The Proof of Lemma 3.8
S.-Y. Huang and S.-H. Wang

We recall Lemma 3.8 in following and divide seven sections to prove it.

Lemma 3.8. Consider (1.1). For g5 < ¢ < &5, the following assertion (i)—(vii)
hold:

(i) If 0 < o < £2, then Hy(u,a) is a strictly decreasing function of u on
(i) If 0 < u < ?T‘;, then Hi(u,q) is a strictly decreasing function of a on

(iii) If0 < a < 2, then I (u, ) is a strictly increasing function of u on (0, 4 («))
and is strictly decreasing function of u on (4(«a),00), where

1
u(a) = e [140 — 3% + /14 (—171e2a2 + 57coa + 1402)] > 0.

]f‘l(lr‘;hermore, () is a strictly decreasing function of o on (Z, 2], and
w(y) =~.

(iv) If w > 0, then I;(u, @) is a strictly decreasing function of o on [fgo"s , ?T‘;] )

(v) If 22 < o < 22, then Hj(u, ) is a strictly decreasing function of u on

270
[0’ 1005] :

(vi) If 0 < w < 2, then Hs(u,«) is a strictly increasing function of a on
390 21
[ 1otz %02 ] -

(vii) I5(0, ) is a negative and strictly decreasing functions of o on [ 22]

where

(a B u)3/2 3( ) U (p2 - u)3/2

Hi(u, o ;
o) Fipa) ~ F)”




2
L(u,a) = = [—15eu® — (3%ear — 140) u* — (87ea” — 4200)) u — 279

+154a%0 — 210p],

2

Ih(u, o) = 5

[6au® + (12ac — Bb)u” + (48ac® — 20ba)u — 96ac” + 40ba® — 15d] .
1. Proof of assertion (i)

We compute that

OH(u, o) V3 7 (o
ou  E@ - e -

~where B
Hi(u, o) = 9eu® + (6ea — 80)u + 3ca® — doa — 67.

Since 7 > 0, we observe that, for 0 < u < ?T‘; and 0 < a < ?TZ’

Hi(u,a) < u(9eu+ 6ea — 80) + (3ecx — 4o) «v

210 210 210
Y {98 (506) 6 (508) 80] “ {38 <50€) U}

170u 1370« <0
10 50 ’

?(; by (1.1), OH;(u, ) /Ou < 0 for 0 < u < 22 and 0 < a < 212, Hence, assertion
i) holds.

2. Proof of assertion (ii)
We compute that

OH(u, o) (o — u)3/2 o
9o (R - Fape

where

Hi(u, o) = 3eu® + (6ea — 40)u + 9ea® — 8oa — 67.



Since 7 > 0, we observe that, for Z~ < a <

. 2] 1
Hl(_BOZ’a) = 15 (43252042—2645004—5502) — 67
1 210\ 2 o
< — {43222 (29 964 (—)—552
485[ : (505) 7 \3e 7
4174702
- — <0 2.1
30000e ’ (2.1)

. 210\ ? 390
H,(0 = 9ea® —8ca—67<9%=—] —8 —6
1(0, @) ca oo — 67 < 6(505) U(lOOe) T
1

= —m=0s (80930 + 450007¢) < 0. (2.2)
e

Since H; (u, @) is a quadratic polynomial of u with positive leading coefficient, and
by (2.1) and (2.2), we see that Hy(u,«) < 0for 0 <u < 2% and £ < o < 22,
Hence, assertion (ii) holds.

3. Proof of assertion (iii)

We see that u(«) is well-defined for 0 < a < 210/ (50¢) because

19439
—171£%a2 1402 = 2
Tle"a” + 57eoa + J|a=§1TZ 5500 ° >0
We compute and find that
ot 266¢ (&= — 13 21
u(a): (65 ?) ~ 220 for L <a< 22,
o 5,/14(—171e%a? + 57z0a + 1402) 15 6e 50e
Then (a) is a strictly decreasing function of @ on (&, 22]. We further compute
that oI 5
Ohfu.c) 2 [—4beu® + (—T78a + 280)u — 87=a” + 420q] . (3.1)
ou 35
By (3.1), it is easy to see that
06 (u, o)
—_— =0 3.2
du u=i(a) ’ ( )



420 210
=87e | — — >0 for0<a< —. 3.3
L (875 O‘) R T (3:3)

Since 011 (u, &) /Ou is a quadratic polynomial of u with negative leading coefficient,
and by (3.2) and (3.3), we observe that

>0 for0<u<u(a),
=0 foru=1u(w),
<0 foru>u(a).

0l (u, «)
ou

Finally, we directly compute that () = . Hence, the assertion (iii) holds.

4. Proof of assertion (iv)

We compute that

I 2
0 122’ O-/) = % [—39€u2 + (_174€a + 420.> u— 8378042 + 3080’0&] ‘
Let
Ala) = (—17Tdea +420)% — 4(—39) (—837ea® + 3080a)

—100296c20?% + 334320 + 176402,

We note that A(«) is a quadratic polynomial of o with negative leading coefficient,

390 565677 4

A(0) = 17640 A =
(0) =17640° > 0 and (1005) 1950 7 <
So A(a) < 0 for % <a< ?TZ‘ It follows that
ol (u, a) 90 210
<0 f >0and — < a < —
da o= T00e = = 506
Hence, assertion (iv) holds.
5. Proof of assertion (v)
Since 7 > 0, we compute and find that
o \3/2 )
OHs(u,0) _ _ la—uTu 575 [Hs(u, ) — 67]
Oa 8[F(a) = F(u)]

4



3/2
/ u

5/2H3(u,a), (5.1)

(o —u)

8[F(a) = F(u)]

where B
Hs(u, ) = 3cu? + (6ea — 40) u + 9ea? — 8oa,

270
100¢’

Let a € [f’g& , ?TZ] be given. We compute and observe that, for 0 < u <

i, 210\ ”
H3(0,0) < 920? — 8oa < 9e (_a) — 8o (

50e
_ 270 270\ 2 270 270
H = - Z 7)) 40 ==L 2 _
s(q0 ) = % (1005> +bea (1005> 7 <1005) 907~ Boa
270\ * 210\ ([ 270 270
< il 4
s g (1005> e (505) <1005) 7 (1005>
210\ > 390 17133 2
9 (22) —8o (22 ) = 2200
e (505> 7 <1005) 10000 &

It follows that Hs(u,a) < 0 for 0 < u < ?TZ‘ So by (5.1), Hsz(u,«) is a strictly
decreasing function of a on [23¢ 2l

<
2500 € ’

390\ 3831 o?
100e

390 2], Hence, assertion (v) holds.

6. Proof of assertion (vi)
We compute that

OH3(u, o) (a —u)*?

Ou  2u[F(a) - Fu)" |

Hs(u, o) — 67 (u — 204)] : (6.1)

where

Hs(u,a) = 2lew® + (12¢a — 160)u? 4 (3ca® — 4ao)u — 6ea®
+8a’0 + 24p.

We assert that

0 - 390 210
—H3(u, ) >0 for u >0 and 1002 <a< e

— (6.2)



Indeed, we compute that

0
a—H?)(U a) = 12eu® + (6ea — 40)u — 182a” + 1600,
a

Then we observe that, for f’gg <a< 25%)",

(6ea — 40)? — 4 (12¢) (—182a® + 16a0)
= 4(225e%0” + 40” — 204e0ar)

210\ 2 390
< 402252 [ == 4% — 204
[ © (505) o 50(1006)]

3587

= g0 < 0. (6.3)

Since D Hs(u, o) /da is a quadratic polynomial of u with positive leading coefficient,
and by (6.3), we see that (6.3) holds. By (6.3), we obtain that

~ ~ 390 390 210
H. > Ha(u, ——) f Rand o < o < 222, 6.4
3(u, @) 2 H(u, 750-) for u € Roand 002 < o < - (6-4)
We observe that
OH3(u, 22) 566 11037 279
2 0100/ G3eq? — T <0 for0<u< ==
du T V=M= 900z
because
OHs(u, 3%
ou » 10000e
OH;(u, 292 1311902
du . 5000 €

100e

So by (6.4), we observe that, for 0 < u < 1207(‘)’5 and f’é’é’a <a< f.)(l)‘;,

2610 390 3

) = = (58353927 x 10790 + 8%p) > 0,

Hy(u, ) 2 Hy (0002 T008) ~ 22

from which it follows that by (6.1), Hs(u, «) is a strictly increasing function of u
on [0, 212, Hence, assertion (vi) holds.



7. Proof of assertion (vii)

We compute and observe that

01,(0,)  192ecv, 5o 390 210
= — —a) <0 f <a< —
da 5 (g~ <0 for s s as 5
which implies that I5(0,«) is a strictly decreasing function of « on [1336’5 , 2517(;] .
Moreover, for % <a< ?TZ’
39 405603 405603 401866
L(0,0) < L0, 220y = 07 95 000 o, P <o

"100e’ ~ 78125¢2 7812522 0T 1953125

Hence, assertion (vii) holds.
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