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Abstract
Following the pioneering work of Professor Haus, a general quantum theory
for bi-directional nonlinear optical pulse propagation problems is developed
and applied to study the quantum properties of fibre Bragg grating solitons.
Fibre Bragg grating solitons are found to be automatically amplitude
squeezed after passing through the grating and the squeezing ratio saturates
after a certain grating length. The optimal squeezing ratio occurs when the
pulse energy is slightly above the fundamental soliton energy. One can also
compress the soliton pulsewidth and enhance the squeezing simultaneously
by using an apodized grating, as long as the solitons evolve adiabatically.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Solitons are particle-like waves that propagate in dispersive
or absorptive media without changing their pulse shapes
and can survive after collisions. Various types of optical
soliton phenomenon have been studied extensively in the area
of nonlinear optical physics. These include the nonlinear
Schrödinger solitons in dispersive optical fibres, spatial and
vortex solitons in photorefractive materials/waveguides, and
cavity solitons in resonators [1]. Solitons in optical fibres
were first predicted by Hasegawa and Tappert [2] in 1973 and
were first observed experimentally by Mollenauer et al [3]
in 1980. Since then, the idea of using solitons for long-haul
optical transmission has been an attractive research area with
rapid progress [4]. In 1986, Gordon and Haus pointed out
that the spontaneous emission from optical amplifiers in the
optical link can cause the timing jitter variance of the solitons
to be proportional to the cube of the propagation distance [5].
This effect, known as the Gordon–Haus effect, will place an
upper limit on the achievable bit rate in long-haul soliton
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3 Author to whom any correspondence should be addressed.

communication systems, even though it was found out later that
one can overcome this limitation somewhat by using guiding
filters [6, 7].

The spontaneous emission effects on soliton propagation
already call for a rigorous quantum theory for soliton
propagation, even though it may still be possible to treat
them semi-classically. In 1987, Carter and Drummond et al
[8, 9] used the positive-P representation approach to transform
the quantum nonlinear Schrödinger equation into stochastic
nonlinear equations with noise terms. They then solved
the stochastic nonlinear equations numerically and showed
that solitons are quantum mechanically squeezed during
propagation. The squeezing ratio of the quantum solitons
was later calculated with the inclusion of the homodyne
detection scheme [10]. Since then, the quantum theory of
travelling-wave optical solitons has been intensively developed
and several approaches have been successfully carried out.
The studied soliton systems include the family of nonlinear
Schrödinger solitons [9, 11–14] as well as the self-induced-
transparency solitons [15]. The quantum theory of nonlinear
Schrödinger solitons has also been directly applied to study
soliton communication problems [16–18].

The quantum theory of nonlinear Schrödinger solitons
turns out to be an very interesting one. It was sometimes
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less well known that the quantum nonlinear Schrödinger
equation is the evolution equation of a one-dimensional
bosonic system with δ-function interaction under the second
quantization framework [19]. By solving the problem in
the Schrödinger picture using the Bethe ansatz method, one
can construct bound-state eigensolutions which are closely
related to the soliton phenomenon. In 1989, Lai and Haus
noticed this correspondence and constructed the exact soliton
states by the Bethe ansatz method [12]. At the same time
they also developed an approximate nonlinear analysis based
on the time-dependent Hartree approximation [11]. In the
subsequent year, a quantum soliton perturbation theory based
on the linearization approach was successfully carried out
by Haus and Lai [13]. The squeezing ratio of the soliton
parts can be predicted by a simple analytic formulation and
the optimal local oscillator pulse shape can be determined.
This quantum soliton perturbation theory was later re-
formulated to make it clearer [17] and eventually led to the
development of the back-propagation method [20], which
is a general numerical method for calculating the quantum
noises of nonlinear pulse propagation problems based on the
linearization approximation. The aim of the present paper
is to further pursue the theoretical development along this
line by generalizing the theory of quantum solitons to bi-
directional nonlinear pulse propagation problems and to study
the quantum properties of Bragg grating solitons in particular.

On the side of experimental progress, many experiments
for actually measuring the soliton squeezing have been carried
out since 1990, with the advance of stable pulse lasers and
high quantum efficiency detectors at optical communication
wavelengths. To provide a stable experimental set-up against
the environmental fluctuations, Shirasaki and Haus proposed
to use a Sagnac loop in soliton squeezing experiments for
measuring the quadrature squeezing [21]. The scheme is
actually a squeezed vacuum state generator that can output
squeezed vacuum states. Soliton squeezing from a Sagnac fibre
interferometer was first observed by Rosenbluh and Shelby in
1991 (1.7 dB below the shot noise) [22]. Using the same
set-up but at a different wavelength, Bergman and Haus also
succeeded in observing squeezing with non-soliton pulses
(4.9 dB below the shot noise) [23] in the same year. Since then,
larger quadrature squeezing from fibres has been obtained with
a gigahertz erbium-doped fibre laser to suppress the guided
acoustic-wave Brillouin scattering (GAWBS) and a 6.1 dB
noise reduction below the shot noise has been reported [24].
One can also produce amplitude squeezing by using solitons
with an external spectral filter [25] or with an imbalance
Sagnac loop interferometer [26]. Squeezing generation with
an imbalance Sagnac loop interferometer in the normal-
dispersion region has also been demonstrated [27]. Recently,
quantum correlation between different spectral components of
the squeezed soliton has also been studied extensively in the
literature [28]. The above brief description summarizes the
exciting development that has been carried out for squeezing
generation using optical fibres.

In recent years, with the advance of new fabrication
technologies, it becomes more feasible to actually utilize
one- or higher-dimensional periodic dielectric structures (or
especially the photonic bandgap crystals) [29] to modify
the properties of the spontaneous emission as well as the

propagation of waves. The fibre Bragg gratings (FBGs)
are one-dimensional periodic structures with weak index
modulation. The simplest way to induce 1D Bragg gratings
inside optical fibres is with side-illumination of the UV
interference light. The FBG formed this way can be viewed
as a 1D photonic bandgap crystal for the guiding mode of the
single-mode fibre [30]. Interesting soliton phenomena known
as fibre Bragg grating solitons [31, 32] can be found if the
fibre Bragg grating has the third-order Kerr nonlinearity. The
propagation of optical pulses inside the nonlinear FBG can be
described by the nonlinear coupled mode equations (NCMEs).
Intuitively, the fibre Bragg grating soliton is formed when the
input pulse has suitable pulse-width and peak intensity such
that the nonlinear Kerr effect is large enough to compensate
the high anomalous dispersion near one of the bandedges of
the FBG.

From the theoretical point of view, fibre Bragg grating
solitons belong to the class of bi-directional pulse propagation
problems, where the quantum theory still lacks enough
consideration. Most of the previous studies on fibre Bragg
grating solitons have been on the classical effects and there
is almost no reported result on their quantum properties. It
is the aim of this study to bridge this gap by developing a
general quantum theory for bi-directional pulse propagation
problems and particularly to apply the theory to study the
case of fibre Bragg grating solitons. It will be shown
that the fibre Bragg grating soliton pulses will quantum
mechanically be amplitude squeezed after passing through
the fibre grating and the squeezing ratio will be calculated
theoretically. We use the linearization approach to study
the quantum effects of FBG solitons by extending the back-
propagation method previously developed [20] to the case of
nonlinear bi-directional propagation problems. By following
the same spirit of the back-propagation method, we will first
derive a set of linear adjoint equations from the linearized
nonlinear coupled mode equations in such a way that any
inner product between the solutions of the two equation sets is
conserved during the time evolution. In this way, the variance
of the measured operator as well as its squeezing ratio can
be calculated readily for a given measurement characteristic
function. The squeezing ratio of FBG solitons will be found
to exhibit interesting relations with the fibre grating length as
well as with the intensity of the input pulse.

In contrast to uniform fibre gratings, nonuniform
fibre gratings with chirp and/or apodization have shown
some potential for pulse compression applications [33].
The theory and experiment for Bragg grating solitons
propagated in apodized FBGs have also been developed and
demonstrated [34, 35]. Some new results on slowing down
FBG solitons in apodized fibre gratings have also been carried
out [36]. In the present paper the quantum fluctuations of FBG
solitons in nonuniform fibre gratings will also be studied. We
find that one can compress the soliton pulsewidth and enhance
the squeezing simultaneously by using an apodized grating, as
long as the solitons evolve adiabatically.

The paper is organized as follows: in section 2 the model
of the nonlinear coupled mode equations for bi-directional
wave propagation in a uniform FBG is reviewed. In section 3
we use the back-propagation method to calculate the quantum
fluctuations of FBG solitons and the characteristics of the
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Figure 1. Dispersion relation of linear fibre Bragg gratings.

squeezing ratio are discussed. In section 4 the quantum
fluctuations of FBG solitons in nonuniform fibre Bragg
gratings are studied. Finally, a brief conclusion is given in
section 5.

2. Fibre Bragg grating solitons

We start the derivation by considering the linear wave
propagation problem in a one-dimensional periodic structure:

∂2 E

∂z2
− n2(z)

c2

∂2 E

∂t2
= 0. (1)

Here the dielectric constant n2(z) = n̄2 + ε̃(z) is a periodic
function of the propagation distance, with the spatial average
refractive index n̄ and the period �. We are interested
in the light field at a frequency near the Bragg condition
ω0 = k0c/n̄, where c is the light velocity in free space,
and k0 = π/�. For FBGs, we can expand the periodic
index perturbation function ε̃(z) by the Fourier series and
only keep the phase-matching ±1 order terms, i.e. ε̃(z) =
2ε̃0 cos(2k0z). One then decomposes the light field into the
forward (Ua ) and backward (Ub ) propagation pulses, E(z, t) =
Ua(z, t)e−i(ωt−k0 z) + Ub(z, t)e−i(ωt+k0 z) + c.c., and obtains the
following linear coupled mode equations:

1

vg

∂

∂t
Ua(z, t) +

∂

∂z
Ua = iδUa + iκUb (2)

1

vg

∂

∂t
Ub(z, t) − ∂

∂z
Ub = iδUb + iκUa (3)

where vg = n̄/c is the group velocity of the pulses, δ = ω−ω0

is the wavelength detuning parameter, and κ = ω0ε̃/2n̄c is the
coupling coefficient. In figure 1 one can see that the dispersion
relation of this set of coupled-mode equations has a bandgap at
the frequency (wavelength) that satisfies the Bragg condition
k = k0.

If the third order nonlinearity of the optical fibre needs to
be taken into account, one can model the problem by using
the above coupled mode equations that describe the coupling

between the forward and the backward propagating waves in
a uniform FBG with the addition of the self-phase and cross-
phase modulation effects. With the nonlinear terms, this set of
NCMEs has analytical soliton solutions for the case of infinite
grating length, as is shown by Aceves and Wabnitz [31] with
the introduction of the massive Thirring model. However, for
nonlinear FBGs of finite length, no analytic solution can be
found. So in our studies we directly use the finite difference
numerical simulation method with the parameters based on the
first experiment reported in the literature [32]. We consider a
60 ps full width at half maximum (FWHM) sech-shaped pulse
incident into a uniform grating with 15.0 cm−1 wavenumber
detuning from the centre of the bandgap. The coupling strength
of the fibre grating is 10 cm−1, the nonlinear coefficient � is
0.018 cm GW−1, and the group velocity vg is chosen to be
c/n with n = 1.5 and c being the speed of light in free space.
When the input peak intensity is below the required value for
forming a solitary pulse in the FBG (about 4.5 GW cm−2 in this
case), the peak intensity of the pulse will decrease along the
propagation. On the other hand, when the input peak intensity
is above 4.5 GW cm−2, the peak intensity of the pulse oscillates
during the propagation within the grating. Only when the
nonlinearity can exactly compensate the dispersion induced
by the FBG can one have a stable solitary pulse inside the
grating.

3. Quantum fibre Bragg grating solitons

After finding these classical solutions, we now turn to the
calculation of the quantum properties. The Hamiltonian of the
system can be expressed by the forward (Ûa) and backward
(Ûb) field operators as follows [37]:

H = −vg

{
δ

∫
dz (Û †

a Ûa + Û †
b Ûb)

+ i
∫

dz

(
Û †

a

∂

∂z
Ûa − Û †

b

∂

∂z
Ûb

)

+ κ

∫
dz (Û †

a Ûb + Û †
b Ûa)

+
�

2

∫
dz (Û †

a Û †
a ÛaÛa + Û †

b Û †
b ÛbÛb)

+ �

∫
dz (Û †

a Û †
b ÛbÛa + Û †

b Û †
a ÛaÛb)

}
. (4)

Here the field operators Ûa and Ûb must obey the usual equal
time bosonic commutation relations.

[Ûa(z1, t), Û †
a (z2, t)] = δ(z1 − z2)

[Ûb(z1, t), Û †
b (z2, t)] = δ(z1 − z2)

[Ûa(z1, t), Ûa(z2, t)] = [Û †
a (z1, t), Û †

a (z2, t)] = 0

[Ûb(z1, t), Ûb(z2, t)] = [Û †
b (z1, t), Û †

b (z2, t)] = 0

[Ûa(z1, t), Ûb(z2, t)] = [Ûa(z1, t), Û †
b (z2, t)] = 0.

In the Heisenberg picture we can derive the quantum
nonlinear coupled mode equations (QNCMEs) by the
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Hamiltonian in equation (4)

1

vg

∂

∂t
Ûa(z, t) +

∂

∂z
Ûa = iδÛa

+ iκÛb + i�Û †
a ÛaÛa + 2i�Û †

b ÛbÛa (5)
1

vg

∂

∂t
Ûb(z, t) − ∂

∂z
Ûb = iδÛb + iκÛa

+ i�Û †
b ÛbÛb + 2i�Û †

a ÛaÛb. (6)

This derivation automatically proves that the QNCMEs
preserve the commutation brackets. The form of QNCMEs
in equations (5) and (6) is the same as the classical NCMEs,
except that it is now a set of quantum operator equations.
For optical solitons with a large average photon number, we
can safely use the linearization approximation to study their
quantum effects. By setting

Ûa(z, t) = Ua0(z, t) + ûa(z, t)

Ûb(z, t) = Ub0(z, t) + ûb(z, t)

where Ua0 and Ub0 are classical fibre Bragg grating soliton
solutions of NCMEs, one can obtain a set of linear quantum
operator equations that describe the evolution of the quantum
fluctuations associated with the fibre Bragg grating solitons
after the linearization approximation is performed.

1

vg

∂

∂t

(
ûa

ûb

)
=

(− ∂
∂z + iδ + 2i�|Ua0|2 + 2i�|Ub0|2

iκ + 2i�U ∗
a0Ub0

iκ + 2i�Ua0U ∗
b0

∂
∂z + iδ + 2i�|Ua0|2 + 2i�|Ub0|2

)(
ûa

ûb

)

+

(
i�U 2

a0 2i�Ua0Ub0

2i�Ua0Ub0 i�U 2
b0

) (
û†

a

û†
b

)
. (7)

This set of equations is still a set of quantum operator
equations for the quantum perturbation field operators ûa(z, t)
and ûb(z, t), which have to satisfy the same equal time
commutation relations as the unperturbed field operators
Ûa(z, t) and Ûb(z, t).

To solve the linear quantum operator equations in
equation (7) by the back-propagation method, we define the
inner product operation according to

〈 �f |�̂g〉 = 1
2

∫
dz [ f ∗

a ĝa + fa ĝ†
a + f ∗

b ĝb + fb ĝ†
b]. (8)

We then seek a set of adjoint equations which satisfies the
following property:

d

dt
〈�uA|�̂u〉 = 0. (9)

In other words, the inner product between the solutions of the
two equation sets is preserved along the time axis. With this
desired property, we can express the inner product of the output
quantum perturbation operator with a projection function in
terms of the input quantum field operators which have the
known quantum characteristics. This will allow us to calculate
the quantum fluctuations of any inner product between the
output quantum operator and a given projection function. It

FBG

G

D

Figure 2. Measurement scheme of direct detection for observing
FBG soliton squeezing. Here G is a gating device which will block
out all the transmittive pulses but the first one; D is an optical
detector.

is not difficult to show that the set of adjoint equations for the
perturbed QNCMES in equation (7) is given by

1

vg

∂

∂t

(
uA

a

uA
b

)
=

( − ∂
∂z + iδ + 2i�|Ua0|2 + 2i�|Ub0|2

iκ + 2i�U ∗
a0Ub0

iκ + 2i�Ua0U ∗
b0

∂
∂z + iδ + 2i�|Ua0|2 + 2i�|Ub0|2

)(
uA

a

uA
b

)

+

( −i�U 2
a0 −2i�Ua0Ub0

−2i�Ua0Ub0 −i�U 2
b0

)(
uA∗

a

uA∗
b

)
. (10)

Actually, under the linearization approximation the
measurement of a physical quantity can always be expressed
as an inner product between a measurement characteristic
function and the perturbed quantum field operator [20]. By
back-propagating the classical adjoint equation set with the
measurement characteristic function as the initial condition,
one can express the measured inner product as an inner product
between the input quantum operator and the back-propagated
measurement function. It is then quite easy to calculate the
quantum uncertainties of the measured quantity if the quantum
characteristics of the input quantum field operators are known.
Typically we will assume the input quantum state to be a
coherent state. The squeezing ratio of the measured quantity
is defined according to

R(T ) = var[〈 �f (z)|�̂u(z, t = T )]

var[〈 �f (z)|�̂u(z, t = 0)]

= var[〈 �FT (z)|�̂u(z, t = 0)]

var[〈 �f (z)|�̂u(z, t = 0)]
. (11)

Here var[·] means the variance, �f (z) is the original
projection function and �FT (z) is the back-propagated
projection function. The choice of the characteristic function
�f (z) = ( fa(z), fb(z))T will depend on the measurement to be

performed. When the measured quantity is the photon number
of the pulse, the characteristic function fa(z) is simply the
normalized classical output pulse [13] and fb(z) = 0. If the
homodyne detection is used, then fa(z) is the normalized local
oscillator pulse.

In figure 2 we illustrate the possible direct detection
scheme for measuring the photon number squeezing of the
FBG solitons. To avoid the complication due to the multiple
transmitted pulses of the FBG, it may be necessary to use a
time-gating device to make sure that only the first transmitted
pulse is detected.

Based on the formulation given above, we now apply
the developed quantum theory to the case of a pulse incident
into a uniform nonlinear FBG and calculate the photon
number fluctuations of the first transmitted pulse. First of all,
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Figure 3. Transmittance (top) and photon number squeezing ratio
(bottom) for fibre Bragg grating solitons with different input
intensities.

the transmittance of a 50 cm long FBG versus different
intensities of the input pulse is plotted in the top curve of
figure 3. It can be seen that the transmittance of the FBG
is a nonlinear oscillating function of the input pulse intensity.
The calculated photon number squeezing ratio is shown at the
bottom of figure 3 with the same parameters. One can see that
the squeezing ratio decreases monotonically when the input
intensity is below the intensity of the fundamental soliton.
The optimum squeezing ratio occurs when the pulse energy
of the soliton is slightly larger than that of the fundamental
soliton. The curve begins to oscillate strongly when the
intensity is much larger than that of the fundamental soliton.
One important observation is that the oscillation behaviour of
the FBG transmittance and the squeezing ratio matches very
well. That is, the squeezing ratio has a local minimum when
the transmission has a local maximum. This agrees with the
intuitive expectation that larger amplitude squeezing should
occur when the transmittance curve is saturated. Another
way to intuitively understand the results is as follows. The
periodic grating structure acts like a spectral filter which
can filter out the noisier high frequency components in the
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Figure 5. Photon number squeezing ratio for Bragg solitons after
propagating through different lengths of FBGs.

soliton spectrum and produce a net photon number (amplitude)
squeezing effect just as in the previous soliton amplitude
squeezing experiments where a spectral filter is cascaded after
a nonlinear fibre [25, 38].

To make sure that the FBG solitons are actually amplitude
squeezed, we perform another calculation to simulate the
squeezing ratio when the homodyne detection scheme is used
and assume that the local oscillator pulse is exactly the classical
output pulses. With the homodyne detection scheme, one
has the additional degree of freedom to adjust the relative
phase between the local oscillator and the signal. Figure 4
plots the squeezing ratio for different input intensities and for
different local oscillator phases when propagating through a
constant FBG length (50 cm2). One can see that for small
input intensities (below 5 GW cm−2) the squeezing direction
is close to but not exactly in the photon number (or amplitude)
quadrature, θ = 0. However, when the intensity of the FBG
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soliton is large enough, the squeezing direction will be in the
photon number quadrature.

Figure 5 shows the dependence of the photon number
squeezing ratios for different FBG lengths with a constant input
intensity (I = 4.5 GW cm−2). We find that the squeezing
ratio monotonically decreases with increasing FBG length and
saturates at a length around 60 cm. Intuitively, the filtering
effects of the FBG will unavoidably introduce additional noise
on the light fields and will eventually cause the squeezing ratio
to become saturated. In figure 6 we also plot the squeezing
ratio for different FBG lengths and for different local oscillator
phases with a constant input intensity (I = 4.5 GW cm−2).
Again when the FBG length is long enough, the squeezing
direction will be in the in-phase (photon number) quadrature.

4. Quantum FBG solitons in nonuniform gratings

It is well known that one can engineer the dispersion along the
FBG by using a nonuniform FBG. Such apodized nonlinear
FBGs have been used for adiabatic soliton pulse compression
within a very short length of several centimetres [34, 35].
Intuitively, the solitons with higher peak intensities will exhibit
large squeezing due to higher nonlinear effects. It is thus
expected that one should be able to compress the pulsewidth of
the FBG soliton and enhance its squeezing ratio simultaneously
with the use of a suitably apodized FBG. To verify this idea,
here we consider a nonuniform FBG which has a position
dependent coupling coefficient described by

κ(z) = κ0 + αz (12)

where κ0 = ω0ε̃/2n̄c is the initial coupling coefficient and α

is the slope of the coupling coefficient.
In the following calculation we consider the same 60 ps

FWHM sech-shaped input pulse with the peak intensity of I =
4.5 GW cm−2 for the nonuniform grating without changing
any parameter. In figure 7 we plot the squeezing ratio versus the
FBG length with a constant input intensity (I = 4.5 GW cm−2)
and different apodization slopes. The three curves in figure 7
correspond to different slopes of κ(z) (α = +0.04, 0,−0.04)
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Figure 7. Photon number squeezing ratio versus the FBG length
with a constant input intensity (I = 4.5 GW cm−2). The coupling
coefficient of the FBG is a function of propagating length:
κ(z) = κ0 + αz. The three curves correspond to different slopes of
κ(z): solid curve, α = 0; dashed curve, α = −0.04; dash–dotted
curve, α = +0.04.
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Figure 8. Photon number squeezing ratio versus the FBG length
with different slopes of κ(z): solid curve, α = 0; dashed curve,
α = −0.08; dash–dotted curve, α = +0.08. Other parameters are
the same as those in figure 7.

respectively. When α = 0.04 cm−2, the FWHM of the original
FBG soliton (60 ps) will be adiabatically compressed to 30 ps
after propagating through a 70 cm FBG. Because of this, the
achievable optimal squeezing ratio increases from 8 to 9.7 dB
for the propagation distance of 70 cm. On the other hand,
if the slope of the coupling coefficient is positive, we have a
broadened FBG soliton and the optimal squeezing ratio will be
degraded. If the slope of the coupling coefficient is too large,
then the soliton cannot be compressed adiabatically and thus
the optimal squeezing ratio will eventually be degraded. This
can be seen in figure 8, where we plot the squeezing ratio versus
the grating length with larger slopes (α = −0.08, +0.08). The
result for the uniform FBG case (α = 0) is also plotted for
comparison. These results show that one can actually tailor the
squeezing ratio of the FBG solitons as long as the soliton pulses
evolve adiabatically. Recently, some new theoretical results for
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the dynamics of classical gap solitons in an apodized grating
have been carried out [36]. It was shown that the velocity of
the gap soliton can be essentially slowed down in the apodized
grating and interesting soliton collision behaviours including
the merge of the solitons were predicted. We shall investigate
more about the other quantum dynamics of FBG solitons in
apodized fibre gratings in the future.

5. Conclusion

In conclusion, by following the line of theoretical development
on the quantum theory of optical solitons initiated by Professor
Haus, we have developed a general quantum theory for bi-
directional nonlinear optical pulse propagation problems and
have especially used it to study the squeezing phenomena of
fibre Bragg grating solitons. It has been shown for the first
time that the output FBG soliton pulses will be amplitude
squeezed automatically. The squeezing ratio of the FBG
solitons exhibits an interesting relation with the fibre grating
length as well as with the intensity of the input pulse. The
squeezing ratio saturates after a certain grating length and
the optimal squeezing ratio occurs when the intensity of the
FBG soliton is slightly larger than that of the fundamental
soliton. With the use of nonuniform FBGs, we also find that
one can compress the FBG soliton and enhance its squeezing
ratio simultaneously, as long as the soliton pulses evolve
adiabatically. To actually measure the quantum fluctuations
of the fibre Bragg grating solitons experimentally, we propose
to use a time-gating device to block out other smaller multiple
transmitted pulses and only directly detect the first transmitted
pulse from the grating. Since our calculation is already
based on the existing experimental parameters, it will be very
interesting to see whether one can actually verify the theoretical
predictions experimentally.

Acknowledgments

This work was supported in part by the National Science
Council of the Republic of China under Grant No. NSC 93-
2752-E-009-009-PAE, as well as by the Center for Nano-
Science and Technology in the United System of Taiwan.

References

[1] Kivshar Yu S and Agrawal G P 2003 Optical Solitons: From
Fibers to Photonic Crystals (San Diego, CA: Academic)

[2] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142

[3] Mollenauer L F, Stolen R H and Gordon J P 1980 Phys. Rev.
Lett. 45 1095

[4] Iannone E, Mecozzi A and Settembre M 1998 Nonlinear
Optical Communication Networks (New York:
Wiley–Interscience)

[5] Gordon J P and Haus H A 1986 Opt. Lett. 11 665
[6] Mecozzi A, Moores J D, Haus H A and Lai Y 1991 Opt. Lett.

16 1841
[7] Kodama Y and Hasegawa A 1992 Opt. Lett. 17 31
[8] Carter S J, Drummond P D, Reid M D and Shelby R M 1987

Phys. Rev. Lett. 58 1841
[9] Drummond P D and Carter S J 1987 J. Opt. Soc. Am. B 4 1565

[10] Carter S J, Drummond P D and Shelby R M 1989 Opt. Lett. 14
373

[11] Lai Y and Haus H A 1989 Phys. Rev. A 40 844
[12] Lai Y and Haus H A 1989 Phys. Rev. A 40 854
[13] Haus H A and Lai Y 1990 J. Opt. Soc. Am. B 7 386
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