The Proof of Assertion (3.52)
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Assume that ey = égi; <e<eg = %. We recall the assertion (3.52):
for 0 < u < po,
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Tog F(02) = F(w)] < p2f(p2) — uf(u) < 15 [F(p2) = F(u)]. (3.52)

Proof of assertion (3.52). We let

Ti(w) = paf () — uf ) = 105 [F(p2) = F(w)],
Taw) = o [F(p) = F(w)] = paf (02) + uf ().

It is sufficient to prove that J;(u) > 0 and Ja(u) > 0 for 0 < u < ps. We compute

that
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By Lemma 3.4 in [1], we see that
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Since 7 > 0, and by (1), we find that, for e5 < & < g4,
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We further compute that
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Since J{'(0) = 1007 < 0 and Jy(u) is a quadratic polynomial of u, we observe
that either Ji(u) is a strictly decreasing function of w on (0,p2), or Ji(u) is a
strictly decreasing and then strictly increasing function of u on (0,p3). Since
J'(0) = 8p > 0, and by (2), there exists u; € (0,p2) such that J{(u) > 0 for
0 <wu < uy, J(u) =0 for u = uy, and Jj(u) < 0 for u;y < u < py. Clearly,
J1(p2) = 0. By (1), we compute that
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So Ji(u) > 0 for 0 < u < py. It implies that

133 [F(p2) — F(u)] < p2f(p2) —uf(u) for 0 <u < ps.

We compute that
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> 0.

It is easy to see that the cubic polynomial ——5u + 1—00u — —p of u is strictly
increasing on (0, fg ) and strictly decreasing for (165’ , oo) So we compute and
observe that, for u > 0,
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Since Ja(p2) = 0, and by (3), we see that Jo(u) > 0 for 0 < u < ps. It implies that

pof(p2) — uf() < o5

The proof of assertion (3.52) is complete. m

[F(p2) — F(u)] for 0 < u < po.
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