
4, Quantum Distribution Theory

1. Expansion in Number states

2. Expansion in Coherent states

3. Q-representation

4. Wigner-Weyl distribution

5. Master Equation

6. Stochastic Differential Equation

Ref:

Ch. 3 in ”Quantum Optics,” by M. Scully and M. Zubairy.
Ch. 6 in ”Quantum Optics,” by D. Wall and G. Milburn.
Ch. 8 in ”Mesoscopic Quantum Optics,” by Y. Yamamoto and A. Imamoglu.
Ch. 4, 5 in ”Mathematical Methods of Quantum Optics,” by R. Puri.
”Quantum Optics in Phase Space,” by W. Schleich.

IPT5340, Fall ’06 – p.1/36



Phase Space Probability Distribution Function

A classical dynamical system may be described by a phase space probability
distribution function,

f({q}, {p}),

where

{q} ≡ q1, q2, . . . , qN ; and {p} ≡ p1, p2, . . . , pN ,

the probability

f({q}, {p})dN q dNp,

gives the description about the system in a volume element dN q dNp,

in quantum mechanics, the phase coordinates qi and pi can not described definite
values simultaneously,

hence the concept of phase space distribution function does not exist for a
quantum system,

however, it’s possible to construct a quantum quasi-probability distribution resembling the
classical phase space distribution functions.
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Phase Space Distribution Function

consider a one dimensional dynamical system, described classically by a phase
space distribution function f(q, p, t),

〈A(q, p)〉cl =

∫
dq dpA(q, p)f(q, p, t),

for the quantum mechanical description, if we know that the system is in state |ψ〉,
then an operator Ô has the expectation value,

〈Ô〉qm = 〈ψ|Ô|ψ〉,

but we typically do not know that we are in state |ψ〉, then an ensemble average
must be performed,

〈〈Ô〉qm〉ensemble =
∑
ψ

Pψ〈ψ|Ô|ψ〉,
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Phase Space Distribution Function

using completeness
∑
n |n〉〈n| = 1,

〈〈Ô〉qm〉ensemble =
∑
n

〈n|ρ̂Ô|n〉,

where the Pψ is the probability of being in the state |ψ〉 and we introduce a density
operator,

ρ̂ =
∑
ψ

Pψ |ψ〉〈ψ|,

the expectation value of any operator Â is given by,

〈Â(q̂, p̂)〉qm = Tr[ρ̂Â(q̂, p̂)],

where Tr stands for trace.

the density operator ρ̂ can be expanded in terms of the number states,

ρ̂ =
∑
n

∑
m

|n〉〈n|ρ̂|m〉〈m| =
∑
n

∑
m

ρnm|n〉〈m|,
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Expansion in Number States

the density operator ρ̂ can be expanded in terms of the number states,

ρ̂ =
∑
n

∑
m

|n〉〈n|ρ̂|m〉〈m| =
∑
n

∑
m

ρnm|n〉〈m|,

the expansion coefficients ρnm are complex and there is an infinite number of
them,

for problems where the phase-dependent properties of EM field are important, this
make the general expansion rather less useful,

in certain case where only the photon number distribution is of interest, one may
use

ρ̂ =
∑
n

Pn|n〉〈n|,

for a chaotic field, Pn = 1
1+n̄

( n̄
1+n̄

)n,

for a Poisson distribution of photons, Pn = e−n̄

n!
n̄n,
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Expansion in Coherent States

likewise the expansion may be in terms of coherent states,

ρ̂ =
1

π2

∫ ∫
d2αd2β|α〉〈α|ρ̂|β〉〈β|,

where 1
π

∫
|α〉〈α|d2α = 1,

the expectation value of any operator Â is given by, 〈Â(â, â†)〉qm = Tr[ρ̂Â(â, â†)],

quasi-probability distribution,

〈Ô(â, â†)〉 =

∫
d2αP (α, α∗)ON (α, α∗), for normally ordering operators,

=

∫
d2αQ(α, α∗)OA(α, α∗), for antinormally ordering operators,

=

∫
d2αW (α, α∗)OS(α, α∗), for symmetric ordering operators,

classically phase space distribution function f(q, p, t),

〈A(q, p)〉cl =

∫
dq dpA(q, p)f(q, p, t),
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Phase Space Distribution Function

rewrite classical distribution as,

f(q, p, t) =

∫
dq′ dp′δ(q − q′)δ(p− p′)f(q′, p′, t),

=
1

4π2

∫
dq′ dp′ dk dlexp{i[k(q − q′) + l(p− p′)]}f(q′, p′, t),

=
1

4π2

∫
dk dlexp(ikq)exp(ilp)

∫
dq′ dp′exp(−ikq)exp(−ilp′)f(q′, p′, t),

=
1

4π2

∫
dk dlexp(ikq)exp(ilp)〈exp(−ikq)exp(−ilp)〉cl,

with δx = 1
2π

∫
dkexp(ikx),

for the quantum analog of f(q, p, t),

1. replace the c-numbers q, p by the operators q̂, p̂,

2. replace the classical average by the quantum average,

3. express the exponential under the average as a sum of products of the form
qmpn,
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Quasiprobability Distribution Function

due to non-commutativity of q̂ and p̂, there are several different operator forms of a
c-number product qmpn, if m,n 6= 0,

for example, q2p may be represented by an of the forms: q̂2, q̂p̂q̂, p̂q̂2 or by their
linear combination c1q̂2 + c2q̂p̂q̂ + c3p̂q̂2, where xi are arbitrary subject to the
condition c1 + c2 + c3 = 1,

in general, we formally represent a c-number product as an operator as,

qmpn → Ω(q̂mp̂n),

which defines a linear combination of m q̂’s and n p̂’s,

for example,

exp[α1â+ α2â
†] = exp[α2â

†]exp[α1â]exp[
1

2
α1α2], normally ordering,

= exp[α1â]exp[α2â
†]exp[−

1

2
α1α2], antinormally ordering,

with the Baker-Hausdorff relation, eÂ+B̂ = eÂeB̂e−
1
2
[Â,B̂] = e+

1
2
[Â,B̂]eB̂eÂ,

provided [Â, [Â, B̂]] = [[Â, B̂], B̂] = 0,
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Quasiprobability Distribution Function

the quantum analog of the classical phase space distribution function is then,

fΩ(q, p, t) =
1

4π2

∫
dk dlexp(ikq)exp(ilp)〈Ω[exp(−ikq̂)exp(−ilp̂)]〉qm,

different choices of the correspondence Ω lead to different fΩ(q, p, t), each called
a quasi-probability distribution function to emphasize that it is a mathematical construct
and not a true phase space distribution function.

the quantum analog of the classical phase space distribution function in terms of
the creation and annihilation operators â and â† is,

fΩ(α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]Tr[Ω{exp(−iα̂ξ)exp(−iα̂†ξ∗)}ρ̂],
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Quasiprobability Distribution Function

now, let

Ω{exp(−iα̂ξ)exp(−iα̂†ξ∗)} =
N∏
j=1

[exp(−iαjξα̂)exp(−iβξ∗α̂†],

= exp(−
s

2
|ξ|2)exp[−i(ξα̂+ ξ∗α̂†)],

where s is a complex number related with products of the αj and βj ,

although, the exact expression of s in terms of the αj and βj may be derived, it is
inessential.

the ordering for s = 0 is called the Weyl ordering, or the symmetric ordering,

the exponential operator may be put in the anitnormal or the normal ordering,

exp[−i(ξâ+ ξ∗â†)] = exp(−iξ∗â†)exp(−iξâ)exp(−
1

2
|ξ|2), normally ordering,

= exp(−iξâ)exp(−iξ∗â†)exp(
1

2
|ξ|2), antinormally ordering,
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Quasiprobability Distribution Function

the quantum analog of the classical phase space distribution function in the
s-ordering is,

f(s)(α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]exp(−

s

2
|ξ|2)Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂},

this is some kind of two-dimensional Fourier transformation,

define

Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂} ≡ G(ξ, ξ∗)exp(
s

2
|ξ|2),

then

f(s)(α, α∗) =
1

π2

∫
d2ξG(ξ, ξ∗)exp[i(αξ + α∗ξ∗)],

and by the inverse Fourier transformation,

G(ξ, ξ∗) =

∫
d2αf(s)(α, α∗)exp[−i(αξ + α∗ξ∗)]
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Quasiprobability Distribution Function

for antinormal form of the exponential,

Tr[exp[−i(ξâ+ ξ∗â†)ρ̂] = Tr[exp(−iξâ)exp(−iξ∗â†)ρ̂](
1

2
|ξ|2),

= Tr[exp(−iξ∗â†)ρ̂exp(−iξâ)](
1

2
|ξ|2),

=
1

π

∫
d2αexp[−i(αξ + α∗ξ∗)](

1

2
|ξ|2)〈α|ρ̂|α〉,

= G(ξ, ξ∗)exp(
s

2
|ξ|2),

for the density matrix in the coherent state representation,

〈α|ρ̂|α〉 =
1

π

∫
d2ξG(ξ, ξ∗)exp(

s− 1

2
|ξ|2)exp[i(αξ + α∗ξ∗)]
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Quasiprobability Distribution Function

and the relationship between the density operator and its various phase space
representation through G(ξ, ξ∗) is,

ρ̂ =
1

π

∫
d2ξG(ξ, ξ∗)exp(

s− 1

2
|ξ|2)exp(iξ∗â†)exp(iξâ), for antinormally ordering,

=
1

π

∫
d2ξG(ξ, ξ∗)exp(

s

2
|ξ|2)exp[i(ξâ+ ξ∗â†)], for symmetric ordering,

=
1

π

∫
d2ξG(ξ, ξ∗)exp(

s+ 1

2
|ξ|2)exp(iξâ)exp(iξ∗â†), for normally ordering,

the relation between different phase space representation f(s) and f(t) is,

f(s)(α, α∗) =
2

π(s− t)

∫
d2βexp[−

2|α− β|2

s− t
]f(t)(β, β∗),
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Expectation value of the operator

the phase space distribution function in the s-ordering is,

f(s)(α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]exp(−

s

2
|ξ|2)Tr[exp[−i(ξâ+ ξ∗â†)ρ̂],

the phase space representation of any operator Â is similar,

A(s)(α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]exp(−

s

2
|ξ|2)Tr[exp[−i(ξâ+ ξ∗â†)Â],

the expectation value of Â is,

Tr[Âρ̂] =
1

π

∫
d2ξG(ξ, ξ∗)exp(

s

2
|ξ|2)Tr{Âexp[i(ξâ+ ξ∗â†)]},

=
1

π

∫ ∫
d2ξd2αf(s)(α, α∗)exp[−i(ξα+ ξ∗α∗)]exp(

s

2
|ξ|2)Tr{Âexp[i(ξâ+ ξ∗â†)]

= π

∫
d2αf(s)(α, α∗)A(−s)(α, α∗),

the expectation value of an operator is TE phase space integral of the product of
its phase space function with its conjugate representation of the density operator.
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P -representation, normally ordering

the density operator ρ̂ can be expanded in terms of the number states,

ρ̂ =
∑
n

∑
m

|n〉〈n|ρ̂|m〉〈m| =
∑
n

∑
m

ρnm|n〉〈m|,

likewise the expansion may be in terms of coherent states,

ρ̂ =
1

π2

∫ ∫
d2αd2β|α〉〈α|ρ̂|β〉〈β|,

only the photon number distribution is of interest, one may use

ρ̂ =
∑
n

Pn|n〉〈n|,

P -representation of a density operator,

ρ̂ =

∫
d2αP (α, α∗)|α〉〈α|,
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P -representation, normally ordering

P -representation of a density operator,

ρ̂ =

∫
d2αP (α, α∗)|α〉〈α|,

substitute into

f(s)(α,α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]exp(−

s

2
|ξ|2)Tr[exp[−i(ξâ+ ξ∗â†)]ρ̂],

with s = −1 and the exponential operator in the normal-ordering, we have

f(−1)(α,α∗) =
1

π2

∫
d2ξ

∫
d2βP (β, β∗)exp[i(αξ + α∗ξ∗)]Tr[e(−iξâ)|β〉〈β|e(−iξ

∗â†)],

=
1

π2

∫
d2ξ

∫
d2βP (β, β∗)exp{i[(α− β)ξ + (α∗ − β∗)ξ∗]},

= P (α, α∗),

the phase space representation for s = −1 is thus the P -function,
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P -representation, normally ordering

P -representation of a density operator,

ρ̂ =

∫
d2αP (α, α∗)|α〉〈α|,

the phase space representation for s = −1 is thus the P -function,

f(−1)(α, α∗) = P (α, α∗),

equivalent, one can define

P (α, α∗) = Tr[ρ̂δ(α∗ − â†)δ(α− â)],

= Tr[
∫

d2βP (β, β∗)|β〉〈β|δ(α∗ − â†)δ(α− â)],

=

∫
d2α

∫
d2βP (β, β∗)〈α|β〉〈β|δ(α∗ − â†)δ(α− â)|α〉,

note it is normally ordering in the trace,

δ(α∗ − â†)δ(α− â),
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P -representation, normally ordering

the function P (α, α∗) can be used to evaluate the expectation values of any
normal ordered function of â and â† using the methods of classical statistical
mechanics,

〈ÂN 〉 = Tr(ÂN ) =
1

π

∫
d2ξG(ξ, ξ∗)exp(

−1

2
|ξ|2)Tr{Âexp[i(ξâ+ ξ∗â†)]},

= π

∫
d2αf(−1)(α, α∗)A(1)(α, α∗),

=

∫
d2αP (α, α∗)AN (α, α∗),

since Tr(ρ̂) = 1, ∫
d2αP (α, α∗) = 1,

the function P (α, α∗) is referred to as the P -representation or the coherent state
representation,

ρ̂ =

∫
d2αP (α, α∗)|α〉〈α|,

the function P (α, α∗) forms a connection between the classical and quantum
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P -representation, normally ordering

let |β〉 and | − β〉 be the coherent states, then

〈−β|ρ̂|β〉 =

∫
d2αP (α, α∗)〈−β|α〉〈α|β〉,

= e−|β|2
∫

d2αP (α, α∗)e−|α|2eβα
∗−β∗α,

= e−|β|2
∫

dxα

∫
dyαP (xα, yα)e−(x2

α+y2α)e2i(yβxα−xβyα),

with

〈α|β〉 = exp(−
1

2
|α|2 + α∗β −

1

2
|β|2) = exp(−

1

2
|α− β|2),

where α = xα + iyα and β = xβ + iyβ and this is the two-dimensional Fourier
transform,

P (α, α∗) =
ex

2
α+y2α

π2

∫
dxβ

∫
dyβ〈−β|ρ̂|β〉e

(x2
β+y2β)e−2i(yβxα−xβyα),

=
e|α|

2

π2

∫
d2β〈−β|ρ̂|β〉e|β|

2

e−βα
∗+β∗α,
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Thermal field expanded in Fock states

expansion in the photon number distribution, ρ̂ =
∑
n Pn|n〉〈n|,

expansion in P -representation of a density operator, ρ̂ =
∫

d2αP (α, α∗)|α〉〈α|,

for the thermal field,

ρ̂ =
exp(−Ĥ/kBT )

Tr[exp(−Ĥ/kBT )]
,

where kB is the Boltzman constant and Ĥ is the free-field Hamiltonian,
Ĥ = ~ω(â† + â+ 1/2),

ρ̂ =
∑
n

[1 − exp(
−~ω

kBT
)]exp(−

n~ω

kBT
)|n〉〈n|,

the expectation value of the photon number, 〈n̄〉 = Tr(â†âρ̂) = 1
exp(~ω/kBT )−1

,

the photon distribution in a thermal field,

ρ̂ =
∑
n

〈n〉n

(1 + 〈n〉)n+1
|n〉〈n|,

which is the Bose-Einstein distribution,
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Thermal field expanded in P -representation

expansion in P -representation of a density operator, ρ̂ =
∫

d2αP (α, α∗)|α〉〈α|,

for the thermal field, ρ̂ =
∑
n

〈n〉n

(1+〈n〉)n+1 |n〉〈n|, then

〈−β|ρ̂|β〉 =
∑
n

〈n〉n

(1 + 〈n〉)n+1
〈−β|n〉〈n|β〉 =

e−|β|2

1 + 〈n〉
exp[

−|β|2

1 + 1
〈n〉

],

with |α〉 = e−
1
2
|α|2 ∑∞

n=0
αn
√
n!
|n〉,

the P -representation of the thermal field is

P (α, α∗) =
e|α|

2

π2

∫
d2β〈−β|ρ̂|β〉e|β|

2

e−βα
∗+β∗α,

=
e|α|

2

π2(1 + 1
〈n〉 )

∫
d2βexp[

−|β|2

1 + 1
〈n〉

]e−βα
∗+β∗α,

=
1

π〈n〉
e−|α|2/〈n〉,

which is a Gaussian distribution with the width of 〈n〉 in phase space,
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Coherent State expanded in P -representation

for the coherent field, ρ̂ = |α0〉〈α0|, then

the P -representation of the coherent field is

P (α, α∗) =
1

π2
e|α|

2−|α0|2
∫

d2βexp[−β(α∗ − α∗
0) + β∗(α− α0)],

= δ(2)(α− α0),

which is a two-dimensional delta function in phase space, i.e.

f(s)(α, α∗) =
1

π2

∫
d2ξG(ξ, ξ∗)exp[i(αξ + α∗ξ∗)],

G(ξ, ξ∗) =

∫
d2αf(s)(α, α∗)exp[−i(αξ + α∗ξ∗)]

where Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂} ≡ G(ξ, ξ∗)exp( s
2
|ξ|2),
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Number State expanded in P -representation

the two-dimensional Fourier transform

f(s)(α, α∗) =
1

π2

∫
d2ξG(ξ, ξ∗)exp[i(αξ + α∗ξ∗)],

G(ξ, ξ∗) =

∫
d2αf(s)(α, α∗)exp[−i(αξ + α∗ξ∗)]

where Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂} ≡ G(ξ, ξ∗)exp( s
2
|ξ|2),

for thermal field, its P -representation is a Gaussian function in phase space,

for coherent state, its P -representation is a 2D delta function in phase space,

for a number state, ρ̂ = |n〉〈n|, then

〈−β|ρ̂|β〉 = 〈−β|n〉〈n|β〉 = exp(−|β|2)
(−1)n|β|2n

n!
,

and the corresponding P -representation is, P (α, α∗) = e|α|2

n!
∂2n

∂αn∂α∗n δ
(2)(α),

which is not a non-negative definite function for n > 0,

whenever the photon distribution ρnn is narrower than the Poisson distribution,
P (α, α∗) becomes badly behaved.
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Number State expanded in P -representation

the two-dimensional Fourier transform

f(s)(α, α∗) =
1

π2

∫
d2ξG(ξ, ξ∗)exp[i(αξ + α∗ξ∗)],

G(ξ, ξ∗) =

∫
d2αf(s)(α, α∗)exp[−i(αξ + α∗ξ∗)]

where Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂} ≡ G(ξ, ξ∗)exp( s
2
|ξ|2),

for thermal field, its P -representation is a Gaussian function in phase space,

for coherent state, its P -representation is a 2D delta function in phase space,

for a number state, ρ̂ = |n〉〈n|, then

〈−β|ρ̂|β〉 = 〈−β|n〉〈n|β〉 = exp(−|β|2)
(−1)n|β|2n

n!
,

and the corresponding P -representation is, P (α, α∗) = e|α|2

n!
∂2n

∂αn∂α∗n δ
(2)(α),

which is not a non-negative definite function for n > 0,

whenever the photon distribution ρnn is narrower than the Poisson distribution,
P (α, α∗) becomes badly behaved.
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Properties of P -representation

We may put a function f(â, â†) into normal ordering by means of,

f(n)(â, â†) = 〈α|f(â, â†)|α〉 = f(α+
∂

∂α∗ , α
∗),

for example

〈α|ââ†|α〉 = (α+
∂

∂α∗ )α∗ = αα∗ + 1,

for a coherent state |α〉, then

|α〉〈α|â = (e−α
∗αeαâ

†
|0〉〈0|eα

∗â)â,

= e−α
∗α ∂

∂α∗ {e
αâ† |0〉〈0|eα

∗â},

= (
∂

∂α∗ + α)|α〉〈α|,

by repeat |α〉〈α|âl = ( ∂
∂α∗ + α)l|α〉〈α|,

its adjoint â†|α〉〈α| = ( ∂
∂α

+ α∗)|α〉〈α|,
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Glauber-Sudarshan P -representation

consider a single electromagnetic field mode in a cavity with finite leakage rate, the
time evolution of the field density is given by

d
dt
ρ̂f (t) =

−1

2
[Re(ââ

†ρ̂f − â†ρ̂f â) +Rg(â
†âρ̂f − âρ̂f â

†)] + adjoint,

where Re and Rg are the photon emission and absorption rate coefficients,

with the P -representation for the density operator, ρ̂ =
∫

d2αP (α, α∗)|α〉〈α|, then
we have

∫
d2αṖ |α〉〈α| =

−1

2

∫
d2αP [Re(ââ

†|α〉〈α| − â†|α〉〈α|â) +Rg(â
†â|α〉〈α| − â|α〉〈α|â†)]

+ adjoint,
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Fokker-Planck equation

with

|α〉〈α|â = (
∂

∂α∗ + α)|α〉〈α|,

â†|α〉〈α| = (
∂

∂α
+ α∗)|α〉〈α|,

we have the Fokker-Planck equation,

d
dt
P (α, α∗) =

−1

2
(Re−Rg){

∂

∂α
[αP (α,α∗)]+

∂

∂α∗ [α∗P (α, α∗)]}+Re
∂2

∂α∂α∗ P (α, α∗),

compared with,

d
dt
ρ̂f (t) =

−1

2
[Re(ââ

†ρ̂f − â†ρ̂f â) +Rg(â
†âρ̂f − âρ̂f â

†)] + adjoint,
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Positive- P -representation

The advantage of the Fokker-Planck equation is that it significantly simplifies the
calculation process for the fields that are approximately coherent states,

when the fields become nonclassical, the P -representation is no longer
well-behaved, such as the squeezed and photon number states,

in order to map an arbitrary nonclassical state into a classical probability density,
the dimension of the phase space must at least be doubled,

one may use off-diagonal or positive-P -representation for nonclassical states,

”Quantum noise,” by C. W. Gardiner
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Q-representation, normally ordering

for s = 1, the density matrix in the coherent state representation is,

〈α|ρ̂|α〉 =
1

π

∫
d2ξG(ξ, ξ∗)exp[i(αξ + α∗ξ∗))],

= πf(1)(α, α∗) ≡ Q(α, α∗),

f(1)(α, α∗) is simply the matrix element of the operator in the coherent states
representation, known as the Q-function,

the expectation value, Tr[Âρ̂] = 1
π

∫
d2αf(s)(α, α∗)A(−s)(α, α∗),

if the density operator is represented by P -function, then

〈â†mân〉 =

∫
d2αP (α, α∗)α∗mαm,

if the density operator is represented by P -function, then

〈ânâ†m〉 =

∫
d2αQ(α, α∗)α∗mαm,
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Q-representation, normally ordering

Q-representation defineds as the antinormally ordering in the trace,

Q(α, α∗) = Tr[ρ̂δ(α− â)δ(α∗ − â†)],

=
1

π
Tr

∫
d2β[ρ̂δ(α− â)|β〉〈β|δ(α∗ − â†)],

=
1

π
Tr[ρ̂|α〉〈α|],

=
1

π
〈α|ρ̂|α〉,

i.e. Q(α, α∗) is proportional to the diagonal element of the density operator in the
coherent state representation,

unlike P -representation, Q(α, α∗) isis non-negative definite and bounded, i.e.

Q(α, α∗) =
1

π

∑
ψ

Pψ|〈ψ|α〉|
2,

since |〈ψ|α〉|2 ≤ 1, we have

Q(α, α∗) ≤
1

π
,
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Q-representation, normally ordering

Q-representation may be related to the P -representation as,

Q(α, α∗) =
1

π

∫
d2βP (β, β∗)e−|α−β|2 ,

for a number state |n〉, its Q-representation is,

Q(α, α∗) =
1

π
|〈n|α〉|2 =

e−|α|2 |α|2n

πn!
,

for a squeezed state |β, ξ〉, its Q-representation is,

Q(α, α∗) =
1

π
|〈α|β, ξ〉|2,

=
sechr
π

exp{−(|α|2 + |β|2) + (α∗β + β∗α)sechr

−
1

2
[eiθ(α∗2 − β∗2 + e−iθ(α2 − β2)]tanhr},
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Q-representation

In the quarature phase-space, X1 = (α+ α∗)/2 and X1 = (α− α∗)/2i,

Q(α, α∗) =
sechr
π

exp{−(|α|2 + |β|2) + (α∗β + β∗α)sechr

−
1

2
[eiθ(α∗2 − β∗2 + e−iθ(α2 − β2)]tanhr},
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W -representation, symmetric ordering

the quantum analog of the classical phase space distribution function in the
s-ordering is,

f(s)(α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]exp(−

s

2
|ξ|2)Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂},

for s = −1,

f(−1)(α,α∗) = P (α, α∗) =
1

π2

∫
d2ξexp[i(αξ+α∗ξ∗)]Tr{exp(−iξ∗â†)exp(−iξâ)ρ̂},

for s = +1,

f(+1)(α, α∗) = Q(α, α∗) =
1

π2

∫
d2ξexp[i(αξ+α∗ξ∗)]Tr{exp(−iξâ)exp(−iξ∗â†)ρ̂},

for s = 0,

f(0)(α, α∗) = W (α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂},
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W -representation, symmetric ordering

for s = 0,

f(0)(α, α∗) = W (α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂},

the Wigner-Weyl distibution function W (α, α∗) is associated with symmetric
ordering,

for example
1

2
〈ââ† + â†â〉 =

∫
d2αW (α, α∗)ααast,

the Wigner function can be measured experimentally, including its negative values,

IPT5340, Fall ’06 – p.34/36



Wigner function in terms of q̂ and p̂

in terms of q̂ and p̂,

W (p, q) =
1

(2π)2

∫
dσ

∫
dτexp[i(τp+ σq)]Tr{exp[−i(τ p̂+ σq̂)]ρ̂},

=
1

(2π)2

∫
dσ

∫
dτe[i(τp+σq)]Tr{e(−iτp̂/2)e(−iσq̂)ρ̂e(−iτp̂/2)}e(−iστ/2),

=
1

(2π)2

∫
dσ

∫
dτe[i(τp+σq)]

∫
dq′〈q′|e(−iτp̂/2)e(−iσq̂)ρ̂e(−iτp̂/2)|q′〉e(−iστ/2)

since

exp(−iτ p̂)|q′〉 = |q′ − ~τ/2〉,

we have

W (p, q) =
1

(2π)2

∫
dσ

∫
dτeiσ(q−q′)

∫
dq′〈q′ + ~τ/2|ρ̂|q′ − ~/tau/2〉eiτp,

=
1

π~

∫
dye−2yp/~)〈q′ − y|ρ̂|q′ + y〉,

where y = −~τ/2
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Wigner function for a Kerr state

M. Stobinska et al., quant-ph/0605166
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