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Postulates of Quantum Mechanics

Postulate 1 : An isolated quantum system is described by a vector in a Hilbert space. Two
vectors differing only by a multiplying constant represent the same physical state.

2 quantum state: |¥) = ) . a;|1;),

completeness: > . |1;)(¥i| = 1,

probability interpretation (projection): ¥(x) = (z| W),
operator: A|¥) = |®),

representation: (¢|A|w),

adjoint of A: (| Aly)) = (1| AT|g)*,

hermitian operator: H=HT

vV O VvV LV Vv L v

unitary operator: UUT = UtU = I.

Ch. 1-5 in "The Principles of Quantum Mechanics,” by P. Dirac.

Ch. 1 in "Mathematical Methods of Quantum Optics,” by R. Puri.
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Operators

2 For a unitary operator, (y;|1;) = (1;|UU;), the set of states U|v) preserves
the scalar product.

U can be represented as U = exp(¢H) if H is hermitian.

normal operator: [A, AT] = 0, the eigenstates of only a normal operator are
orthonormal.
l.e. hermitian and unitary operators are normal operators.

2 The sum of the diagonal elements (¢|A|+) is call the trace of A,
Tr(A) = Z(¢1|A|¢z‘>,

The value of the trace of an operator is independent of the basis.

2 The eigenvalues of a hermitian operator are real, H|¥) = \|¥), where X is real.
2 I A and B do not commute then they do not admit a common set of eigenvectors.
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Postulates of Quantum Mechanics

Postulate 2 : To each dynamical variable there corresponds a unique hermitian operator.
Postulate 3 ; If A and B are hermitian operators corresponding to classical dynamical
variables a and b, then the commutator of A and B is given by

(A B = AB — BA — ih{a, b},

where {a, b} is the classical Poisson bracket.

Postulate 4 : Each act of measurement of an observable A of a system in state |U)
collapses the system to an eigenstate |+);) of A with probability |(¢;|¥)|2.

The average or the expectation value of A is given by

(A) = Z Ail (s |T)|? = (T|A|D),

where )\, is the eigenvalue of A corresponding to the eigenstate [1;).
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Uncertainty relation

2 Non-commuting observable do not admit common eigenvectors.
2 Non-commuting observables can not have definite values simultaneously.

Simultaneous measurement of non-commuting observables to an arbitrary degree
of accuracy is thus incompatible.

2 variance: AA? = (U|(A — (A))2|0) = (U|A2|T) — (T|A|T)2.

AA?AB? > —[(F)? + (C)?],

> =

where
[A,B]=iC, and F=AB+ BA—-2(A)(B).

9 Take the operators A = § (position) and B = p (momentum) for a free particle,
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Uncertainty relation
5

Schwarz inequality: (¢[¢)(1[1) = ([)(]@).

Equality holds if and only if the two states are linear dependent, [10) = \|¢), where A
IS a complex number.

2 uncertainty relation,

AA?AB? > —[(F)? + (C)?],

e R

where

A

[A,B]=iC, and F=AB+ BA—2(A)(B).
9 the operator F' is a measure of correlations between A andB.

define two states,

1) = [A—(D]lY),  |v2) = [B—(B)]l¥),
the uncertainty product is minimum, i.e. |¢1) = —i\|2),

[A 4+ iAB]|[¢) = [(A) + iA(B)]|9) = z|w).
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Uncertainty relation
5

if Re(\) = 0, A + iAB is a normal operator, which have orthonormal eigenstates.

the variances,

Xi (F) + A (C)],

if \| = 1, then AA2 = AB?2, equal variance minimum uncertainty states.

if |\| = 1 along with \; = 0, then AA2 = AB? and (F) = 0, uncorrelated equal
variance minimum uncertainty states.

it A # 0, then (F) = 240y, AA2=B(éy,  aB2= ;1 (0).

If C is a positive operator then the minimum uncertainty states exist only if A, > 0.
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Uncertainty relation for ¢ and p

9 take the operators A = § (position) and B = p (momentum) for a free particle,

2
4,] = ih — (AN AR > -
define two states, [¢1) = [A — (A)]|¢) = &l),  |¢p2) = [B — (B)][¢) = Bly).

for uncorrelated minimum uncertainty states,
aly) = —iNBlp),  (dlaf + Baly) =0,

where A is a real number.
if A =gand B =p, we have (§ — (q))|¢) = —ix(p — (B))[¢).

the wavefunction in the g-basis is, i.e. p = —ihd/0q,

[i<ﬁ>q (g — (@))?

hAaE)

1
wla) = ) = G AP

= L. i R R /AN 2
A 2.5 9% i the p-basis, v(p) = (plY) = Gty el (@) — () — Yags-)
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Minimum Uncertainty State

(@ = (@)|P) = =iA(D = (P)[¥)

if we define A\ = e—27, then
(e"q+ie” ")) = (e"(q) +ie” " (P))|V),

2 the minimum uncertainty state is defined as an eigenstate of a non-Hermitian
operator e” g + ie~"p with a c-number eigenvalue e” (¢) + ie ™" (p).

2 the variances of q and p are

. . h o,
(AG%) = Ze™,  (Ap%) = Je.

2 here r is referred as the squeezing parameter.
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Gaussian Wave Packets

2 inthe x-space,

$2

lexp[ike — —]

V(@) = (al¥) = | e

1
x1/4y/d

, Which is a plane wave with wave number k& and width d.

9 the expectation value of X is zero for symmetry,

(X) = /oo dz(U|z) X (x| ) = 0.

— 0

variation of X, (AX?2) = %.

the expectation value of P, (P) = hk, i.e. (z|P|¥) = —ih-2 (z|T).

variation of P, (AP?) = %.

the Heisenberg uncertainty product is, (AX?2)(AP?) = %.

vV v vV v

a Gaussian wave packet is called a minimum uncertainty wave packet.
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Phase diagram for coherent states

mean numba‘qﬂf photons i ,
< N >=< a|N|a >=< ald'd|la >= |a|?

phase of the field

TEH Z o= |a|exp(if)
Mational -
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Coherent and Squeezed States

Uncertainty Principle: AX;AX, > 1.

1. Coherent states: AX; = AXsy = 1,
2. Amplitude squeezed states: AX; < 1,

4. Quadrature squeezed states.
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Vacuum, Coherent, and Squeezed states

vacuum sgqueezed-vacuum
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Generations of Squeezed States

Nonlinear optics:

. second Harmonic Generation

[y

VAL HERE
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Parametnc Oscillation

e |

Kerr Effect

Courtesy of P. K. Lam
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Generation and Detection of Squeezed Vacuum

1. Balanced Sagnac Loop (to cancel the mean field),

fasanal Taing Hu Unierity M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153(1991).
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Schrodinger equation

Postulate 5 : The time evolution of a state |V) is governed by the Schrodinger equation,

d .
zh&\\IJ(t» = H(1)[¥(t)),

where H (t) is the Hamiltonian which is a hermitian operator associated with the total
energy of the system.
The solution of the Schrodinger equation is,

w(e) = Texpl - [ dri(e)w(0)) = Us(t,to) (ko).

to
b . - -
where ( T) is the time-ordering operator.

Schr édinger picture
=2 il

S P EY
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Time Evolution of a Minimum Uncertainty State

i p
U=exp(——
p(=~ o 1)
9 the Schrodinger wavefunction,
A 0 p
V) = @01RO) = [ d(puip0)em(—+ 2,
1 q>

= . exp|—

(2m)1/4(Aq + ikt /2mAq)1/? 4(Aq)? + 27Lht/m]7

where Aq = A/2(p2)1/2, and (q|p) =

1 pq
e
2 even though the momentum uncertainty () is preserved,

9 the position uncertainty increases as time develops,

ﬂ.#lﬁf ,- ‘?'.df j}— ﬂ h2t2
o (AG2 (1)) = (AG)? +
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Gaussian Optics

9 Wave equation: In free space, the vector potential, A, is defined as
A(r,t) = iy (x, y, z)el«t, which obeys the vector wave equation,

V2 + k% = 0.

2 The paraxial wave equation: ¢ (z,y, z) = u(z,y, z)e~7¥#, one obtains

9
V2 — 2jk— =0,
0z

2 This solution is proportional to the impulse response function (Fresnel kernel),

h(z,y,z) = ée—jk[(ﬁﬂ}%/%],

i.e. V2 h(z,y,2) — 2jk% = 0.
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Gaussian Optics

9 The solution of the scalar paraxial wave equation is,

2 2 4 y? ik
wo0e,,2) = - caplid)eap(~ 5 eapl— L (e +42),
9 peam width w?(z) = 22(1 + Z; = wi(1 + (257,

2 radius of phase front R(lz) = T T I
z 7Tw0

z
Twd /A’

phasedelay tan ¢ = £ =

2 with the minimum beam radius wg = V' 2bk.

20
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Time Evolution of a Minimum Uncertainty State

Uncertainty relation and Fourier Transform,

Minimum Uncertainty State and Gaussian beams,

Minimum Uncertainty State and Chirpless optical short pulse,

vV O LV v

Non-classical state,

R HE ARG
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Helsenberg equation

9 The solution of the Schrodinger equation is,
[W(t)) = Texp[—¢ [, drH(T)]|(0)) = Us(t, to)|¥(to).

2 The quantities of physical interest are the expectation values of operators,
(W) AW () = (¥ (o) |A®)[¥(t0)),

where
A(t) = UL (t,t0) AUs (¢, to).

9 The time-dependent operator A(t) evolves according to the Heisenberg equation,
d . A
zh&A(t) = [A, H(t)].

2 Schrodinger picture: time evolution of the states.

Heisenberg picture: time evolution of the operators.
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Interaction picture

2 Consider a system described by |W(¢)) evolving under the action of a hamiltonian

H(t) decomposable as,
H(t) = Ho + Hi (),

where 1% Is time-independent.

2 Define
(W (1)) = exp(iHot/h)|¥ (1)),

then |W;(t)) evolves accords to

m%mw» N HOLZION

where

A

2 The evolution is in the interaction picture generated by Hp.

S P EY

Hi(t) = exp(iHot/R) Hy (t)exp(—iHot/h).
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Similarity Transformations

9 The Heisenberg picture is a "natural” picture in the sense that the observables
(electric fields, dipole moment, etc.) are time-dependent, exactly as in classical
physics.

2 In the interaction picture, we have eliminated the part of the problem whose
solution we already knew.

2 The interaction picture is particularly helpful in visualizing the response of a
two-level atom to light.

H;(t) = exp(iHot/h)Hy (t)exp(—iHot/h).

2 similarity transformation, $—1AS = B, where $ is a non-singular operator,

consider the similarity transformation,
A(0) = exp(—02)Aexp(02),

then the differentiation of this equation with respect to 0 yields,

AL HEERY d . o .
VAzZGESS 5 A0) = exp(—02)[A, Zlexp(02).
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Paradoxes of Quantum Theory

Geometric phase
Measurement theory
Schrodinger’s Cat paradox

Einstein-Podolosky-Rosen paradox

vV v v L 9

Local Hidden Variables theory
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Quantum Zeno effect (watchdog effect)

2 multi-time joint probability: P({|¢;),t;}), the probability that a system in a state
|po(to)) at to is found in the state |¢p;) att;, wherei =1,...,n.

at t1: the state is Us(tl,to)|q5o(to)>.

projection on |¢1) is
[61(t1)) = |¢1)(¢1|Us (1, to)|¢o (to))-
2 the sate |1 (¢1)) then evolves till time ¢2 to Usg(t2, t1)|¢1(t1)), with the projection,

b2 (t2)) = |¢2)(¢2|Us (t2,t1)|01(t1)).

2 continuing till time ¢,,,

P({lg),t:}) = | ][ (#:|Us (ti, tiz1)|pi—1)|>.
1=1
AL AEERG
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Quantum Zeno effect (watchdog effect)

consider a time-independent hamiltonian, Ug (t;,t;) = exp[—iH (t; — t;)/Hh].
let the observation be spaced at equal time intervals, t; —t;—1 = t/n.

the probability that at each time ¢; the system is observed in its initial state |¢g) is,
P({|¢0),t:}) = [(¢olexp[—iHt/nh]|¢o)|*".

2 et t/n <1,
‘<¢0|9Xp[—i1{1t/nh]|¢0>\ ~1— ( )QAHQ

where AH? = (¢o| H?|¢0) — (¢o|H |h0)>.
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Quantum Zeno effect (watchdog effect)

2 the joint probability for n equally spaced observations becomes,

t r21mn
P({l¢o),t:}) = [1 — (—)?AH?]™.
nh
2 for unobserved in between, the probability is,
t2 . o
P({l0), 1)) = 1~ (1) AR

2 the probability of finding the system in its initial state at a given time is increased if it
Is observed repeatedly at intermediate times.

2 forn > 1,

P({|d0), t:}) = [1 — (—=)2A02])" ~ exp[—t2 AL k2],

nh

the system under observation does not evolve.

'l '_:”} ;0% tﬁlSa’effect was invoked to predict the inhibition of decay of an unstable system.

al Teing Hua Un
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Quantum Zeno effect (watchdog effect)

2 Quantum Zeno effect

2 Quantum Anti-Zeno effect

2 Quantum Super-Zeno effect

VAL EARG

Mational Teing Hua University

| | IPT5340, Fall '06 — p.28/43




Time-dependent perturbation theory

2 with the interaction picture, H = Hq + H;.

the state, U(r,t) = >, Cn(t)un(r)e”*“nt with the energy eigenvalue
Hotn (r) = Awnun (1).

2 the wavefunction has the initial value, ¥(r,0) = u;(r), i.e. C;(0) = 1,Cp2; = 0.

the equation of motion for the probability amplitude C, (?) is,

Y U a Tw
Cn(t) = —%Z(n|H1|m>e nmt O (1),

Cn ™ (#) = —ih= Y (n| Hy|d)eiwnit,

Q

2 if fI; = V}, time independent, we have

L i iy iyt /2 S nil/ )

Wi wni/Q

Cn(t) =~ Crn D (t) = —ih™ Y (n| Hy i)

Ch. 3 in "Elements of Quantum Optics,” by P. Meystre and M. Sargent lll.
<~ @ _E,C'?' %II}: Il\(ér{_,:gdern Quantum Mechanics,” by J. Sakurali.
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Rotational-Wave Approximation

2 if A, = V, cos vt, we have

y (wni+v)t _ 1 (wps—v)t _ 1
Cn(t) = Cr W (1) = —i‘;h E c

]7

where Vy,; = (n|Hqli).

2 if near resonance wni ~ v, We can neglect the terms with w,,; + v. This is called

the rotational-wave approximation

2 making the rotational-wave approximation,

Vi |? sin?[(wp; — v)t/2]
4h? (Wni —v)2/4

1
|Cy(1, )|2 —

2 we have the same transition probability as the dc case, provided we substitute

Wni — V for wy,;.

R HE ARG
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Fermi-Golden rule

9 the total transition probability from an initial state to the final state is,
Pr~ [ Dw)|cf) P

where D(w) is the density of state factor.

2 Fermi-Golden rule,

|V (W)]? o sin?[(wn; — v)t/2]
/ dwD(w) o7 (woni — )t/22

2 consider resonance condition w = v,

|V(V)\2 / SmQ[(wm v)t/2]
P ~ D dw :
g ¥) [(wWni — )t/2]2
_ _7 2
. 2 the transition rate, I = df;tT = —%|C7(11)|2 = 57> D(v)|V(v)|?, which is a constant

Ff:rtrfne
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Phase-Matching condition

2 Second-Harmonic Generation

TRAZLAEERS
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Simple Harmonic Oscillator in Schrodinger picture

- - - - ~ 2
2 one-dimensional harmonic oscillator, H = g’—m + %ka,

2 Schrodinger equation,

w(x) [E - —ka]w(aﬁ) =0,
with dimensionless coordinates £ = \/mw/hgc and dimensionless quantity
e = 2F/hw, we have

d2

Wlb(x) +[e — &y(x) =0,

which has Hermite-Gaussian solutions,
PO =Hu(©e /2 = hwe=ho(n+ ),

wheren =0,1,2,...

Ch. 7 in "Quantum Mechanics,” by A. Goswami.

Ch. 2 in "Modern Quantum Mechanics,” by J. Sakurai.
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Simple Harmonic Oscillator: operator method

- " " . . 2 A A .
2 one-dimensional harmonic oscillator, / = o+ %kacQ, where [z, p] = ih

9 define annihilation operator (destruction, lowering, or step-down operators):

& = \/mw/2hi + ip/V2mhw.

9 define creation operator (raising, or step-up operators):

al = /mw/2hi — ip/V2mhw.

note that @ and a' are not hermitian operators, but (a")T = a.
the commutation relation for & and a' is [a,at] = 1.

the oscillator Hamiltonian can be written as,
R A 1 . 1
H = hv(a'a + 5) = hw(N + 5),

_ where N is called the number operator, which is hermitian.
A FERE
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Simple Harmonic Oscillator: operator method

2 the number operator, N = afa,

[H, 4] = —hwa, and [H,a'] = hwa.

2 the eigen-energy of the system, H|¥) = E|U), then
Ha|U) = (E — hw)a|®),  Ha'|®) = (E + hw)a'| ).
2 for any hermitian operator, (¥|Q2|¥) = (QT|QT) > 0.
2 thus (T|H|T) > 0.
2 ground state (lowest energy state), a|¥q) = 0.
2 energy of the ground state, H|¥g) = < hw|Wo).
9 excited state, H|W,,) = H(a")"|Wo) = hw(n + 1)(ah)"|w).
2

eigen-energy for excited state, F,, = (n + %)hw.

.o . i
R EERE
Mat 1 Hua University
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Simple Harmonic Oscillator: operator method

vV v Vv O vV

normalization of the eigenstates, (a7)™| V) = c,|¥,), where ¢, = /n.
Q| Wn) = v/n[Vn-1),
CALTl\Ijn> =Vvn + 1|\Ijn—|—1>l

x-representation, ¥, (z) = (z|V,).

ground state, (z|a|Wo) = 0, i.e.

mw d
[ CTR \/—dm] o(z) =0,

define a dimensionless variable £ = \/mw/hbarz, we obtain
(€ + o)wo =0
d£ 0—Y,

with the solution W (&) = coexp(—£2/2).
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Maxwell's equations in Free space

2 Faraday’s law:

0
E=——B
V X 575
2 Ampére’s law:
0
H=—D
V X 570

2 Gauss’s law for the electric field:
V-D=0,
2 (Gauss’s law for the magnetic field:

V-B =0,

Al A . :
= Douffi@ constitutive relation: B = ugH and D = ¢E.
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Mode Expansion of the Field

9 A single-mode field, polarized along the z-direction, in the cavity:

w2

E(r,t) = 2Ez(2,t) = Z( it )1/2q](t) sin(k; z),

where k = w/c, w; = c(yjn/L), 5 =1,2,..., V is the effective volume of the
cavity, and ¢(t) is the normal mode amplitude with the dimension of a length (acts
as a canonical position, and p; = m g, is the canonical momentum).

9 the magnetic field in the cavity:

2w “wj )1/2(q3(t)€0)cos(k ),

H(T7 t) — @H’y(z»t) — ( V L

2 the classical Hamiltonian for the field:

1
H = —/ dV[eoEg—i—,u,oHZ],
2 )y

2
2y

m;

] 1 2 9 .2 1 2 2
THLHERSG = 52 [myendgy +mdil =5 ) [mend; +

Matignal Tsing Hua Universily y J

|  1PT5340, Fall '06 - p.38/43




Quantization of the Electromagnetic Field

P2y 1ka?, where [, p] = ih,

2 Like simple harmonic oscillator, H = Som,

A 2
2 For EM field, H = % Zj[mjw,,%,bq? + Ti—j], , Where [qAZ,ﬁJ] = ih(sij,
J

9 annihilation and creation operators:

: 1
&‘e—zwjt: m-w”-—l—’i“,
J \/—2mj ﬁwj( JWidj pj)
e 1 .A
a;r-ew" ’ (m]quj iPy5),
\/Qmj

2 the Hamiltonian for EM fields becomes: H = Zj hwj(&;dj + %),

2 the electric and magnetic fields become,

& =z j 1/274  —twit AT dw,t .
Hy(zt) = zeoc§j<—€0‘,> [aje 3" — alei i) cos(k;2),

TRAZLAEERS

Mational Teing Hua University
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Phase diagram for EM waves

Electromagnetic waves can be represented by
E(t) = Eo[X sin(wt) — X3 cos(wt)]
where

X1 = amplitude quadrature

X2 = phase quadrature

e 4,
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Phase diagram for coherent states

mean numba‘qﬂf photons i ,
< N >=< a|N|a >=< ald'd|la >= |a|?

phase of the field

TEH Z o= |a|exp(if)
Mational -
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Coherent states and Comb lasers

coherent Glauber state:

Self referencing of frequency combs:

E(t) Ap 2Ap YE(w)
‘d"“i\. J‘d‘i‘ AN
W THHHET
. - |I [T
ourier Wt T
e transformation CE Mgy T
tED (@j\ o 5D .
\ny 2nyorhce)
e — AW
il i
\{Tﬁ/{,l (1] :SSE L1l l [_L il beat frequency
W We 2(?1;,&11""'&-'&?};] ‘f??inUr"'wm;) = Wep

aianai Tang Hus Universih from: http://www.mpg.mpg.de/ haensch/
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Quantum Fluctuations and Zero Point Energy

divergence of the vacuum energy

vV O v 9
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