
Boundary value problems: 1D Bragg reflector

coupled-mode equation:

dE+(z)

dz
= iδE+(z) + iκE−(z)

dE−(z)

dz
= −iδE−(z)− iκ

∗
E+(z)

with the Boundary Condition:

E+(z = 0) = 1

E−(z = L) = 0
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9, Optimization
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Unconstrained optimization

Golden Search method

Quadratic approximation method

Nelder-Mead method

Steepest Descent method

Newton method

Conjugate Gradient method

Simulated annealing

Genetic algorithm
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Golden Search method

Bisection method

Golden Search method
Given (a, b, c), where b is a fraction w of the way between a and c,

b − a

c − a
= w,

c − b

c − a
= 1 − w

Our next trial point x is an additional fraction z beyond b,

x − b

c − a
= z,

where z = 1 − 2w.

Apply the scale similarity for x, the same fraction of the way from b to c as b from
a to c,

z

1 − w
= w,

one has w2 − 3w + 1 = 0, with the solution w = 3−
√

5
2

≈ 0.38197.
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Golden Search method
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Newton method

By taking the Taylor series ofr a multi-variable objective function, say two-variables,

f(x) ≈ f(xk) + ∇f(x)T |xk
[x − xk] +

1

2
[x − xk]T∇2f(x)T |xk

+ . . .

≈ f(xk) + gT
k [x − xk] +

1

2
[x − xk]T Hk[x − xk]

where

the gradient vector gk = ∇f(x)|xk
,

the Hessian matrix Hk = ∇2f(x)|xk
.

The Newton method tries to go straight to the zero of the gradient of the
approximate objective function,

gk + Hk[x − xk] = 0, x = xk − H−1
k gk,

By the updating rule

xk+1 = xk − H−1
k gk.
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Newton method: example

For the objective function,

f(x) = f(x1, x2) = x2
1 − x1x2 − 4x1 + x2

2 − x2,

the gradient function

g(x) = ∇f(x) = [
∂f

∂x1

∂f

∂x2
]T = [2x1 − x2 − 4 2x2 − x1 − 1]T

the Hessian matrix

Hk = ∇2f(x) =





2 −1

−1 2



 ,

by the iteration rule

xk+1 = xk − H−1
k gk,

with the initial guess x0 = [0 0]T , one has the solution for the minimum point
xk+1 = [3 2]T within a few iterations.
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Simulated Annealing method

All of the optimization methods discussed so far only apply for local extreme, not
for global extreme.

Annealing is the physical process of heating up a solid metal aboe its melting point,

and then cooling it down so slowly that the highly excited atoms can settle into a
(global) minimum energy state, yielding a single crystal with a regular structure.

Fast cooling by rapid quenching may result in widespread irregularities and defects
in the crystal structure, analogous to being too hasty to find the global minimum.
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Simulated Annealing method

The simulated annealing process can be implemented using the Boltzmann
probability distribution of an energy level E ≥ 0 at temperature T described by

p(E) = αexp(−E/KT )

with the Boltzmann constant K and α = 1/KT .

At high temperature the probability distribution curve is almost flat over a wide
range of E, implying that the system can be in a high energy state as equally well
as in a low energy state.

At low temperature the probability distribution curve gets higher/lower for
lower/higher E, implying that the system will most probably be in a low energy
state,

but still have a slim chance to be in a high energy state so that it can escape from
the local minimum energy state.
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Simulated Annealing method

Pick the initial guess x0,

Generating a random vector y having uniform distribution [−1, +1] and the same
dimension as the variable x, change the size of step ∆x by,

∆x = g−1
µ (y), g−1

µ (y) =
(1 + µ)|y| − 1

µ
,

where

µ = 10100(k/kmax)
q

.

The quenching factor q > 0 is made small/large for slow/fast quenching.
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Simulated Annealing method

As a selection ∆x is analogue to the energy state.

Like the Boltzmann distribution

p(E) = αexp(−E/KT ),

one has,

p(∆x) = exp[−(
k

kmax
)q ∆f

|f(x)|ǫf
].

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(
∆ 

x)

∆ f/|f(x)ε
f

as iteration increase

IPT-5260, Spring 2006 – p.11/27



Optimization of SHG pulse

∂A

∂z
=

η

2

∂A

∂T
+ iξ1

∂2A

∂T 2
− iρ1A∗B,

∂B

∂z
= −

η

2

∂B

∂T
+ iξ2

∂2A

∂T 2
− i∆kB − iρ1A2,
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Optimization of SHG pulse
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Optimization of SHG pulse
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Optimization of SHG pulse
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Optimization of SHG pulse
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Genetic Algorithm
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Genetic Algorithm

Initialize the Population

Reproduction by Selection

Crossover and/or Mutation

Evalution
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Genetic Algorithm for FBG
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Genetic Algorithm for FBG
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Genetic Algorithm for FBG
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Genetic Algorithm for FBG
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Genetic Algorithm for FBG
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Genetic Algorithm for FBG
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Constrained optimization

Lagrange Multiplier method

Penalty Function method
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Lagrange Multiplier method for FBG
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Lagrange Multiplier method for FBG
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