

The Proof of Assertion (3.52)

S.-Y. Huang and S.-H. Wang

Assume that $\varepsilon_2 = \sqrt{\frac{25\sigma^3}{864\rho}} < \varepsilon < \varepsilon_4 = \sqrt{\frac{13\sigma^3}{400\rho}}$. We recall the assertion (3.52): for $0 < u < p_2$,

$$\frac{183}{100} [F(p_2) - F(u)] < p_2 f(p_2) - u f(u) < \frac{21}{10} [F(p_2) - F(u)]. \quad (3.52)$$

Proof of assertion (3.52). We let

$$\begin{aligned} J_1(u) &\equiv p_2 f(p_2) - u f(u) - \frac{183}{100} [F(p_2) - F(u)], \\ J_2(u) &\equiv \frac{52}{25} [F(p_2) - F(u)] - p_2 f(p_2) + u f(u). \end{aligned}$$

It is sufficient to prove that $J_1(u) > 0$ and $J_2(u) > 0$ for $0 < u < p_2$. We compute that

$$J'_1(u) = \frac{217\varepsilon}{100} u^3 - \frac{117\sigma}{100} u^2 - \frac{17\tau}{100} u + \frac{83\rho}{100}.$$

By Lemma 3.4 in [1], we see that

$$\frac{396\sigma}{1000\varepsilon} < p_2 < \frac{417\sigma}{1000\varepsilon} \quad (1)$$

Since $\tau \geq 0$, and by (1), we find that, for $\varepsilon_2 < \varepsilon < \varepsilon_4$,

$$\begin{aligned} J'_1(p_2) &\leq \left[\frac{217}{100} \varepsilon \left(\frac{417\sigma}{1000\varepsilon} \right) - \frac{117}{100} \sigma \right] \left(\frac{396\sigma}{1000\varepsilon} \right)^2 + \frac{83}{100} \rho \\ &= \frac{1}{625 \times 10^7 \varepsilon^2} (51875 \times 10^5 \varepsilon^2 \rho - 259834311 \sigma^3) \\ &\leq \frac{1}{625 \times 10^7 \varepsilon^2} [51875 \times 10 (\varepsilon_4^2) \rho - 259834311 \sigma^3] \\ &= \frac{-91240561 \sigma^3}{625 \times 10^7 \varepsilon^2} < 0. \end{aligned} \quad (2)$$

We further compute that

$$J_1''(u) = \frac{651\varepsilon}{100}u^2 - \frac{117\sigma}{50}u - \frac{17\tau}{100}.$$

Since $J_1''(0) = -\frac{17}{100}\tau \leq 0$ and $J_1''(u)$ is a quadratic polynomial of u , we observe that either $J_1'(u)$ is a strictly decreasing function of u on $(0, p_2)$, or $J_1'(u)$ is a strictly decreasing and then strictly increasing function of u on $(0, p_2)$. Since $J'(0) = \frac{83}{100}\rho > 0$, and by (2), there exists $u_1 \in (0, p_2)$ such that $J_1'(u) > 0$ for $0 < u < u_1$, $J_1'(u) = 0$ for $u = u_1$, and $J_1'(u) < 0$ for $u_1 < u < p_2$. Clearly, $J_1(p_2) = 0$. By (1), we compute that

$$\begin{aligned} J_1(0) &= \left(-\frac{217}{400}\varepsilon p_2^3 + \frac{39}{100}\sigma p_2^2 + \frac{17}{200}\tau p_2 - \frac{83}{100}\rho \right) p_2 \\ &> \left\{ \left[-\frac{217}{400}\varepsilon \left(\frac{39\sigma}{100\varepsilon} \right) + \frac{39}{100}\sigma \right] \left(\frac{39\sigma}{100\varepsilon} \right)^2 - \frac{83}{100}\rho \right\} p_2 \\ &= \left(\frac{10855377\sigma^3}{4 \times 10^8 \varepsilon^2} - \frac{83\rho}{100} \right) p_2 > \left(\frac{10855377\sigma^3}{4 \times 10^8 \varepsilon_4^2} - \frac{83\rho}{100} \right) p_2 = \frac{5029\rho}{10^6} > 0. \end{aligned}$$

So $J_1(u) > 0$ for $0 < u < p_2$. It implies that

$$\frac{183}{100} [F(p_2) - F(u)] < p_2 f(p_2) - u f(u) \quad \text{for } 0 < u < p_2.$$

We compute that

$$J_2'(u) = -\frac{19\varepsilon}{10}u^3 + \frac{9\sigma}{10}u^2 - \frac{\tau}{10}u - \frac{11\rho}{10} < -\frac{19\varepsilon}{10}u^3 + \frac{9\sigma}{10}u^2 - \frac{11\rho}{10},$$

It is easy to see that the cubic polynomial $-\frac{19}{10}\varepsilon u^3 + \frac{9}{10}\sigma u^2 - \frac{11}{10}\rho$ of u is strictly increasing on $(0, \frac{6\sigma}{19\varepsilon})$ and strictly decreasing for $(\frac{6\sigma}{19\varepsilon}, \infty)$. So we compute and observe that, for $u > 0$,

$$\begin{aligned} J_2'(u) &\leq -\frac{19\varepsilon}{10} \left(\frac{6\sigma}{19\varepsilon} \right)^3 + \frac{9\sigma}{10} \left(\frac{6\sigma}{19\varepsilon} \right)^2 - \frac{11\rho}{10} = \frac{54\sigma^3}{1805\varepsilon^2} - \frac{11}{10}\rho \\ &< \frac{54\sigma^3}{1805\varepsilon_2^2} - \frac{11\rho}{10} = -\frac{5963\rho}{90250} < 0. \end{aligned} \tag{3}$$

Since $J_2(p_2) = 0$, and by (3), we see that $J_2(u) > 0$ for $0 < u < p_2$. It implies that

$$p_2 f(p_2) - u f(u) < \frac{21}{10} [F(p_2) - F(u)] \quad \text{for } 0 < u < p_2.$$

The proof of assertion (3.52) is complete. ■

References

- [1] Shao-Yuan Huang, Shin-Hwa Wang, A variational property on the evolutionary bifurcation curves for a positone problem with cubic nonlinearity.