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Abstract
Small quantum fluctuations in solitons described by the cubic–quintic
nonlinear Schrödinger equation (CQNLSE) are studied within the linear
approximation. The cases of both self-defocusing and self-focusing quintic
terms are considered (in the latter case, the solitons may be effectively
stable, despite the possibility of collapse). The numerically implemented
back-propagation method is used to calculate the optimal squeezing ratio for
the quantum fluctuations versus the propagation distance. In the case of
self-defocusing quintic nonlinearity, opposite signs in front of the cubic and
quintic terms make the fluctuations around bistable pairs of solitons (which
have different energies for the same width) totally different. The fluctuations
of nonstationary Gaussian pulses in the CQNLSE model are also studied.

Keywords: quantum fluctuations, quantum noise, optical solitons, nonlinear
guided waves, optical bistability
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1. Introduction

Quantum-noise squeezing is one of aspects of quantum
mechanics that can exhibit completely different characteristics
when compared to the predictions of classical mechanics.
Many proposed applications in quantum measurement and
quantum information have utilized squeezed states to achieve
their goals. Solitons in optical fibres have been known to
serve as a platform for demonstrating macroscopic quantum
optical fields that exhibit profound kinds of quantum properties
including quadrature-field squeezing. Since the nonlinear
Schrödinger equation (NLSE) is typically used to model
solitons in optical fibres with third-order nonlinearity (Kerr
effect), most of the previous studies of the quantum properties
of optical solitons were based on the quantum NLSE
model [1–5]. Due to the cubic nonlinearity of the fibre, the
temporal solitons get squeezed quantum-mechanically during
the propagation, i.e., the variance of the perturbed quadrature

field operator of the soliton (its exact definition is given
below) is smaller than that of the vacuum state. The physics
behind this phenomenon is that the nonlinear self-phase-
modulation effect induces a correlation between the quantum
photon number perturbation (in-phase quadrature component)
and the quantum phase perturbation (out-of-phase quadrature
component). By choosing a suitable detection phase angle,
one can detect a linear combination of the two quadrature
components in such a way that the net noise is reduced due
to the correlation. This is the simple physical picture that
can explain how quadrature squeezing occurs through the Kerr
nonlinearity. With the advance of stable pulse laser sources and
high-quantum-efficiency detectors at optical communication
wavelengths, many experiments have actually demonstrated
soliton squeezing [6–8].

It is well known that cubic-NLSE solitons are unstable in
higher dimensions (two and three) due to the occurrence of
collapse in these cases. However, generalized NLSEs with a
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saturable nonlinear response can support multi-stable solitons
in multi-dimensional cases [9–15], which opens the way to
the creation of stable optical spatiotemporal solitons (‘light
buttes’) in the two- and three-dimensional cases [16, 17].

The general form of the generalized NLSE with saturable
nonlinearity is (in the temporal domain)

iUz + Utt + F(|U |2)U = 0, (1)

where U (z, t) is the local amplitude of the electromagnetic
wave, z and t are, as usual, the propagation distance and
reduced time, and the function F(|U |2) describes the saturable
nonlinear response of the medium. Its simplest form,
F(|U |2) = |U |2 − b|U |4, corresponds to the cubic–quintic
(CQ) nonlinearity, where b is the ratio of the cubic and quintic
nonlinear susceptibilities.

In qualitative terms, one may expect that the more peak
power the soliton has, the more quadrature squeezing it will
experience owing to the higher nonlinear effect. A general
question is how the quantum fluctuations around the soliton
are affected by the high-order nonlinearity. To the best of
our knowledge, the quantum treatment of solitons in the
NLSE with CQ nonlinearity (to be abbreviated as CQNLSE)
has not yet been worked out. The objective of this work
is to do this, in the simplest (1 + 1)-dimensional case, by
means of the known back-propagation method [18]. We will
investigate the quantum fluctuations of the soliton quadrature
field components as a function of the distance travelled by
the pulse. The measurement scheme that can enable the
observation of the predicted effects is homodyne detection,
which measures the inner product between the given pulse
and a local-oscillator gauge pulse, according to the projection
interpretation of homodyne detection [19].

The CQNLSE applies, in particular, to light propagation
in chalcogenide glasses [20] and some organic materials [21],
provided that the nonlinear absorption may be neglected.
Therefore, our theoretical results may be tested in these media.
Actually, the CQNLSE is the simplest model that allows for the
existence of bistable solitons, hence the results reported below
may also apply to a broader class of optical media than those
which are directly modelled by the combination of the cubic
and quintic terms (although the solitons’ stability may not be
the same in models with different forms of nonlinearity [22]).

The results obtained in the present work can be
summarized as follows. First of all, we find that the optimal
squeezing ratio of the soliton quadrature field improves when
both the cubic and quintic terms are of the same (focusing)
sign. On the other hand, the optimal quadrature squeezing
ratio degrades when the cubic term is focusing and the quintic
one is defocusing. Secondly, the quantum fluctuations around
two solitons with equal widths, belonging to a bistable pair,
are found to be totally different due to the effect of the quintic
nonlinearity. The quantum fluctuations around nonstationary
bistable Gaussian pulses are also studied, for comparison with
the stationary solitons.

The paper is organized as follows. In section 2, we derive
the quantum CQNLSE model and the corresponding linearized
and adjoint equations for the quantum fluctuations. The effects
of the quintic nonlinearity on the quantum fluctuations, and
the difference between the equal-width solitons belonging to a
bistable pair, are highlighted in section 3. Section 4 deals with
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Figure 1. The amplitude–pulsewidth relation for bistable solitons as
per equation (4). Two pairs of bistable solitons with equal
pulsewidth, A1,2 and B1,2, are selected as examples for detailed
investigation.

the fluctuations around the nonstationary Gaussian pulses, and
compares the results with those for the soliton cases. The paper
is concluded by section 5.

2. The quantum cubic–quintic nonlinear
Schrödinger equation

The cubic–quintic version of the NLSE (1) is

iUz + Utt + 2χ |U |2U + 3γ |U |4U = 0, (2)

where the cubic coefficient is normalized to be χ = ±1.
Solutions for bistable solitons are available in an analytical
form [13, 15],

U (z, t) =
√

2β√
1 + 4γβ cosh(2

√
βt) + χ

eiβz (3)

where β is the propagation constant (an intrinsic parameter
of the soliton family), subject to conditions β > 0 and
1 + 4γβ > 0. The peak power of the solution (3), A2 =
2β/

(√
1 + 4γβ + χ

)
, is related to the soliton’s full-width at

half-maximum pulse width, τ , by the following relation:

cosh
(

1

2
τ
√

χ A2 + γ A4

)
= 3χ + 4γ A2

χ + 2γ A2
. (4)

The amplitude–pulsewidth relation for the solitons, given
by equation (4), is displayed in figure 1 for χ = +1 and γ < 0
(the usual case of the self-focusing cubic and self-defocusing
quintic nonlinearities). As is seen, the pulsewidth of the soliton
cannot be smaller than a minimum (critical) value, which is
≈3.0 for γ = −0.1 and ≈3.42 for γ = −0.13. Two pairs
of bistable solitons with identical pulsewidths, marked as A
(which is close to the turning point) and B (taken farther from
the turning point), are chosen as illustrative examples. In
particular, the pulsewidth of the bistable solitons belonging
to the pair B is 3.5, and their amplitudes are 1.147 and 2.033,
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respectively. Solitons belonging to both branches of the curve
in figure 1 are stable (as classical solutions).

In quantum theory, the classical CQNLSE (2) is replaced
by its quantum counterpart, with U (z, t) directly replaced by
the operator field variable Û (z, t),

Ûz = iÛtt + 2iχÛ †ÛÛ + 3iγ Û †Û †ÛÛÛ . (5)

The quantized field operators must satisfy the equal-coordinate
Bosonic commutation relations,[

Û (z, t1), Û †(z, t2)
] = δ(t1 − t2),[

Û (z, t1), Û (z, t2)
] = [

Û †(z, t1), Û †(z, t2)
] = 0.

(6)

Equation (5), which provides for the Heisenberg-picture
description, can be derived from the Hamiltonian

Ĥ = −
∫ +∞

−∞
dt

(
Û † ∂2

∂t2
Û+χÛ †Û †ÛÛ+γ Û †Û †Û †ÛÛÛ

)
,

so that equation (5) is tantamount to iÛz = [Û , Ĥ ] (the
replacement of the ordinary equal-time correlation relations
for the quantum fields by the equal-coordinate ones can be
justified, in the present physical context, within the framework
of the canonical approach, as shown in [23]).

Next, we substitute Û = U0 + û into equation (5) to
linearize the equation around the classical solution U0 for the
soliton containing a very large number of photons, which yields

ûz = iûtt + 4iχ |U0|2û + 9iγ |U0|4û

+ 2iχU 2
0 û† + 6iγ U 3

0 U ∗
0 û† ≡ P̂ û, (7)

where P̂ is an effective evolution operator. The operator
perturbation field û obeys the same equal-coordinate Bosonic
commutation relations (6) as the unperturbed field operator Û .

To describe the quantum fluctuations, we need to find the
corresponding linear adjoint field which satisfies the condition

〈uA|P̂ û〉 = 〈P̂AuA|û〉, (8)

where P̂A is the adjoint operator of P̂ and the inner product is
defined by

〈 f |ĝ〉 = 1
2

∫ +∞

−∞

(
f ∗ ĝ + f ĝ†

)
dt. (9)

This definition of the inner product conforms to the principle
that any physical observable can be expressed as the inner
product between a characteristic measurement function and
the quantum-field operator of the observable [18]. The adjoint
field which implements the condition in equation (8) obeys the
following linear operator equation:

uA
z = iuA

t t + 4iχ |U0|2uA + 9iγ |U0|4uA

− 2iχU 2
0 uA∗ − 6iγ U 3

0 U ∗
0 uA∗ ≡ −PAuA. (10)

It can be checked that the inner product (9) between solutions
of equations (7) and (10) is preserved in the evolution. Using
this invariance, one can express the inner product, between the
quantum perturbation field and a properly chosen projection
function, at an output point, z = L , in terms of the input
quantum perturbation at the initial point z = 0.

〈uA(z = L , t)|û(L , t)〉 = 〈uA(0, t)|û(0, t)〉. (11)

The relation (11) is the basis of the back-propagation method.

Then, it is easy to calculate the quantum uncertainty of the
output field, knowing the statistics of the input quantum-field
operators. In particular, the squeezing ratio of an observable,

f ≡ 〈 fL(t)|û(L , t)〉, (12)

is calculated as

R(L) ≡ var[〈 fL (t)|û(L , t)〉]
var[〈 fL(t)|û(0, t)〉] = var[〈 f0(t)|û(0, t)〉]

var[〈 fL(t)|û(0, t)〉] , (13)

where var[·] means the variance, fL(t) is the projection
function at the output point, and f0(t) is the back-propagated
projection function. We will assume that the input quantum
perturbation-field operator corresponds to the vacuum state,
which is true when the input quantum state is a coherent
one. When the noise variation of the perturbed observable
of the output state is larger than that of the vacuum state, the
squeezing ratio, R(L), is larger than 1. On the other hand,
the quantum state gets ‘squeezed’ when the noise variation
of the perturbed observable in the output state is smaller
than that of the vacuum state, R(L) < 1. In the case of
homodyne detection, the measured perturbed observable is the
inner product of the perturbed field operator with the local
oscillator pulse [19, 24]. In the usual squeezing experiments
for demonstrating the quadrature squeezing, the measurement
function fL(t) is simply described by the following expression
(recall that U0(z, t) is the classical pulse solution in the output),

fL(t) = U0(L , t)eiθ√∫ +∞
−∞ dt |U0(L , t)|2

, (14)

where θ is an adjustable phase shift between the local oscillator
and the signal pulses of the homodyne detection. The optimal
(minimum) value of the squeezing ratio R(z) can be chosen
by varying the parameter θ . When θ = 0, the in-phase
quadrature component is detected, and when θ = π/2, the
out-of-phase quadrature component is detected. The result
of the measurement with another detection phase angle θ can
be expressed as a linear combination of the in-phase and out-
of-phase quadrature components. Based on the formulation
given above, in the next section we will calculate the optimal
quadrature squeezing ratios for solitons described by the
quantum CQNLSE model.

3. Quadrature squeezing of solitons

3.1. The effects of quintic nonlinearity on quantum
fluctuations

To start the analysis of the quantum fluctuations of the
CQNLSE solitons, we fix the self-focusing cubic nonlinearity
coefficient to be χ = +1 and vary the quintic nonlinearity
coefficient γ (see equation (5)), in order to study the effects
of quintic nonlinearity on quantum fluctuations. The initial
pulse is taken in the form of the CQNLSE soliton, as per
equation (3). The optimal squeezing ratio of the soliton
quadrature field versus the propagation distance is shown in
figure 2. For γ = 0, the CQNLSE is reduced to the usual
cubic NLSE, for which the quantum fluctuations around the
soliton have been studied in detail [4]. If γ > 0, i.e., both
the cubic and quintic nonlinearities are focusing, the optimal
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Figure 3. The squeezing ratio as a function of the phase of the local
oscillator θ used for homodyne detection. In this case, χ = +1.0,
γ < 0.

quadrature squeezing ratio is almost the same as the case of
γ = 0, if the propagation distance is short, so that the quintic
nonlinearity does not essentially affect the CQNLSE soliton.
However, for longer distance (�5 soliton periods), the effect
of the quintic nonlinearity accumulates, improving the optimal
squeezing ratio. On the other hand, the defocusing quintic term
with γ < 0 causes degradation of the optimal squeezing ratio,
due to partial compensation between the focusing (cubic) and
defocusing (quintic) nonlinearities. If the defocusing quintic
term is large (γ = 0.2), the optimal quadrature squeezing ratio
quickly decreases even after propagating a short distance.

Figure 3 shows the dependence of the squeezing ratio on
the phase of the local oscillator in the homodyne-detection
scheme, in the case when the quintic nonlinearity is defocusing,
γ < 0. This dependence clearly shows the quadrature
squeezing of the quantum fluctuations about the CQNLSE
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Figure 4. The optimal squeezing ratios for two pairs of bistable
solitons. The case of the cubic nonlinear Schrödinger equation,
γ = 0, with the amplitude A = 1.0 is also shown (by the dashed
curve) for comparison.

solitons, like in the case of the ordinary NLSE solitons (γ = 0).
With the self-focusing quintic term, γ > 0, the CQNLSE
solitons also undergo quadrature squeezing.

3.2. Bistable CQNLSE solitons

Here, we aim to compare the evolution of quantum fluctuations
for bistable solitons belonging to the two pairs marked in
figure 1. Recall that the pair A is taken at γ = −0.13, which
is close to its turning point, γ = γcr, and the pair B is taken
farther from the respective turning point, at γ = −0.1. The
amplitudes of the solitons are, respectively, A1 = 1.3045,
A2 = 1.5531, and B1 = 1.147, B2 = 2.033. The optimal
squeezing ratios for these two pairs of bistable solitons are
shown in figure 4.

We observe that, for the solitons belonging to the pair
A, which have equal widths, τ = 3.5, and slightly different
amplitudes, the evolution of the quantum fluctuation is similar.
One may expect that the soliton with a higher amplitude will be
more squeezed; this is why the optimal squeezing ratio for the
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A2 soliton is smaller than for the A1 one, in the beginning. But
due to the defocusing effect of the quintic nonlinearity (recall
that we now consider the case ofγ < 0), the optimal quadrature
squeezing ratios for both solitons degrade after propagating a
certain distance (about 3 and 4.5 soliton periods for A2 and A1,
respectively), which leads to the crossing of the squeezing-ratio
curves for these bistable solitons.

For the pair B, the difference in the amplitudes in the
soliton pair is large. In accordance with this, we find that the
properties of the quantum fluctuations are totally different for
these two solitons. The curve of the squeezing ratio for the
soliton with the smaller amplitude, B1 = 1.147, is like that
for the ordinary NLSE solitons (the dashed curve in figure 4),
while the squeezing for the soliton with the larger amplitude,
B2 = 2.033, is much poorer, which is naturally explained by
the strong defocusing effect exerted on the latter soliton by the
quintic self-defocusing term.

4. Quantum fluctuations around nonstationary
pulses

For situations where exact soliton solutions for pulses are not
available, the variational approximation (VA) is known to be an
efficient analytical method (for a review see [25]). In particular,
the VA for classical CQNLSE solitons was developed in [26],
using the Gaussian ansatz for the pulse waveform,

U (z, t) = A exp(−(t2/2α2) + iat2), (15)

where α and a are, respectively, the width and chirp of the
pulse. The use of the Gaussian makes sense not only because
it is convenient for the application of VA, but also due to the
fact that laser sources usually produce pulses with this shape
(including the intrinsic chirp).

Strictly speaking, the Gaussian ansatz may only produce
a nonstationary pulse (plus some radiation). Nevertheless,
it is still possible to calculate the quantum fluctuation about
nonstationary pulses, and compare the results with those
presented above for the solitons. Generally, the squeezing ratio
for nonstationary pulses cannot be larger than for a soliton of
the same width, due to the emission of radiation waves by the
nonstationary pulse.

Results of the calculation of the optimal squeezing ratio
for Gaussian pulses with different widths are displayed in
figure 5. As expected, the Gaussian pulse produces a similar
but poorer squeezing curve than the soliton of the same width,
α = 1.25 (see the dashed–dotted curve, marked by ‘γ = 0.1’,
in figure 5). Better squeezing ratios can be obtained at the short
propagation distance for shorter pulses, with α < 1.25, but
they degrade very quickly with the increase of the distance. For
broader pulses, with α > 1.25, the radiation modes strongly
affect the optimal squeezing ratio from the very beginning.

When γ < 0, the VA predicts bistable Gaussian pulses
for any energy E0 = α|A|2 [26]. Figure 6 shows the
optimal squeezing ratios for a pair of the corresponding bistable
nonstationary Gaussian pulses, and they are compared with the
curve for the NLSE solitons (marked by ‘γ = 0’). This pair of
bistable Gaussian pulses have a common width, corresponding
to α = 1.3 in equation (15), but very different energies,
E0 = 1.30 and 6.66. Like in the case of the bistable solitons
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belonging to the pair B in figure 4, the pulse with the smaller
energy shows fluctuations similar to those of the NLSE soliton,
while the pulse with the larger energy has a much poorer
squeezing ratio.

5. Conclusion

In this work, we have applied the back-propagation method to
study the quantum fluctuations of bistable solitons described
by the cubic–quintic nonlinear Schrödinger equation. It was
found that the quadrature-squeezing ratio of the soliton
strongly depends on the sign of the quintic nonlinearity: the
self-focusing quintic term helps to squeeze the fluctuations,
while the self-defocusing one makes the squeezing poorer. In
particular, the quantum fluctuations around bistable solitons
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with equal widths but different amplitudes seem totally
different due to the self-defocusing quintic nonlinearity.
Quantum fluctuations of nonstationary Gaussian pulses have
also been explored. In that case, emission of radiation by the
pulses makes the quadrature squeezing weaker. The result for
the nonstationary pulses may provide a useful guideline for the
cases in which the exact soliton solutions are hard to find.

The results of this work may be applied to the generation
of the nonclassical output from multi-stable solitons in the
presence of a higher-order nonlinearity, as well as from multi-
dimensional solitons (in the later case, the higher nonlinearity
is necessary to prevent collapse). These nonclassical output
sources may be useful for processing continuous-variable
quantum information.
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