \n+ 3\mu|U_0|^4 + 3i\nu|U_0|^4, \n\mathcal{P}_2(z,t) = iU_0^2 + \epsilon U_0^2 + 2\mu U_0^3 U_0^* + 2i\nu U_0^3 U_0^*.
$$

2, to make perturbed quantum field, \hat{u} , satisfies the Bosonic communication relations in the linearized equation,

$$
[\hat{u}(z, t_1), \hat{u}^{\dagger}(z, t_2)] = \delta(t_1 - t_2),
$$

$$
[\hat{u}(z, t_1), \hat{u}(z, t_2)] = [\hat{u}^{\dagger}(z, t_1), \hat{u}^{\dagger}(z, t_2)] = 0
$$

³, we introduce ^a zero-mean additional noise operator, $\hat{n}(z,t)$, which satisfy following commutation relations,

$$
[\hat{n}(z, t_1), \hat{n}^{\dagger}(z', t_2)] = \{-\mathcal{P}_1(z, t_1) - \mathcal{P}_1^*(z', t_2)\}\delta(z - z')\delta(t_1 - t_2)
$$

$$
[\hat{n}(z, t_1), \hat{n}(z', t_2)] = [\hat{n}^{\dagger}(z, t_1), \hat{n}^{\dagger}(z', t_2)] = 0.
$$

R.-K. Lee, Y. Lai, and B. A. Malomed, Phys. Rev. ^A **⁷⁰**, ⁰⁶³⁸¹⁷ (2004).

),

Photon-number correlation parameters

 E .NTHU

Photon-number correlation spectra int**-domain**

$$
\eta_{ij} \equiv \frac{\langle : \Delta \hat{n}_i \Delta \hat{n}_j : \rangle}{\sqrt{\Delta \hat{n}_i^2 \Delta \hat{n}_j^2}} \ ,
$$

Total photon-number fluctuations

E.NTHU

R.-K. Lee, Y. Lai, and B. A. Malomed, Opt. Lett. **³⁴**, 3084 (2005).