1, A brief review about Quantum Mechanics

- 1. Basic Quantum Theory
- 2. Time-Dependent Perturbation Theory
- 3. Simple Harmonic Oscillator
- 4. Quantization of the Field
- 5. Canonical Quantization

Ref:

Ch. ² in "Mesoscopic Quantum Optics," by Y. Yamamoto and A. Imamoglu.

Ch. ² in "Introductory Quantum Optics," by C. Gerry and P. Knight.

Ch. ¹ in "Quantum Optics," by D. Wall and G. Milburn.

Ch. ⁴ in "The Quantum Theory of Light," by R. Loudon.

Ch. 1, 2, 3, 6 in "Mathematical Methods of Quantum Optics," by R. Puri.

Ch. 3 in "Elements of Quantum Optics," by P. Meystre and M. Sargent III.

Ch. 9 in "Modern Foundations of Quantum Optics," by V. Vedral.

ational Tsing

Postulates of Quantum Mechanics

Postulate ¹: An isolated quantum system is described by ^a vector in ^a Hilbert space. Twovectors differing only by ^a multiplying constant represent the same physical state.

9 quantum state:
$$
|\Psi\rangle = \sum_i \alpha_i |\psi_i\rangle
$$
,

- completeness: $\sum_i |\psi_i\rangle\langle \psi_i| = I,$
- probability interpretation (projection): $\Psi(x) = \langle x|\Psi\rangle,$
- operator: $\hat{A}|\Psi\rangle = |\Phi\rangle$,
- representation: $\langle \phi | \hat{A} | \psi \rangle$,

$$
\text{adjoint of } \hat{A}: \langle \phi | \hat{A} | \psi \rangle = \langle \psi | \hat{A}^{\dagger} | \phi \rangle^*,
$$

- hermitian operator: $\hat{H}=\hat{H}^{\dagger},$
- Э unitary operator: $\hat{U}\hat{U}^{\dagger}=\hat{U}^{\dagger}\hat{U}=I.$

Ch. 1-5 in "The Principles of Quantum Mechanics," by P. Dirac. **Ch. ¹** in "Mathematical Methods of Quantum Optics," by R. Puri. National Tsing Hua Ur

Operators

- For a unitary operator, $\langle \psi_i|\psi_j\rangle = \langle \psi_i|\hat{U}^\dagger\hat{U}\psi_j\rangle$, the set of states $\hat{U}|\psi\rangle$ preserves the scalar product.
- \hat{U} can be represented as \hat{U} $=$ exp $(i\hat{H})$ if \hat{H} is hermitian.
- Э normal operator: $[\hat{A},\hat{A}^{\dagger}]=0,$ the eigenstates of only a normal operator are orthonormal.

i.e. hermitian and unitary operators are normal operators.

Э The sum of the diagonal elements $\langle\phi|\hat{A}|\psi\rangle$ is call the *trace* of \hat{A} ,

$$
\text{Tr}(\hat{A}) = \sum_i \langle \phi_i | \hat{A} | \phi_i \rangle,
$$

The value of the trace of an operator is independent of the basis.

- The eigenvalues of a hermitian operator are real, $\hat{H}|\Psi\rangle = \lambda |\Psi\rangle$, where λ is real.
- Э If \hat{A} and \hat{B} do not commute then they do not admit a common set of eigenvectors.

Postulate ²: To each dynamical variable there corresponds ^a unique hermitian operator. **Postulate 3:** If \hat{A} and \hat{B} are hermitian operators corresponding to classical dynamical variables a and b , then the commutator of \hat{A} and \hat{B} is given by

$$
[\hat{A}, \hat{B}] \equiv \hat{A}\hat{B} - \hat{B}\hat{A} = i\hbar\{a, b\},
$$

where $\{a, b\}$ is the classical Poisson bracket.

Postulate 4: Each act of measurement of an observable \hat{A} of a system in state $|\Psi\rangle$ collapses the system to an eigenstate $|\psi_i\rangle$ of \hat{A} with probability $|\langle \phi_i|\Psi\rangle|^2$.The average or the expectation value of \hat{A} is given by

$$
\langle \hat{A} \rangle = \sum_{i} \lambda_i |\langle \phi_i | \Psi \rangle|^2 = \langle \Psi | \hat{A} | \Psi \rangle,
$$

where λ_i is the eigenvalue of \hat{A} corresponding to the eigenstate $|\psi_i\rangle.$

Uncertainty relation

- Э Non-commuting observable do not admit common eigenvectors.
- Э Non-commuting observables can not have definite values simultaneously.
- Э Simultaneous measurement of non-commuting observables to an arbitrary degree of accuracy is thus *incompatible*.

$$
\text{Variance: } \Delta \hat{A}^2 = \langle \Psi | (\hat{A} - \langle \hat{A} \rangle)^2 | \Psi \rangle = \langle \Psi | \hat{A}^2 | \Psi \rangle - \langle \Psi | \hat{A} | \Psi \rangle^2.
$$

$$
\Delta A^2 \Delta B^2 \ge \frac{1}{4} [\langle \hat{F} \rangle^2 + \langle \hat{C} \rangle^2],
$$

where

$$
[\hat{A}, \hat{B}] = i\hat{C}
$$
, and $\hat{F} = \hat{A}\hat{B} + \hat{B}\hat{A} - 2\langle\hat{A}\rangle\langle\hat{B}\rangle$.

Take the operators $\hat{A}=\hat{q}$ (position) and $\hat{B}=\hat{p}$ (momentum) for a free particle,

$$
[\hat{q}, \hat{p}] = i\hbar \to \langle \Delta \hat{q}^2 \rangle \langle \Delta \hat{p}^2 \rangle \ge \frac{\hbar^2}{4}.
$$

Uncertainty relation

- Э Schwarz inequality: $\langle \phi | \phi \rangle \langle \psi | \psi \rangle \ge \langle \phi | \psi \rangle \langle \psi | \phi \rangle$.
- Э Equality holds if and only if the two states are *linear dependent*, $|\psi\rangle=\lambda|\phi\rangle$, where λ is ^a complex number.
- Э uncertainty relation,

$$
\Delta A^2 \Delta B^2 \ge \frac{1}{4} [\langle \hat{F} \rangle^2 + \langle \hat{C} \rangle^2],
$$

where

万浯鱼

$$
[\hat{A}, \hat{B}] = i\hat{C}
$$
, and $\hat{F} = \hat{A}\hat{B} + \hat{B}\hat{A} - 2\langle\hat{A}\rangle\langle\hat{B}\rangle$.

- the operator \hat{F} is a measure of correlations between \hat{A} and \hat{B} .
- Э define two states,

$$
|\psi_1\rangle = [\hat{A} - \langle \hat{A} \rangle] |\psi\rangle, \qquad |\psi_2\rangle = [\hat{B} - \langle \hat{B} \rangle] |\psi\rangle,
$$

the uncertainty product is minimum, i.e. $|\psi_1\rangle = -i\lambda|\psi_2\rangle,$

$$
[\hat{A} + i\lambda \hat{B}]|\psi\rangle = [\langle \hat{A} \rangle + i\lambda \langle \hat{B} \rangle]|\psi\rangle = z|\psi\rangle.
$$

the state $|\psi\rangle$ is a minimum uncertainty state. In the state $|\psi\rangle$ iPT5340, Fall '06 – p.6/43

Uncertainty relation

Э if $\mathsf{Re}(\lambda)=0, \, \hat{A}+i\lambda\hat{B}$ is a normal operator, which have orthonormal eigenstates.

the variances,

$$
\Delta \hat{A}^2 = -\frac{i\lambda}{2} [\langle \hat{F} \rangle + i \langle \hat{C} \rangle], \qquad \Delta \hat{B}^2 = -\frac{i}{2\lambda} [\langle \hat{F} \rangle - i \langle \hat{C} \rangle],
$$

set $\lambda=\lambda_r+ i\lambda_i$,

$$
\Delta \hat{A}^2 = \frac{1}{2} [\lambda_i \langle \hat{F} \rangle + \lambda_r \langle \hat{C} \rangle], \qquad \Delta \hat{B}^2 = \frac{1}{|\lambda|^2} \Delta \hat{A}^2, \qquad \lambda_i \langle \hat{C} \rangle - \lambda_r \langle \hat{F} \rangle = 0.
$$

- if $|\lambda|=1$, then $\Delta \hat{A}^2=\Delta \hat{B}^2$ $\texttt{^2}$, equal variance minimum uncertainty states.
- if $|\lambda|=1$ along with $\lambda_i=0$, then $\Delta \hat{A}^2=\Delta \hat{B}^2$ and $\langle \hat{F}\rangle=0$, uncorrelated equal variance minimum uncertainty states.
- if λ_r If \hat{C} is a positive operator then the minimum uncertainty states exist only if $\lambda_r>0.$ $\neq 0$, then $\langle \hat{F} \rangle = \frac{\lambda_i}{\lambda_r} \langle \hat{C} \rangle, \qquad \Delta \hat{A}^2$ $^2=\frac{|\lambda|}{2\lambda}$ 2 $\frac{|\lambda|^2}{2\lambda_r}\langle\hat{C}\rangle, \qquad \Delta\hat{B}^2$ $^2=\frac{1}{21}$ $\frac{1}{2\lambda_{\tau}}\langle \hat{C} \rangle.$

Uncertainty relation for \hat{q} and \hat{p}

Э take the operators $\hat{A}=\hat{q}$ (position) and $\hat{B}=\hat{p}$ (momentum) for a free particle,

$$
[\hat{q}, \hat{p}] = i\hbar \to \langle \Delta \hat{q}^2 \rangle \langle \Delta \hat{p}^2 \rangle \ge \frac{\hbar^2}{4}.
$$

define two states, $|\psi_1\rangle = [\hat{A} - \langle \hat{A} \rangle] |\psi\rangle \equiv \hat{\alpha} |\psi\rangle, \qquad |\psi_2\rangle = [\hat{B} - \langle \hat{B} \rangle] |\psi\rangle \equiv \hat{\beta} |\psi\rangle.$

for uncorrelated minimum uncertainty states,

$$
\hat{\alpha}|\psi\rangle = -i\lambda\hat{\beta}|\psi\rangle, \qquad \langle\psi|\hat{\alpha}\hat{\beta} + \hat{\beta}\hat{\alpha}|\psi\rangle = 0,
$$

where λ is a real number.

if $\hat{A}=\hat{q}$ and $\hat{B}=\hat{p}$, we have $(\hat{q}-\langle\hat{q}\rangle)|\psi\rangle=-i\lambda(\hat{p}-\langle\hat{p}\rangle)|\psi\rangle.$

Э the wavefunction in the q -basis is, i.e. $\hat{p}=-i\hbar\partial/\partial q,$

$$
\psi(q) = \langle q|\psi\rangle = \frac{1}{(2\pi \langle \Delta \hat{q}^2 \rangle)^{1/4}} \exp[\frac{i\langle \hat{p} \rangle q}{\hbar} - \frac{(q - \langle \hat{q} \rangle)^2}{4 \langle \Delta \hat{q}^2 \rangle}],
$$

in the p -basis, $\psi(p) = \langle p|\psi\rangle = \frac{1}{(2\pi \langle \Delta \hat{p} \rangle)^{1/2}}$ $\frac{1}{(2\pi\langle\Delta\hat{p}^2\rangle)^{1/4}}$ exp $[-\frac{i}{\hbar}(\langle\hat{q}\rangle (p-\langle\hat{p}\rangle) \frac{(p-\langle \hat{p} \rangle)}{p}$ 2 $\frac{p-\langle p \rangle}{4\langle\Delta\hat{p}^2\rangle}$].

Minimum Uncertainty State

$$
\bullet \quad (\hat{q}-\langle\hat{q}\rangle)|\psi\rangle=-i\lambda(\hat{p}-\langle\hat{p}\rangle)|\psi\rangle
$$

3 if we define
$$
\lambda = e^{-2r}
$$
, then

$$
(e^r \hat{q} + ie^{-r} \hat{p}) |\psi\rangle = (e^r \langle \hat{q} \rangle + ie^{-r} \langle \hat{p} \rangle) |\psi\rangle,
$$

- the minimum uncertainty state is defined as an *eigenstate* of a non-Hermitian operator e^r $r_{\hat{q}} + i e^{-r}$ ${}^{r}\hat{p}$ with a c-number eigenvalue e^{r} $r\langle \hat{q} \rangle + i e^{-r}$ $^{r}\langle\hat{p}\rangle$.
- Э the variances of \hat{q} and \hat{p} are

$$
\langle \Delta \hat{q}^2 \rangle = \frac{\hbar}{2} e^{-2r}, \qquad \langle \Delta \hat{p}^2 \rangle = \frac{\hbar}{2} e^{2r}.
$$

Gaussian Wave Packets

Э in the $x\text{-}\mathsf{space},$

$$
\Psi(x) = \langle x | \Psi \rangle = [\frac{1}{\pi^{1/4} \sqrt{d}}] \exp[i k x - \frac{x^2}{2d^2}]
$$

, which is a plane wave with wave number k and width $d.$

Э the expectation value of \hat{X} is zero for symmetry,

$$
\langle \hat{X} \rangle = \int_{-\infty}^{\infty} \mathrm{d} x \langle \Psi | x \rangle \hat{X} \langle x | \Psi \rangle = 0.
$$

9 variation of
$$
\hat{X}
$$
, $\langle \Delta \hat{X}^2 \rangle = \frac{d^2}{2}$.

the expectation value of $\hat{P},\,\langle\hat{P}\rangle=\hbar k$, i.e. $\langle x|\hat{P}|\Psi\rangle=-i\hbar\frac{\partial}{\partial x}$ $\frac{\partial}{\partial x}\langle x|\Psi\rangle.$

9 variation of
$$
\hat{P}
$$
, $\langle \Delta \hat{P}^2 \rangle = \frac{\hbar^2}{2d^2}$.

- Э 2the Heisenberg uncertainty product is, $\langle\Delta\hat{X}^2\rangle\langle\Delta\hat{P}^2$ \hbar $\ket{^2} =$ $\overline{4}$.
- Э a Gaussian wave packet is called a *minimum uncertainty wave packet*.

Phase diagram for coherent states

Uncertainty Principle: $\Delta \hat{X_1} \Delta \hat{X_2} \geq 1.$

- 1. Coherent states: $\Delta \hat{X_1} = \Delta \hat{X_2} = 1$,
- 2. Amplitude squeezed states: $\Delta \hat{X_1} < 1,$
- 3. Phase squeezed states: $\Delta \hat{X_2} < 1,$
- 4. Quadrature squeezed states.

Vacuum, Coherent, and Squeezed states

phase-squeezed quad-squeezed

Generations of Squeezed States

Nonlinear optics:

Generation and Detection of Squeezed Vacuum

- 1. Balanced Sagnac Loop (to cancel the mean field),
- 2. Homodyne Detection.

Schrödinger equation

Postulate 5: The time evolution of a state $|\Psi\rangle$ is governed by the Schrödinger equation,

$$
i\hbar\frac{\mathsf{d}}{\mathsf{d} t}|\Psi(t)\rangle=\hat{H}(t)|\Psi(t)\rangle,
$$

where $\hat{H}(t)$ is the Hamiltonian which is a hermitian operator associated with the total energy of the system.

The solution of the Schrödinger equation is,

$$
|\Psi(t)\rangle = \overleftarrow{T} \exp[-\frac{i}{\hbar} \int_{t_0}^t \mathrm{d}\tau \hat{H}(\tau)] |\Psi(0)\rangle \equiv \hat{U}_S(t,t_0) |\Psi(t_0),
$$

where $\overleftarrow{(-)}$ (T) is the time-ordering operator. **Schrodinger picture ¨** :

$$
|\Psi(r,t)\rangle = \sum_i \alpha_i(t) |\psi_i(r)\rangle.
$$

Time Evolution of ^a Minimum Uncertainty State

3 the Hamiltonian for a free particle,
$$
\hat{H} = \frac{\hat{p}^2}{2m}
$$
, then

$$
\hat{U} = \exp(-\frac{i}{\hbar}\frac{\hat{p}^2}{2m}t).
$$

the Schrödinger wavefunction,

立清革大學

National Tsing Hua Universi

$$
\Psi(q,t) = \langle q|\hat{U}|\Psi(0)\rangle = \int_{-\infty}^{\infty} dp \langle |p\rangle \Psi(p,0) exp(-\frac{i}{\hbar} \frac{p^2}{2m}t),
$$

$$
= \frac{1}{(2\pi)^{1/4} (\Delta q + i\hbar t/2m\Delta q)^{1/2}} exp[-\frac{q^2}{4(\Delta q)^2 + 2i\hbar t/m}],
$$

where $\Delta q=\hbar/2\langle\hat{p}^2\rangle$ $^{2}\rangle$ 1 $\frac{1}{\sqrt{2}}$ 2 , and $\langle q|p\rangle =\frac{\cdot}{\sqrt{2}}$ 1 $\frac{1}{2\pi\hbar}$ exp $(\frac{ipq}{\hbar}$ $\frac{pq}{\hbar}).$

- even though the momentum uncertainty $\langle \hat{p}^2 \rangle$ $^2\rangle$ is preserved,
- Э the position uncertainty increases as time develops,

$$
\langle \Delta \hat{q}^2(t) \rangle = (\Delta \hat{q})^2 + \frac{\hbar^2 t^2}{4m^2 (\Delta q)^2}
$$

Gaussian Optics

Э Wave equation: In free space, the vector potential, A, is defined as $A(r,t) = \vec{n}\psi(x,y,z)e^{j\omega t}$, which obeys the vector wave equation,

$$
\nabla^2 \psi + k^2 \psi = 0.
$$

The paraxial wave equation: $\psi(x,y,z) = u(x,y,z)e^{-jkz}$, one obtains

$$
\nabla_T^2 u - 2jk \frac{\partial u}{\partial z} = 0,
$$

where $\nabla_T \equiv \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y}$.

This solution is proportional to the impulse response function (Fresnel kernel),

$$
h(x,y,z) = \frac{j}{\lambda z}e^{-jk[(x^2+y^2)/2z]},
$$

i.e.
$$
\nabla_T^2 h(x, y, z) - 2jk \frac{\partial h}{\partial z} = 0.
$$

Gaussian Optics

Э The solution of the scalar paraxial wave equation is,

$$
u_{00}(x,y,z) = \frac{\sqrt{2}}{\sqrt{\pi}w} \exp(j\phi) \exp(-\frac{x^2 + y^2}{w^2}) \exp[-\frac{jk}{2R}(x^2 + y^2)],
$$

9 beam width
$$
w^2(z) = \frac{2b}{k} (1 + \frac{z^2}{b^2} = w_0^2 [1 + (\frac{\lambda z}{\pi w_0^2})^2],
$$

3 radius of phase front
$$
\frac{1}{R(z)} = \frac{z}{z^2 + b^2} = \frac{z}{z^2 + (\pi w_0^2/\lambda)^2}
$$

phasedelay
$$
\tan \phi = \frac{z}{b} = \frac{z}{\pi w_0^2/\lambda}
$$
,

-4

00.25 0.5

-2

x

2

-4

4

-2

24

z

 -15

 -30

-20

 -10

 -5 ⁰ ⁵ ¹⁰ ¹⁵ z

With the minimum beam radius
$$
w_0 = \sqrt{2b}k
$$
.

\n

万 National Tsing Hua University

Time Evolution of ^a Minimum Uncertainty State

- Э Uncertainty relation and Fourier Transform,
- Э Minimum Uncertainty State and Gaussian beams,
- Э Minimum Uncertainty State and Chirpless optical short pulse,
- Э Non-classical state,

Heisenberg equation

Э The solution of the Schrödinger equation is, ←− \overleftarrow{T} exp $[-\frac{i}{\hbar}\int_{t_{0}}^{t}% \overrightarrow{r}(\overrightarrow{r})]$ $\mathrm{d}\tau \hat{H}(\tau)]|\Psi(0)\rangle\equiv \hat{U}_S(t,t_0)|\Psi(t_0).$ $|\Psi(t)\rangle =$

The quantities of physical interest are the expectation values of operators,

$$
\langle \Psi(t)|\hat{A}|\Psi(t)\rangle = \langle \Psi(t_0)|\hat{A}(t)|\Psi(t_0)\rangle,
$$

where

$$
\hat{A}(t) = \hat{U}_{S}^{\dagger}(t, t_{0}) \hat{A} \hat{U}_{S}(t, t_{0}).
$$

The time-dependent operator $\hat{A}(t)$ evolves according to the Heisenberg equation,

$$
i\hbar \frac{\mathsf{d}}{\mathsf{d}t} \hat{A}(t) = [\hat{A}, \hat{H}(t)].
$$

- Schrödinger picture: time evolution of the states.
- Э Heisenberg picture: time evolution of the operators.

€ Consider a system described by $\ket{\Psi(t)}$ evolving under the action of a hamiltonian $\hat{H}(t)$ decomposable as,

$$
\hat{H}(t) = \hat{H}_0 + \hat{H}_1(t),
$$

where \hat{H} $_{\rm 0}$ is time-independent.

၁ Define

$$
|\Psi_I(t)\rangle = \exp(i\hat{H}_0 t/\hbar)|\Psi(t)\rangle,
$$

then $|\Psi_I(t)\rangle$ evolves accords to

$$
i\hbar \frac{\mathrm{d}}{\mathrm{d}t}|\Psi_I(t)\rangle = \hat{H}_I(t)|\Psi_I(t)\rangle,
$$

where

$$
\hat{H}_I(t) = \exp(i\hat{H}_0 t/\hbar)\hat{H}_1(t)\exp(-i\hat{H}_0 t/\hbar).
$$

The evolution is in the i<mark>nteraction picture</mark> generated by \hat{H} 0.

七學 National Tsing Hua Uni

Similarity Transformations

- Э The Heisenberg picture is ^a "natural" picture in the sense that the observables(electric fields, dipole moment, etc.) are time-dependent, exactly as in classical physics.
- Э In the interaction picture, we have eliminated the part of the problem whosesolution we already knew.
- Э The interaction picture is particularly helpful in visualizing the response of ^atwo-level atom to light.

$$
\hat{H}_I(t) = \exp(i\hat{H}_0 t/\hbar)\hat{H}_1(t)\exp(-i\hat{H}_0 t/\hbar).
$$

- similarity transformation, \hat{S}^{-1} $A^1 \hat{A} \hat{S} = \hat{B}$, where \hat{S} is a non-singular operator,
- Э consider the similarity transformation,

itional Tsing

$$
\hat{A}(\theta) \equiv \exp(-\theta \hat{Z}) \hat{A} \exp(\theta \hat{Z}),
$$

then the differentiation of this equation with respect to θ yields,

$$
\frac{\mathsf{d}}{\mathsf{d}\theta}\hat{A}(\theta) = \exp(-\theta \hat{Z})[\hat{A}, \hat{Z}]\exp(\theta \hat{Z}).
$$

Paradoxes of Quantum Theory

- Э Geometric phase
- Э Measurement theory
- Э Schrödinger's Cat paradox
- Э Einstein-Podolosky-Rosen paradox
- Э Local Hidden Variables theory

- Э multi-time joint probability: $P(\{|\phi_i\rangle, t_i\})$, the probability that a system in a state $|\phi_0(t_0)\rangle$ at t_0 is found in the state $|\phi_i\rangle$ at t_i , where $i=1,\ldots,n.$
- Э at t_1 : the state is $\hat{U}_S(t_1, t_0)|\phi_0(t_0)\rangle.$
- Э projection on $|\phi_1\rangle$ is

$$
|\phi_1(t_1)\rangle = |\phi_1\rangle\langle\phi_1|\hat{U}_S(t_1,t_0)|\phi_0(t_0)\rangle.
$$

Э the sate $|\phi_1(t_1)\rangle$ then evolves till time t_2 to $\hat{U}_S(t_2,t_1)|\phi_1(t_1)\rangle$, with the projection,

$$
|\phi_2(t_2)\rangle = |\phi_2\rangle\langle\phi_2|\hat{U}_S(t_2,t_1)|\phi_1(t_1)\rangle.
$$

continuing till time $t_n,$

$$
P(\{|\phi_i\rangle, t_i\}) = |\prod_{i=1}^n \langle \phi_i | \hat{U}_S(t_i, t_{i-1}) | \phi_{i-1} \rangle|^2.
$$

- Э consider a time-independent hamiltonian, $\hat{U}_S(t_i,t_j) = \textsf{exp}[-i\hat{H}(t_i-t_j)/\hbar].$
- Э let the observation be spaced at equal time intervals, $t_i-t_{i-1}=t/n$.
- Э the probability that at each time t_i the system is observed in its initial state $|\phi_0\rangle$ is,

$$
P({\lbrace |\phi_0\rangle, t_i \rbrace}) = |\langle \phi_0 | \exp[-i\hat{H}t/n\hbar] |\phi_0\rangle|^{2n}
$$

$$
\begin{array}{ll}\n\bullet\quad \ \ \, \text{let } t/n \ll 1,\\ \n\hspace{2.5cm}|\langle\phi_0|\exp[-i\hat{H}t/n\hbar]|\phi_0\rangle|^2 \approx 1-(\frac{t}{n\hbar})^2\Delta\hat{H}^2,\\ \n\text{where } \Delta\hat{H}^2=\langle\phi_0|\hat{H}^2|\phi_0\rangle-\langle\phi_0|\hat{H}|\phi_0\rangle^2.\n\end{array}
$$

the joint probability for n equally spaced observations becomes,

$$
P({\lbrace |\phi_0\rangle, t_i \rbrace}) = [1 - (\frac{t}{n\hbar})^2 \Delta \hat{H}^2]^n.
$$

$$
P(\{|\phi_0\rangle, t\}) = 1 - (\frac{t^2}{\hbar^2})\Delta \hat{H}^2.
$$

- the probability of finding the system in its initial state at ^a given time is **increased** if it is observed repeatedly at intermediate times.
- G for $n\gg 1,$

$$
P(\{|\phi_0\rangle, t_i\}) = [1-(\frac{t}{n\hbar})^2\Delta \hat{H}^2]^n \approx \exp[-t^2\Delta \hat{H}^2/n\hbar^2],
$$

the system under observation does not evolve.

sfeffect was invoked to predict the inhibition of decay of an unstable system.

- Э Quantum Zeno effect
- Э Quantum Anti-Zeno effect
- Э Quantum Super-Zeno effect

Time-dependent perturbation theory

- Э with the interaction picture, $\hat{H}=\hat{H}_{0}+\hat{H}_{1}.$
- Э the state, $\Psi(r,t)=\sum_{n}C_{n}(t)u_{n}(r)e^{-i\omega_{n}t}$ with the energy eigenvalue $\hat{H}_0u_n(r)=\hbar\omega_nu_n(r).$
- Э the wavefunction has the initial value, $\Psi(r,0)=u_i(r)$, i.e. $C_i(0)=1, C_{n\neq i}=0.$
- Э the equation of motion for the probability amplitude $C_n(t)$ is,

$$
\begin{array}{rcl}\n\dot{C}_n(t) & = & -\frac{i}{\hbar} \sum_m \langle n | \hat{H}_1 | m \rangle e^{i\omega_{nm} t} C_m(t), \\
& \approx & \dot{C}_n \langle 1 \rangle(t) = -i\hbar^{-1} \langle n | \hat{H}_1 | i \rangle e^{i\omega_{ni} t}\n\end{array}
$$

if $\hat{H}_{1}=V_{0}$ time independent, we have

$$
C_n(t) \approx C_n^{(1)}(t) = -i\hbar^{-1} \langle n|\hat{H}_1|i\rangle \frac{e^{i\omega_{ni}t} - 1}{i\omega_{ni}} = -i\hbar^{-1} \langle n|\hat{H}_1|i\rangle e^{i\omega_{ni}t/2} \frac{\sin(\omega_{ni}t/2)}{\omega_{ni}/2}
$$

Ch. 3 in "Elements of Quantum Optics," by P. Meystre and M. Sargent III.

Ch. 5 in "Modern Quantum Mechanics," by J. Sakurai.

Rotational-Wave Approximation

Э if $\hat{H}_{1}=V_{0}\cos\nu t$, we have

$$
C_n(t) \approx C_n^{(1)}(t) = -i\frac{V_{ni}}{2\hbar} \left[\frac{e^{i(\omega_{ni}+\nu)t} - 1}{i(\omega_{ni}+\nu)} + \frac{e^{i(\omega_{ni}-\nu)t} - 1}{i(\omega_{ni}-\nu)}\right],
$$

where $V_{ni}=$ $= \langle n|\hat{H}_1|i\rangle.$

- Э if near resonance $\omega_{ni}\approx\nu$, we can neglect the terms with $\omega_{ni}+\nu.$ This is called the **rotational-wave approximation**.
- Э making the rotational-wave approximation,

$$
|C_n^{(1)}|^2 = \frac{|V_{ni}|^2}{4\hbar^2} \frac{\sin^2[(\omega_{ni} - \nu)t/2]}{(\omega_{ni} - \nu)^2/4}.
$$

Э we have the same transition probability as the dc case, provided we substitute $\omega_{ni} - \nu$ for $\omega_{ni}.$

Fermi-Golden rule

Э the total transition probability from an initial state to the final state is,

$$
P_T \approx \int {\cal D}(\omega) |C_n^{(1)}|^2 {\rm d}\omega,
$$

where $D(\omega)$ is the density of state factor.

$$
P_T = \int \mathrm{d}\omega D(\omega) \frac{|V(\omega)|^2}{4\hbar^2} t^2 \frac{\sin^2[(\omega_{ni} - \nu)t/2]}{[(\omega_{ni} - \nu)t/2]^2}.
$$

consider resonance condition $\omega=\nu,$

$$
P_T \approx D(\nu) \frac{|V(\nu)|^2}{4\hbar^2} t^2 \int d\omega \frac{\sin^2[(\omega_{ni} - \nu)t/2]}{[(\omega_{ni} - \nu)t/2]^2},
$$

=
$$
\frac{\pi}{2\hbar^2} D(\nu) |V(\nu)|^2 t.
$$

the transition rate, $\Gamma = \frac{{\rm d}P_T}{{\rm d}t} = - \frac{{\rm d}}{{\rm d}t} |C_n^{(1)}|^2 = \frac{\pi}{2\hbar^2} D(\nu) |V(\nu)|^2,$ which is a constant in time.

Phase-Matching condition

Э Second-Harmonic Generation

Simple Harmonic Oscillator in Schrödinger picture

2Э one-dimensional harmonic oscillator, $\hat{H} = \frac{p}{2\epsilon}$ $\frac{p^2}{2m}+\frac{1}{2}$ $\frac{1}{2}kx^2$,

Schrödinger equation,

$$
\frac{d^2}{dx^2}\psi(x) + \frac{2m}{\hbar^2}[E - \frac{1}{2}kx^2]\psi(x) = 0,
$$

with dimensionless coordinates $\xi=\sqrt{m\omega/\hbar}x$ and dimensionless quantity $\epsilon = 2E/\hbar \omega$, we have

$$
\frac{\mathrm{d}^2}{\mathrm{d}\eta^2}\psi(x) + \left[\epsilon - \xi^2\right]\psi(x) = 0,
$$

which has Hermite-Gaussian solutions,

$$
\psi(\xi) = \mathsf{H}_n(\xi) e^{-\xi^2/2}, \qquad E = \frac{1}{2} \hbar \omega \epsilon = \hbar \omega (n + \frac{1}{2}),
$$

where $n = 0, 1, 2, \ldots$

Ch. ⁷ in "Quantum Mechanics," by A. Goswami.

Ch. ² in "Modern Quantum Mechanics," by J. Sakurai.

lational Tsing Hua Un

Simple Harmonic Oscillator: operator method

- 2Э one-dimensional harmonic oscillator, $\hat{H}=\frac{p}{2\epsilon}$ $\frac{p^2}{2m}+\frac{1}{2}$ $\frac{1}{2}kx^2$, where $[\hat{x}, \hat{p}] = i\hbar$
- define *annihilation* operator (destruction, lowering, or step-down operators):

$$
\hat{a} = \sqrt{m\omega/2\hbar}\hat{x} + i\hat{p}/\sqrt{2m\hbar\omega}.
$$

define *creation* operator (raising, or step-up operators):

$$
\hat{a}^{\dagger} = \sqrt{m\omega/2\hbar}\hat{x} - i\hat{p}/\sqrt{2m\hbar\omega}.
$$

- note that \hat{a} and \hat{a}^\dagger are not hermitian operators, but $(\hat{a}^\dagger)^\dagger = \hat{a}$.
- the commutation relation for \hat{a} and \hat{a}^{\dagger} is $[\hat{a}, \hat{a}^{\dagger}] = 1$.
- Э the oscillator Hamiltonian can be written as,

$$
\hat{H} = \hbar\omega(\hat{a}^\dagger\hat{a} + \frac{1}{2}) = \hbar\omega(\hat{N} + \frac{1}{2}),
$$

where \hat{N} is called the number operator, which is hermitian.

Simple Harmonic Oscillator: operator method

- the number operator, $\hat{N}=\hat{a}^{\dagger}\hat{a}$,
- $[\hat{H}, \hat{a}] = -\hbar\omega\hat{a}$, and $[\hat{H}, \hat{a}^{\dagger}] = \hbar\omega\hat{a}^{\dagger}$.
- the eigen-energy of the system, $\hat{H}|\Psi\rangle=E|\Psi\rangle$, then

$$
\hat{H}\hat{a}|\Psi\rangle = (E - \hbar\omega)\hat{a}|\Psi\rangle, \qquad \hat{H}\hat{a}^{\dagger}|\Psi\rangle = (E + \hbar\omega)\hat{a}^{\dagger}|\Psi\rangle.
$$

- for any hermitian operator, $\langle \Psi | \hat{Q}^2$ $|^{2}|\Psi\rangle = \langle \hat{Q}\Psi | \hat{Q}\Psi \rangle \geq 0.$
- Э thus $\langle \Psi | \hat{H} | \Psi \rangle \geq 0.$
- Э ground state (lowest energy state), $\hat{a}|\Psi_{0}\rangle=0.$
- Э energy of the ground state, $\hat{H}|\Psi_{0}\rangle=$ 1 $\frac{1}{2}\hbar\omega|\Psi_{0}\rangle.$
- excited state, $\hat{H}|\Psi_n\rangle=\hat{H}(\hat{a}^\dagger)^n|\Psi_0\rangle=\hbar\omega(n+\frac{1}{2})$ $(\hat{a}^{\dagger})^n |\Psi_0\rangle.$
- eigen-energy for excited state, $E_{\bm n}$ $n = (n + \frac{1}{2})$ $\frac{1}{2})\hbar\omega.$

Simple Harmonic Oscillator: operator method

- Э normalization of the eigenstates, $(\hat a^\dagger)^n|\Psi_0\rangle=c_n|\Psi_n\rangle$, where $c_n=\sqrt{n}.$
- $\hat{a}|\Psi_n\rangle = \sqrt{n}|\Psi_{n-1}\rangle,$
- $\hat{a}^{\dagger}|\Psi_n\rangle = \sqrt{n+1}|\Psi_{n+1}\rangle,$
- x -representation, $\Psi_n(x) = \langle x | \Psi_n \rangle$.
- Э ground state, $\langle x|\hat{a}|\Psi_{0}\rangle = 0$, i.e.

$$
[\sqrt{\frac{m\omega}{2\hbar}}x + \hbar \frac{1}{\sqrt{2m\hbar\omega}}\frac{d}{dx}]\Psi_0(x) = 0,
$$

define a dimensionless variable $\xi=\sqrt{m\omega/hbar}x$, we obtain

$$
(\xi + \frac{\mathsf{d}}{\mathsf{d}\xi})\Psi_0 = 0,
$$

with the solution $\Psi_0(\xi)=c_0$ exp $(-\xi^2)$ $^{2}/2).$

Maxwell's equations in Free space

Faraday's law: Э

$$
\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B},
$$

Ampére's law:

$$
\nabla \times \mathbf{H} = \frac{\partial}{\partial t} \mathbf{D},
$$

Gauss's law for the electric field: €

$$
\nabla \cdot \mathbf{D} = 0,
$$

3 Gauss's law for the magnetic field:

$$
\nabla \cdot \mathbf{B} = 0,
$$

thé constitutive relation: B $=\mu$ 0**H** and **D** $=\epsilon$ ϵ_0 E.

Mode Expansion of the Field

Э A single-mode field, polarized along the x -direction, in the cavity:

$$
\mathbf{E}(r,t) = \hat{x}E_x(z,t) = \sum_j \left(\frac{2m_j\omega_j^2}{V\epsilon_0}\right)^{1/2} q_j(t) \sin(k_j z),
$$

where $k = \omega/c, \, \omega_j = c(j\pi/L), \, j = 1, 2, \ldots, \, V$ is the effective volume of the cavity, and $q(t)$ is the normal mode amplitude with the dimension of a length (acts as a canonical position, and $p_j=m_j\dot{q}_j$ is the canonical momentum).

the magnetic field in the cavity:

$$
\mathbf{H}(r,t) = \hat{y}H_y(z,t) = (m_j \frac{2\omega_j^2}{V\epsilon_0})^{1/2} \left(\frac{\dot{q}_j(t)\epsilon_0}{k_j}\right) \cos(k_j z),
$$

the classical Hamiltonian for the field:

lational Tsing Hua Un

$$
H = \frac{1}{2} \int_{V} dV [\epsilon_0 E_x^2 + \mu_0 H_y^2],
$$

=
$$
\frac{1}{2} \sum_{j} [m_j \omega_m^2 q_j^2 + m_j \dot{q}_j^2] = \frac{1}{2} \sum_{j} [m_j \omega_m^2 q_j^2 + \frac{p_j^2}{m_j}].
$$

Quantization of the Electromagnetic Field

- 2Э Like simple harmonic oscillator, $\hat{H}=\frac{p}{2\epsilon}$ $\frac{p^2}{2m}+\frac{1}{2}$ $\frac{1}{2}kx^2$, where $[\hat{x}, \hat{p}] = i\hbar$,
- $\overline{2}$ For EM field, $\hat{H}=\frac{1}{2}$ $\frac{1}{2}\sum_j$ $[m_j$ ω2 $\tilde{m}q$ 2 j $+\frac{p}{p}$ 2 $\left[\frac{\rho_j}{m_j} \right]$, , where $\left[\hat{q}_i, \hat{p}_j \right] = i \hbar \delta_{ij}$,
- Э annihilation and creation operators:

$$
\hat{a}_j e^{-i\omega_j t} = \frac{1}{\sqrt{2m_j \hbar \omega_j}} (m_j \omega_j \hat{q}_j + i \hat{p}_j),
$$

$$
\hat{a}_j^{\dagger} e^{i\omega_j t} = \frac{1}{\sqrt{2m_j \hbar \omega_j}} (m_j \omega_j \hat{q}_j - i \hat{p}_j),
$$

- the Hamiltonian for EM fields becomes: $\hat{H}=\sum_j\hbar\omega_j(\hat{a}_j^\dagger\hat{a}_j+\frac{1}{2}$ $\frac{1}{2}),$
- the electric and magnetic fields become,

$$
\hat{E}_x(z,t) = \sum_j \left(\frac{\hbar \omega_j}{\epsilon_0 V}\right)^{1/2} [\hat{a}_j e^{-i\omega_j t} + \hat{a}_j^{\dagger} e^{i\omega_j t}] \sin(k_j z),
$$
\n
$$
\hat{H}_y(z,t) = -i\epsilon_0 c \sum_j \left(\frac{\hbar \omega_j}{\epsilon_0 V}\right)^{1/2} [\hat{a}_j e^{-i\omega_j t} - \hat{a}_j^{\dagger} e^{i\omega_j t}] \cos(k_j z),
$$

Phase diagram for EM waves

Electromagnetic waves can be represented by

$$
\hat{E}(t) = E_0[\hat{X}_1 \sin(\omega t) - \hat{X}_2 \cos(\omega t)]
$$

where

 $\hat{X_1}$ = $\hat{X_2}$ = amplitude quadrature phase quadrature

Phase diagram for coherent states

Coherent states and Comb lasers

coherent Glauber state:

$$
|\alpha\rangle = \sum_{n=0} \alpha^n \frac{e^{-\frac{|\alpha|^2}{2}}}{\sqrt{n!}} |n\rangle
$$

Self referencing of frequency combs:

IPT5340, Fall '06 – p.42/43

Quantum Fluctuations and Zero Point Energy

- Э divergence of the vacuum energy
- Э Casimir effect
- Э Lamb shift
- Э spontaneous emission

