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Postulates of Quantum Mechanics

Postulate 1 : An isolated quantum system is described by a vector in a Hilbert space. Two
vectors differing only by a multiplying constant represent the same physical state.

quantum state: |Ψ〉 =
∑

i αi|ψi〉,

completeness:
∑

i |ψi〉〈ψi| = I ,

probability interpretation (projection): Ψ(x) = 〈x|Ψ〉,

operator: Â|Ψ〉 = |Φ〉,

representation: 〈φ|Â|ψ〉,

adjoint of Â: 〈φ|Â|ψ〉 = 〈ψ|Â†|φ〉∗,

hermitian operator: Ĥ = Ĥ†,

unitary operator: ÛÛ† = Û†Û = I .

Ch. 1-5 in ”The Principles of Quantum Mechanics,” by P. Dirac.
Ch. 1 in ”Mathematical Methods of Quantum Optics,” by R. Puri.
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Operators

For a unitary operator, 〈ψi|ψj〉 = 〈ψi|Û†Ûψj〉, the set of states Û |ψ〉 preserves
the scalar product.

Û can be represented as Û = exp(iĤ) if Ĥ is hermitian.

normal operator: [Â, Â†] = 0, the eigenstates of only a normal operator are
orthonormal.
i.e. hermitian and unitary operators are normal operators.

The sum of the diagonal elements 〈φ|Â|ψ〉 is call the trace of Â,

Tr(Â) =
∑

i

〈φi|Â|φi〉,

The value of the trace of an operator is independent of the basis.

The eigenvalues of a hermitian operator are real, Ĥ|Ψ〉 = λ|Ψ〉, where λ is real.

If Â and B̂ do not commute then they do not admit a common set of eigenvectors.
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Postulates of Quantum Mechanics

Postulate 2 : To each dynamical variable there corresponds a unique hermitian operator.
Postulate 3 : If Â and B̂ are hermitian operators corresponding to classical dynamical
variables a and b, then the commutator of Â and B̂ is given by

[Â, B̂] ≡ ÂB̂ − B̂Â = i~{a, b},

where {a, b} is the classical Poisson bracket.
Postulate 4 : Each act of measurement of an observable Â of a system in state |Ψ〉
collapses the system to an eigenstate |ψi〉 of Â with probability |〈φi|Ψ〉|2.
The average or the expectation value of Â is given by

〈Â〉 =
∑

i

λi|〈φi|Ψ〉|2 = 〈Ψ|Â|Ψ〉,

where λi is the eigenvalue of Â corresponding to the eigenstate |ψi〉.
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Uncertainty relation

Non-commuting observable do not admit common eigenvectors.

Non-commuting observables can not have definite values simultaneously.

Simultaneous measurement of non-commuting observables to an arbitrary degree
of accuracy is thus incompatible.

variance: ∆Â2 = 〈Ψ|(Â− 〈Â〉)2|Ψ〉 = 〈Ψ|Â2|Ψ〉 − 〈Ψ|Â|Ψ〉2.

∆A2∆B2 ≥ 1

4
[〈F̂ 〉2 + 〈Ĉ〉2],

where

[Â, B̂] = iĈ, and F̂ = ÂB̂ + B̂Â− 2〈Â〉〈B̂〉.

Take the operators Â = q̂ (position) and B̂ = p̂ (momentum) for a free particle,

[q̂, p̂] = i~→ 〈∆q̂2〉〈∆p̂2〉 ≥ ~
2

4
.
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Uncertainty relation

Schwarz inequality: 〈φ|φ〉〈ψ|ψ〉 ≥ 〈φ|ψ〉〈ψ|φ〉.

Equality holds if and only if the two states are linear dependent, |ψ〉 = λ|φ〉, where λ
is a complex number.

uncertainty relation,

∆A2∆B2 ≥ 1

4
[〈F̂ 〉2 + 〈Ĉ〉2],

where

[Â, B̂] = iĈ, and F̂ = ÂB̂ + B̂Â− 2〈Â〉〈B̂〉.

the operator F̂ is a measure of correlations between Â andB̂.

define two states,

|ψ1〉 = [Â− 〈Â〉]|ψ〉, |ψ2〉 = [B̂ − 〈B̂〉]|ψ〉,

the uncertainty product is minimum, i.e. |ψ1〉 = −iλ|ψ2〉,

[Â+ iλB̂]|ψ〉 = [〈Â〉+ iλ〈B̂〉]|ψ〉 = z|ψ〉.

the state |ψ〉 is a minimum uncertainty state.
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Uncertainty relation

if Re(λ) = 0, Â+ iλB̂ is a normal operator, which have orthonormal eigenstates.

the variances,

∆Â2 = − iλ
2

[〈F̂ 〉+ i〈Ĉ〉], ∆B̂2 = − i

2λ
[〈F̂ 〉 − i〈Ĉ〉],

set λ = λr + iλi,

∆Â2 =
1

2
[λi〈F̂ 〉+ λr〈Ĉ〉], ∆B̂2 =

1

|λ|2 ∆Â2, λi〈Ĉ〉 − λr〈F̂ 〉 = 0.

if |λ| = 1, then ∆Â2 = ∆B̂2, equal variance minimum uncertainty states.

if |λ| = 1 along with λi = 0, then ∆Â2 = ∆B̂2 and 〈F̂ 〉 = 0, uncorrelated equal

variance minimum uncertainty states.

if λr 6= 0, then 〈F̂ 〉 = λi
λr
〈Ĉ〉, ∆Â2 =

|λ|2
2λr
〈Ĉ〉, ∆B̂2 = 1

2λr
〈Ĉ〉.

If Ĉ is a positive operator then the minimum uncertainty states exist only if λr > 0.
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Uncertainty relation for q̂ and p̂

take the operators Â = q̂ (position) and B̂ = p̂ (momentum) for a free particle,

[q̂, p̂] = i~→ 〈∆q̂2〉〈∆p̂2〉 ≥ ~
2

4
.

define two states, |ψ1〉 = [Â− 〈Â〉]|ψ〉 ≡ α̂|ψ〉, |ψ2〉 = [B̂ − 〈B̂〉]|ψ〉 ≡ β̂|ψ〉.

for uncorrelated minimum uncertainty states,

α̂|ψ〉 = −iλβ̂|ψ〉, 〈ψ|α̂β̂ + β̂α̂|ψ〉 = 0,

where λ is a real number.

if Â = q̂ and B̂ = p̂, we have (q̂ − 〈q̂〉)|ψ〉 = −iλ(p̂− 〈p̂〉)|ψ〉.

the wavefunction in the q-basis is, i.e. p̂ = −i~∂/∂q,

ψ(q) = 〈q|ψ〉 = 1

(2π〈∆q̂2〉)1/4
exp[

i〈p̂〉q
~
− (q − 〈q̂〉)2

4〈∆q̂2〉 ],

in the p-basis, ψ(p) = 〈p|ψ〉 = 1
(2π〈∆p̂2〉)1/4

exp[− i
~
(〈q̂〉(p− 〈p̂〉)− (p−〈p̂〉)2

4〈∆p̂2〉 ].
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Minimum Uncertainty State

(q̂ − 〈q̂〉)|ψ〉 = −iλ(p̂− 〈p̂〉)|ψ〉

if we define λ = e−2r , then

(er q̂ + ie−r p̂)|ψ〉 = (er〈q̂〉+ ie−r〈p̂〉)|ψ〉,

the minimum uncertainty state is defined as an eigenstate of a non-Hermitian
operator er q̂ + ie−r p̂ with a c-number eigenvalue er〈q̂〉+ ie−r〈p̂〉.

the variances of q̂ and p̂ are

〈∆q̂2〉 =
~

2
e−2r, 〈∆p̂2〉 =

~

2
e2r.

here r is referred as the squeezing parameter.
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Gaussian Wave Packets

in the x-space,

Ψ(x) = 〈x|Ψ〉 = [
1

π1/4
√
d
]exp[ikx− x2

2d2
]

, which is a plane wave with wave number k and width d.

the expectation value of X̂ is zero for symmetry,

〈X̂〉 =
∫ ∞

−∞
dx〈Ψ|x〉X̂〈x|Ψ〉 = 0.

variation of X̂, 〈∆X̂2〉 = d2

2
.

the expectation value of P̂ , 〈P̂ 〉 = ~k, i.e. 〈x|P̂ |Ψ〉 = −i~ ∂
∂x
〈x|Ψ〉.

variation of P̂ , 〈∆P̂ 2〉 = ~
2

2d2 .

the Heisenberg uncertainty product is, 〈∆X̂2〉〈∆P̂ 2〉 = ~
2

4
.

a Gaussian wave packet is called a minimum uncertainty wave packet.
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Phase diagram for coherent states
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Coherent and Squeezed States

Uncertainty Principle: ∆X̂1∆X̂2 ≥ 1.

1. Coherent states: ∆X̂1 = ∆X̂2 = 1,

2. Amplitude squeezed states: ∆X̂1 < 1,

3. Phase squeezed states: ∆X̂2 < 1,

4. Quadrature squeezed states.
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Vacuum, Coherent, and Squeezed states

vacuum coherent squeezed-vacuum

amp-squeezed phase-squeezed quad-squeezed
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Generations of Squeezed States

Nonlinear optics:

Courtesy of P. K. Lam
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Generation and Detection of Squeezed Vacuum

1. Balanced Sagnac Loop (to cancel the mean field),

2. Homodyne Detection.

M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153(1991).
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Schrödinger equation

Postulate 5 : The time evolution of a state |Ψ〉 is governed by the Schrödinger equation,

i~
d
dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉,

where Ĥ(t) is the Hamiltonian which is a hermitian operator associated with the total
energy of the system.
The solution of the Schrödinger equation is,

|Ψ(t)〉 =←−T exp[− i
~

∫ t

t0

dτĤ(τ)]|Ψ(0)〉 ≡ ÛS(t, t0)|Ψ(t0),

where
←−
( T ) is the time-ordering operator.

Schr ödinger picture :

|Ψ(r, t)〉 =
∑

i

αi(t)|ψi(r)〉.
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Time Evolution of a Minimum Uncertainty State

the Hamiltonian for a free particle, Ĥ = p̂2

2m
, then

Û = exp(− i
~

p̂2

2m
t).

the Schrödinger wavefunction,

Ψ(q, t) = 〈q|Û |Ψ(0)〉 =

∫ ∞

−∞
dp〈|p〉Ψ(p, 0)exp(− i

~

p2

2m
t),

=
1

(2π)1/4(∆q + i~t/2m∆q)1/2
exp[− q2

4(∆q)2 + 2i~t/m
],

where ∆q = ~/2〈p̂2〉1/2, and 〈q|p〉 = 1√
2π~

exp( ipq
~

).

even though the momentum uncertainty 〈p̂2〉 is preserved,

the position uncertainty increases as time develops,

〈∆q̂2(t)〉 = (∆q̂)2 +
~
2t2

4m2(∆q)2

.
IPT5340, Fall ’06 – p.17/43



Gaussian Optics

Wave equation: In free space, the vector potential, A, is defined as
A(r, t) = ~nψ(x, y, z)ejωt, which obeys the vector wave equation,

∇2ψ + k2ψ = 0.

The paraxial wave equation: ψ(x, y, z) = u(x, y, z)e−jkz , one obtains

∇2
T u− 2jk

∂u

∂z
= 0,

where ∇T ≡ x̂ ∂
∂x

+ ŷ ∂
∂y

.

This solution is proportional to the impulse response function (Fresnel kernel),

h(x, y, z) =
j

λz
e−jk[(x2+y2)/2z],

i.e. ∇2
T h(x, y, z)− 2jk ∂h

∂z
= 0.
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Gaussian Optics

The solution of the scalar paraxial wave equation is,

u00(x, y, z) =

√
2√
πw

exp(jφ)exp(−x
2 + y2

w2
)exp[− jk

2R
(x2 + y2],

beam width w2(z) = 2b
k

(1 + z2

b2
= w2

0[1 + ( λz
πw2

0

)2],

radius of phase front 1
R(z)

= z
z2+b2

= z
z2+(πw2

0
/λ)2

,

phasedelay tanφ = z
b

= z
πw2

0
/λ

,

with the minimum beam radius w0 =
√

2bk.
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Time Evolution of a Minimum Uncertainty State

Uncertainty relation and Fourier Transform,

Minimum Uncertainty State and Gaussian beams,

Minimum Uncertainty State and Chirpless optical short pulse,

Non-classical state,
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Heisenberg equation

The solution of the Schrödinger equation is,
|Ψ(t)〉 =←−T exp[− i

~

∫ t
t0

dτĤ(τ)]|Ψ(0)〉 ≡ ÛS(t, t0)|Ψ(t0).

The quantities of physical interest are the expectation values of operators,

〈Ψ(t)|Â|Ψ(t)〉 = 〈Ψ(t0)|Â(t)|Ψ(t0)〉,

where

Â(t) = Û†
S(t, t0)ÂÛS(t, t0).

The time-dependent operator Â(t) evolves according to the Heisenberg equation,

i~
d
dt
Â(t) = [Â, Ĥ(t)].

Schrödinger picture: time evolution of the states.

Heisenberg picture: time evolution of the operators.
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Interaction picture

Consider a system described by |Ψ(t)〉 evolving under the action of a hamiltonian
Ĥ(t) decomposable as,

Ĥ(t) = Ĥ0 + Ĥ1(t),

where Ĥ0 is time-independent.

Define

|ΨI(t)〉 = exp(iĤ0t/~)|Ψ(t)〉,

then |ΨI(t)〉 evolves accords to

i~
d
dt
|ΨI(t)〉 = ĤI(t)|ΨI(t)〉,

where

ĤI(t) = exp(iĤ0t/~)Ĥ1(t)exp(−iĤ0t/~).

The evolution is in the interaction picture generated by Ĥ0.
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Similarity Transformations

The Heisenberg picture is a "natural" picture in the sense that the observables
(electric fields, dipole moment, etc.) are time-dependent, exactly as in classical
physics.

In the interaction picture, we have eliminated the part of the problem whose
solution we already knew.

The interaction picture is particularly helpful in visualizing the response of a
two-level atom to light.

ĤI(t) = exp(iĤ0t/~)Ĥ1(t)exp(−iĤ0t/~).

similarity transformation, Ŝ−1ÂŜ = B̂, where Ŝ is a non-singular operator,

consider the similarity transformation,

Â(θ) ≡ exp(−θẐ)Âexp(θẐ),

then the differentiation of this equation with respect to θ yields,

d
dθ
Â(θ) = exp(−θẐ)[Â, Ẑ]exp(θẐ).
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Paradoxes of Quantum Theory

Geometric phase

Measurement theory

Schrödinger’s Cat paradox

Einstein-Podolosky-Rosen paradox

Local Hidden Variables theory
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Quantum Zeno effect (watchdog effect)

multi-time joint probability: P ({|φi〉, ti}), the probability that a system in a state
|φ0(t0)〉 at t0 is found in the state |φi〉 at ti, where i = 1, . . . , n.

at t1: the state is ÛS(t1, t0)|φ0(t0)〉.

projection on |φ1〉 is

|φ1(t1)〉 = |φ1〉〈φ1|ÛS(t1, t0)|φ0(t0)〉.

the sate |φ1(t1)〉 then evolves till time t2 to ÛS(t2, t1)|φ1(t1)〉, with the projection,

|φ2(t2)〉 = |φ2〉〈φ2|ÛS(t2, t1)|φ1(t1)〉.

continuing till time tn,

P ({|φi〉, ti}) = |
n

∏

i=1

〈φi|ÛS(ti, ti−1)|φi−1〉|2.
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Quantum Zeno effect (watchdog effect)

consider a time-independent hamiltonian, ÛS(ti, tj) = exp[−iĤ(ti − tj)/~].

let the observation be spaced at equal time intervals, ti − ti−1 = t/n.

the probability that at each time ti the system is observed in its initial state |φ0〉 is,

P ({|φ0〉, ti}) = |〈φ0|exp[−iĤt/n~]|φ0〉|2n.

let t/n≪ 1,

|〈φ0|exp[−iĤt/n~]|φ0〉|2 ≈ 1− (
t

n~
)2∆Ĥ2,

where ∆Ĥ2 = 〈φ0|Ĥ2|φ0〉 − 〈φ0|Ĥ|φ0〉2.
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Quantum Zeno effect (watchdog effect)

the joint probability for n equally spaced observations becomes,

P ({|φ0〉, ti}) = [1− (
t

n~
)2∆Ĥ2]n.

for unobserved in between, the probability is,

P ({|φ0〉, t}) = 1− (
t2

~2
)∆Ĥ2.

the probability of finding the system in its initial state at a given time is increased if it
is observed repeatedly at intermediate times.

for n≫ 1,

P ({|φ0〉, ti}) = [1− (
t

n~
)2∆Ĥ2]n ≈ exp[−t2∆Ĥ2/n~

2],

the system under observation does not evolve.

this effect was invoked to predict the inhibition of decay of an unstable system.
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Quantum Zeno effect (watchdog effect)

Quantum Zeno effect

Quantum Anti-Zeno effect

Quantum Super-Zeno effect
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Time-dependent perturbation theory

with the interaction picture, Ĥ = Ĥ0 + Ĥ1.

the state, Ψ(r, t) =
∑

n Cn(t)un(r)e−iωnt with the energy eigenvalue
Ĥ0un(r) = ~ωnun(r).

the wavefunction has the initial value, Ψ(r, 0) = ui(r), i.e. Ci(0) = 1, Cn 6=i = 0.

the equation of motion for the probability amplitude Cn(t) is,

Ċn(t) = − i
~

∑

m

〈n|Ĥ1|m〉eiωnmtCm(t),

≈ Ċn
(1)

(t) = −i~−1〈n|Ĥ1|i〉eiωnit.

if Ĥ1 = V0 time independent, we have

Cn(t) ≈ Cn
(1)(t) = −i~−1〈n|Ĥ1|i〉

eiωnit − 1

iωni
= −i~−1〈n|Ĥ1|i〉eiωnit/2 sin(ωnit/2)

ωni/2

Ch. 3 in ”Elements of Quantum Optics,” by P. Meystre and M. Sargent III.
Ch. 5 in ”Modern Quantum Mechanics,” by J. Sakurai.
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Rotational-Wave Approximation

if Ĥ1 = V0 cos νt, we have

Cn(t) ≈ Cn
(1)(t) = −i Vni

2~
[
ei(ωni+ν)t − 1

i(ωni + ν)
+
ei(ωni−ν)t − 1

i(ωni − ν)
],

where Vni = 〈n|Ĥ1|i〉.

if near resonance ωni ≈ ν, we can neglect the terms with ωni + ν. This is called
the rotational-wave approximation .

making the rotational-wave approximation,

|C(1)
n |2 =

|Vni|2
4~2

sin2[(ωni − ν)t/2]
(ωni − ν)2/4

.

we have the same transition probability as the dc case, provided we substitute
ωni − ν for ωni.
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Fermi-Golden rule

the total transition probability from an initial state to the final state is,

PT ≈
∫

D(ω)|C(1)
n |2dω,

where D(ω) is the density of state factor.

Fermi-Golden rule,

PT =

∫

dωD(ω)
|V (ω)|2

4~2
t2

sin2[(ωni − ν)t/2]
[(ωni − ν)t/2]2

.

consider resonance condition ω = ν,

PT ≈ D(ν)
|V (ν)|2

4~2
t2

∫

dω
sin2[(ωni − ν)t/2]
[(ωni − ν)t/2]2

,

=
π

2~2
D(ν)|V (ν)|2t.

the transition rate, Γ = dPT
dt

= − d
dt
|C(1)

n |2 = π
2~2

D(ν)|V (ν)|2, which is a constant
in time.
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Phase-Matching condition

Second-Harmonic Generation
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Simple Harmonic Oscillator in Schrödinger picture

one-dimensional harmonic oscillator, Ĥ = p2

2m
+ 1

2
kx2,

Schrödinger equation,

d2

dx2
ψ(x) +

2m

~2
[E − 1

2
kx2]ψ(x) = 0,

with dimensionless coordinates ξ =
√

mω/~x and dimensionless quantity
ǫ = 2E/~ω, we have

d2

dη2
ψ(x) + [ǫ− ξ2]ψ(x) = 0,

which has Hermite-Gaussian solutions,

ψ(ξ) = Hn(ξ)e−ξ2/2, E =
1

2
~ωǫ = ~ω(n+

1

2
),

where n = 0, 1, 2, . . .

Ch. 7 in ”Quantum Mechanics,” by A. Goswami.
Ch. 2 in ”Modern Quantum Mechanics,” by J. Sakurai.
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Simple Harmonic Oscillator: operator method

one-dimensional harmonic oscillator, Ĥ = p2

2m
+ 1

2
kx2, where [x̂, p̂] = i~

define annihilation operator (destruction, lowering, or step-down operators):

â =
√

mω/2~x̂+ ip̂/
√

2m~ω.

define creation operator (raising, or step-up operators):

â† =
√

mω/2~x̂− ip̂/
√

2m~ω.

note that â and â† are not hermitian operators, but (â†)† = â.

the commutation relation for â and â† is [â, â†] = 1.

the oscillator Hamiltonian can be written as,

Ĥ = ~ω(â†â+
1

2
) = ~ω(N̂ +

1

2
),

where N̂ is called the number operator, which is hermitian.
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Simple Harmonic Oscillator: operator method

the number operator, N̂ = â†â,

[Ĥ, â] = −~ωâ, and [Ĥ, â†] = ~ωâ†.

the eigen-energy of the system, Ĥ|Ψ〉 = E|Ψ〉, then

Ĥâ|Ψ〉 = (E − ~ω)â|Ψ〉, Ĥâ†|Ψ〉 = (E + ~ω)â†|Ψ〉.

for any hermitian operator, 〈Ψ|Q̂2|Ψ〉 = 〈Q̂Ψ|Q̂Ψ〉 ≥ 0.

thus 〈Ψ|Ĥ|Ψ〉 ≥ 0.

ground state (lowest energy state), â|Ψ0〉 = 0.

energy of the ground state, Ĥ|Ψ0〉 = 1
2

~ω|Ψ0〉.

excited state, Ĥ|Ψn〉 = Ĥ(â†)n|Ψ0〉 = ~ω(n+ 1
2
)(â†)n|Ψ0〉.

eigen-energy for excited state, En = (n+ 1
2
)~ω.
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Simple Harmonic Oscillator: operator method

normalization of the eigenstates, (â†)n|Ψ0〉 = cn|Ψn〉, where cn =
√
n.

â|Ψn〉 =
√
n|Ψn−1〉,

â†|Ψn〉 =
√
n+ 1|Ψn+1〉,

x-representation, Ψn(x) = 〈x|Ψn〉.

ground state, 〈x|â|Ψ0〉 = 0, i.e.

[

√

mω

2~
x+ ~

1√
2m~ω

d

dx
]Ψ0(x) = 0,

define a dimensionless variable ξ =
√

mω/hbarx, we obtain

(ξ +
d
dξ

)Ψ0 = 0,

with the solution Ψ0(ξ) = c0exp(−ξ2/2).
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Maxwell’s equations in Free space

Faraday’s law:

∇× E = − ∂

∂ t
B,

Ampére’s law:

∇× H =
∂

∂ t
D,

Gauss’s law for the electric field:

∇ · D = 0,

Gauss’s law for the magnetic field:

∇ · B = 0,

the constitutive relation: B = µ0H and D = ǫ0E.
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Mode Expansion of the Field

A single-mode field, polarized along the x-direction, in the cavity:

E(r, t) = x̂Ex(z, t) =
∑

j

(
2mjω

2
j

V ǫ0
)1/2qj(t) sin(kjz),

where k = ω/c, ωj = c(jπ/L), j = 1, 2, . . . , V is the effective volume of the
cavity, and q(t) is the normal mode amplitude with the dimension of a length (acts
as a canonical position, and pj = mj q̇j is the canonical momentum).

the magnetic field in the cavity:

H(r, t) = ŷHy(z, t) = (mj

2ω2
j

V ǫ0
)1/2(

q̇j(t)ǫ0

kj
) cos(kjz),

the classical Hamiltonian for the field:

H =
1

2

∫

V
dV [ǫ0E

2
x + µ0H

2
y ],

=
1

2

∑

j

[mjω
2
mq

2
j +mj q̇

2
j ] =

1

2

∑

j

[mjω
2
mq

2
j +

p2j

mj
].
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Quantization of the Electromagnetic Field

Like simple harmonic oscillator, Ĥ = p2

2m
+ 1

2
kx2, where [x̂, p̂] = i~,

For EM field, Ĥ = 1
2

∑

j [mjω
2
mq

2
j +

p2

j

mj
], , where [q̂i, p̂j ] = i~δij ,

annihilation and creation operators:

âje
−iωjt =

1
√

2mj~ωj

(mjωj q̂j + ip̂j),

â†je
iωjt =

1
√

2mj~ωj

(mjωj q̂j − ip̂j),

the Hamiltonian for EM fields becomes: Ĥ =
∑

j ~ωj(â
†
j âj + 1

2
),

the electric and magnetic fields become,

Êx(z, t) =
∑

j

(
~ωj

ǫ0V
)1/2[âje

−iωjt + â†je
iωjt] sin(kjz),

Ĥy(z, t) = −iǫ0c
∑

j

(
~ωj

ǫ0V
)1/2[âje

−iωjt − â†jeiωjt] cos(kjz),
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Phase diagram for EM waves

Electromagnetic waves can be represented by

Ê(t) = E0[X̂1 sin(ωt)− X̂2 cos(ωt)]

where

X̂1 = amplitude quadrature

X̂2 = phase quadrature
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Phase diagram for coherent states
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Coherent states and Comb lasers

coherent Glauber state:

|α >=

∑

n=0

αn
e−

|α|2
2

√
n!

|n >

Self referencing of frequency combs:

from: http://www.mpq.mpg.de/ haensch/
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Quantum Fluctuations and Zero Point Energy

divergence of the vacuum energy

Casimir effect

Lamb shift

spontaneous emission
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