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Photon-number fluctuation and correlation of
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Quantum photon-number fluctuation and correlation of bound soliton pairs in mode-locked fiber lasers are
studied on the basis of the complex Ginzburg-Landau equation model. We find that, depending on their
phase difference, the total photon-number noise of the bound soliton pair can be larger or smaller than that
of a single soliton, and the two solitons in the soliton pair have a corresponding positive or negative photon-
number correlation. It is predicted for the first time to our knowledge that out-of-phase soliton pairs can
exhibit less noise as a result of negative correlation. © 2005 Optical Society of America
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Quantum solitons have attracted a great deal of re-
search interest in the contexts of nonlinear quantum
optics, condensed-matter physics, and quantum in-
formation science because of their remarkable non-
classical properties. In particular, quantum solitons
in optical fibers largely resemble their classical coun-
terparts but with additional quantum fluctuations
around the mean fields. It has been possible to
achieve squeezing through quantum solitons in opti-
cal fibers,"™ and they may also serve as a new plat-
form for quantum information applications.5_7

Quantum solitons are macroscopic optical wave
packets that offer a test bed for quantum optics and
quantum field theories. For the quantum nonlinear
Schrodinger equation (NLSE), exact soliton states
can be constructed as combinations of eigenstates of
the Hamiltonian of the one-dimensional Bose gas
with &-like (contact) interaction through the Bethe
ansatz method.* In the large photon-number limit,
which corresponds to the usual optical solitons gen-
erated by lasers, the many-photon wave function of
the quantum soliton is well approximated by a
single-photon =~ wave  function (the Hartree
approximation).3 Linearization around such a
soliton®? successfully explains experimental observa-
tions of quantum fluctuations for temporal fiber soli-
tons, provided that optical loss and higher-order ef-
fects are negligible.lo_14

It is well known that the force between adjacent
solitons in the NLSE model is attractive or repulsive5
depending on the phase difference between them.!
Stationary bound soliton states in this conservative
model do not exist. Formation of effectively stable
double-, triple-, and multiple-soliton bound states
was predicted in models based on the complex
Ginzburg-Landau equation'’®® (CGLE) and ob-
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served experimentally in various passively mode-
locked fiber lasers.'®*! The separation between the
solitons in these bound states is quantized, taking a
set of discrete values. The amplitude noise in triplet
bound states generated by a stretched-pulse
ytterbium-doped double-clad fiber laser was observed
to be reduced compared with the single soliton
pulse.22 It is an issue of straightforward interest to
study the noise of these bound solitons and to under-
stand why the mode-locked fiber lasers operate more
stably in the bound-state regime.

The passively mode-locked fiber lasers are quite ac-
curately described by the cubic-quintic CGLE. In a
normalized form, the equation is

iU, + (D/2)U, +|UPU=iéU +idU]PU +iBU,,

+ip|U*U -»|U*U, (1)
where U is the local amplitude of the electromagnetic
wave, z is the propagation distance, ¢ is the retarded
time, and D=+1 and D=-1 correspond, respectively,
to anomalous and normal dispersion. Besides the
group-velocity dispersion and the Kerr effect, which
are accounted for by conservative terms on the left-
hand side of Eq. (1), the model also includes the quin-
tic correction to the Kerr nonlinearity, through the
coefficient v, and nonconservative terms. The coeffi-
cients 8, €, u, and B account for the linear, cubic,
and quintic loss or gain, and spectral filtering.

In the CGLE model, with suitable parameters, de-
generate bound-state soliton pairs are known to exist
through the balance between the gain and the loss, in
the form'®Y" Uz,t)=Uy(z,t+p)e "2+ Uy(z,t-p)e'?2,
where U, is a single-soliton solution and p and 6 are
the separation and the phase difference between the
solitons. In this Letter we focus on the consideration
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of three fundamentally different cases, corresponding
to the bound states with the same separation and
amplitude, and =0, 7/2, 7 (the in-phase, orthogonal,
and out-of-phase pair, respectively).

We compute the quantum fluctuations of these soli-
ton pairs by dint of a numerically implemented back-
propagation method,?® which may be summarized as
follows. First, we replace the classical function U(z,t)
in Eq. (1) with the quantum-field operator variable,

U(z,t), which satisfies the equal-coordinate Bosonic
communication relations. Next, the equation is lin-
earized around the classical solution through the
substitution of Ul(z,t)=Uy(z,t)+i(z,t), assuming
large photon numbers in the solitons. Then a zero-
mean additional noise operator, 7(z,?), is introduced
to make the quantum perturbation fields in the lin-
earized equation satisfy the Bosonic communication
relations (see Ref. 24 for more detail). By imposing
suitable correlation functions for the noise operator,
the minimum quantum noise in the considered dissi-
pative model is introduced. Therefore the results re-
ported here represent a lower limit required by the
fundamental principles of quantum mechanics.

Figure 1 shows the photon-number correlation pa-
rameter for the two solitons in the bound soliton pair,
which is defined as

Cio= <3AN1AN21)/ \/(AN%XAN@-

Here, the colons stand for the normal ordering of the

operators and AN , are perturbations of the photon-
number operators for the two solitons, which are
numbered (1,2) according to their position in the time
domain. Initially, the two solitons are assumed to be
uncorrelated, with fluctuations around each soliton
obeying the coherent-state statistics. For the in-
phase pair, the photon-number correlation between
the solitons gradually increases to positive values
and eventually saturates around C;5,=0.36. But for
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Fig. 1. (A) Photon-number correlation parameter, C;,, for
bound-state soliton pairs with different relative phases. (B)
Contour plot of the classical solution for the bound state.
All the results are presented for D=1, §=-0.01, e=1.8, 3
=0.5, u=-0.05, and »=0 in the CGLE, Eq. (1).
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Fig. 2. Time-domain photon-number correlation patterns,
7y, for bound soliton pairs with different relative phases,
after the normalized propagation distance z=0.4. (A) 6=0,
(B) 6=7/2, and (C) 6=m. Time-division length A¢=0.3.

the out-of-phase pair, C;5 gradually decreases to
negative values and then saturates, too. In between,
the correlation parameter for the case of 6=7/2 re-
mains close to zero as long as the computation is run.
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For the former two cases, the saturation of the
photon-number correlation parameter is due to the
nonconservative effects in the CGLE model.

To further demonstrate the behavior difference of
the photon-number correlation for soliton pairs with
different relative phases, in Fig. 2 we display the
time-domain photon-number correlation patterns for
them. The plotted correlation coefficients, 7;, are de-
fined through the normally ordered covariance,

7= <:AﬂiAﬂj:>/\/AfLi2Afljzy (2)

where A7; is the photon-number fluctuation in the jth
time slot At;,

A= f At[Ug(z,0)it(z,8) + Up(z,0)i(z,1)].
At
Here the integral is taken over the given time slot,
with the same time-division length Af. Clearly, in
Fig. 2(A) one can see that there is a strong positive-
correlation band connecting the quantum correlation
patterns of the bound solitons when they are in
phase, 6=0. In Fig. 2(C) there exists a negative-
correlation pattern between two solitons for the out-
of-phase case, 6=m. Moreover, for the case of §=7/2,
in Fig. 2(B), the correlation patterns of bound soli-
tons are almost isolated. In classical physics, in-
phase and out-of-phase fields will lead, respectively,
to constructive and destructive interference. Here we
observe a similar effect for the quantum noise. What
is more important, in Fig. 3 we compute the total
photon number noise of the bound soliton pair and
compare it with the case of a single soliton (these re-
sults are amenable to straightforward experimental
verification). As one may expect, the photon-number
noise of the in-phase pair is larger than that for the
single soliton, which may be explained as fluctuation
enhancement due to constructive interference. On
the other hand, the noise is reduced for the out-of-
phase pair as the result of destructive interference.
The orthogonal soliton pair with 6=#/2 may be
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Fig. 3. Comparison of the total photon-number fluctua-
tions in the bound soliton pairs with different relative
phases (three solid curves), and around the single soliton
(dashed curve).
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viewed, in the first approximation, as two indepen-
dent single solitons, which explains why it features
almost the same noise level as the single soliton.

In conclusion, we have presented theoretical re-
sults for the photon-number correlation and total
photon-number noise for bound-state soliton pairs in
the model of the complex cubic-quintic Ginzburg—
Landau equation. Cases of in-phase, orthogonal, and
out-of-phase soliton pairs have been considered in de-
tail. We conclude that the interference of the quan-
tum fluctuations in the soliton pair is constructive or
destructive depending on the classical relative phase
of the solitons. An important consequence of the re-
sults is that the operation regime of the fiber laser
should be more stable when it is based on the out-of-
phase soliton pairs.
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