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1. Introduction

Assume that ε2 =
√

25σ3

864ρ
< ε < ε4 =

√
13σ3

400ρ
. We recall the assertion (3.54):

81

200

∫ p2

p̄2

θ (p2)− θ (u)

[F (p2)− F (u)]3/2
du+

∫ p2

0

−uθ′ (u)

[F (p2)− F (u)]3/2
du

> − 81

200
H1(p̃2∗, p2∗)

√
p∗2 − p̃2∗I1(p̃∗2, p2∗)−H3(p1∗ , p

∗
2)
I2(0, p2∗)√

p∗2
> 0 (3.54)

for some positive numbers p1∗ , p̃2∗, p̃
∗
2, p2∗ and p∗2 satisfying p1∗ ≤ p1 and

3σ

25ε
≤ p̃2∗ < p̄2 < p̃∗2 ≤

23σ

125ε
<

39σ

100ε
≤ p2∗ < p2 < p∗2 ≤

417σ

1000ε
.

To prove (3.54), we need the following lemma.

Lemma 1.1. Assume that ε2 ≤ ε ≤ ε4,

81

200

∫ p2

p̄2

θ (p2)− θ (u)

[F (p2)− F (u)]3/2
du+

∫ p2

0

−uθ′ (u)

[F (p2)− F (u)]3/2
du

> − 81

200
H1(p̃2∗, p2∗)

√
p∗2 − p̃2∗I1(p̃∗2, p2∗)−H3(p1∗ , p

∗
2)
I2(0, p2∗)√

p∗2
for any positive numbers p1∗ , p̃2∗, p̃

∗
2, p2∗ and p∗2 satisfying p1∗ ≤ p1 and

3σ

25ε
≤ p̃2∗ < p̄2 < p̃∗2 ≤

23σ

125ε
<

39σ

100ε
≤ p2∗ < p2 < p∗2 ≤

417σ

1000ε
.

The proof of this lemma can be seen in Section 2. The first inequality of
assertion (3.54) follows immediately by Lemma 1.1. For any ε2 < ε < ε4, we
choice suitable numbers p1∗, p̃2∗, p̃

∗
2, p2∗ and p∗2, and then apply Lemma 1.1 to

prove second inequality of assertion (3.54). We put the detail of proof of assertion
(3.54) in Section 3.
We remark that most of the computation in this paper has been checked using

the symbolic manipulator Maple 16.



2. The proof of Lemma 1.1

We divide the proof of Lemma 1.1 into three steps.
Step 1. We prove that, for ε2 ≤ ε ≤ ε4,∫ p2

p̄2

θ(p2)− θ(u)

[F (p2)− F (u)]3/2
du > −H1(p̃2∗, p2∗)

√
p∗2 − p̃2∗I1(p̃∗2, p2∗). (2.1)

By Lemma 3.8(iii) in [1], we compute that

û(p2) < û(
39σ

100ε
) =

σ

45ε

(
−121

100
+

√
715463

5000

)
≈ 0.238σ

ε
,

û(p2) > û(
417σ

1000ε
) =

σ

45ε

(
−2263

1000
+

√
56237867

500000

)
≈ 0.185σ

ε
.

It follows that

p̄2 < p̃∗2 ≤
23σ

125ε
< û(

417σ

1000ε
) < û(p2) < û(

39σ

100ε
) <

39σ

100ε
< p2∗ < p2 < p∗2. (2.2)

For the sake of convenience, we recall the functions

H1(u, α) ≡ (α− u)3/2

6 [F (α)− F (u)]3/2
, H2(u, α) ≡ 6 [θ(α)− θ(u)]

(α− u)3/2
,

I1(u, α) ≡ 2

35
[−15εu3 − (39εα− 14σ)u2 −

(
87εα2 − 42σα

)
u− 279εα3

+154α2σ − 210ρ].

We note that
∫
H2(u, α)du =

√
α− uI1(u, α). By (2.2) and Lemma 3.8(i)—(iv) in

[1], we observe that, for p̄2 ≤ u ≤ p2,

H1(u, p2) ≤ H1(p̄2, p2) < H1(p̃2∗, p2∗) and I1(p̄2, p2) < I1(p̃∗2, p2∗). (2.3)

By Lemma 3.1 in [1], we see that H2(u, p2) < 0 for p̄2 < u < p2. So by (2.3), we
obtain that√

p∗2 − p̃2∗I1(p̃∗2, p2∗) ≥
√
p2 − p̄2I1(p̄2, p2) = −

∫ p2

p̄2

H2(u, p2)du > 0. (2.4)
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By (2.3) and (2.4), we observe that∫ p2

p̄2

θ(p2)− θ(u)

[F (p2)− F (u)]3/2
du =

∫ p2

p̄2

H1(u, p2)H2(u, p2)du

≥ H1(p̃2∗, p2∗)

∫ p2

p̄2

H2(u, p2)du

= −H1(p̃2∗, p2∗)
√
p∗2 − p̃2∗I1(p̃∗2, p2∗).

So inequality (2.1) holds.
Step2. We prove that, for ε2 ≤ ε ≤ ε4,∫ p2

0

−uθ′(u)

[F (p2)− F (u)]3/2
du ≥ −H3(p1∗ , p

∗
2)
I2(0, p2∗)√

p∗2
. (2.5)

For the sake of convenience, we recall the functions

H3(u, α) ≡ u (p2 − u)3/2

[F (p2)− F (u)]3/2
, H4(u, α) ≡ −θ′(u)

(p2 − u)3/2
.

I2(u, α) ≡ 2

15

[
6au3 + (12aα− 5b)u2 + (48aα2 − 20bα)u− 96aα3 + 40bα2 − 15d

]
.

We note that
∫
H4(u, α)du = I2(u, α)/

√
α− u. Clearly, H3(u, p2) > 0 for 0 < u <

p2. By Lemma 3.1 in [1], we see that

H4(u, p2) =
−θ′(u)

(p2 − u)3/2


< 0 for 0 < u < p1,
= 0 for u = p2,
> 0 for p1 < u < p2.

(2.6)

Since I2(u, p2) is a polynomial of u and

I2(p2, p2) = −15
(
2εp3

2 − σp2
2 + 1

)
= −15θ′(p2) = 0,

we see that I2(u, p2) = (p2 − u) Ī2(u, p2) where Ī2(u, p2) is a polynomial of u. Then

lim
u→p2

I2(u, p2)√
p2 − u

= lim
u→p2

(p2 − u) Ī2(u, p2)√
p2 − u

= lim
u→p2

[√
p2 − uĪ2(u, p2)

]
= 0. (2.7)

By Lemma 3.4(iv) in [1], we see that p1 <
27σ
100ε
. So by (2.6), (2.7) and Lemmas

3.8(v)—(vii) in [1], we observe that∫ p2

0

−uθ′(u)

[F (p2)− F (u)]3/2
du
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=

∫ p1

0

H3(u, p2)H4(u, p2)du+

∫ p2

p1

H3(u, p2)H4(u, p2)du

> H3(p1, p2)

∫ p1

0

H4(u, p2)du+H3(p1, p2)

∫ p2

p1

H4(u, p2)du

= H3(p1, p2)

∫ p2

0

H4(u, p2)du

= H3(p1, p2)

[
lim
u→p2

I2(p2, p2)√
p2 − u

− I2(0, p2)
√
p2

]
≥ −H3(p1∗ , p

∗
2)
I2(0, p2∗)√

p∗2
.

Step 3. Lemma 1.1 follows immediately by (2.1) and (2.5).
This proof of Lemma 1.1 is complete.

3. The proof of Assertion (3.54)

We divide this proof into four parts:

Part I: If ε2 ≤ ε <
√

859σ3

28800ρ
, then (3.54) holds.

Part II: If
√

859σ3

28800ρ
≤ ε <

√
1327σ3

43200ρ
, then (3.54) holds.

Part III: If
√

1327σ3

43200ρ
≤ ε <

√
2731σ3

86400ρ
, then (3.54) holds.

Part IV: If
√

2731σ3

86400ρ
≤ ε ≤ ε4, then (3.54) holds.

In folloiwng subsections, we prove Part I, Part II, Part III and Part IV, re-
spectively. In fact, these proofs are similar.

3.1. The Proof of Part I

For the sake of convenience, we assume that(√
25σ3

864ρ
=

)
ε2 ≡ εm ≤ ε < εM ≡

√
859σ3

28800ρ
.
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We let

p̃2∗ ≡
120σ

1000ε
, p̃∗2 ≡

136σ

1000ε
, p1∗ ≡

29σ

125ε
, p2∗ ≡

412σ

1000ε
, and p∗2 ≡

417σ

1000ε
.

By Lemma 3.4 in [1], we compute and find that, for εm ≤ ε ≤ εM ,

0.2326σ

ε
≈ K(εm)σ

ε
≤ p1

0.1207σ

ε
≈ R(εm)σ

ε
≤ p̄2 ≤

R(εM)σ

ε
≈ 0.1356σ

ε
,

0.4122σ

ε
≈ L(εM)σ

ε
≤ p2 ≤

L(εm)σ

ε
≈ 0.4166σ

ε
.

So we have that
0 < p1∗ < p1, (3.1)

p̃2∗ < p̄2 < p̃∗2 <
23σ

125ε
<

39σ

100ε
< p2∗ < p2 < p∗2 =

417σ

1000ε
. (3.2)

By Lemma 1.1, (3.1) and (3.2), we see that

81

200

∫ p2

p̄2

[θ (p2)− θ (u)]

[F (p2)− F (u)]3/2
du+

∫ p2

0

−uθ′ (u)

[F (p2)− F (u)]3/2
du

> − 81

200
H1(p̃2∗, p2∗)

√
p∗2 − p̃2∗I1(p̃∗2, p2∗)−H3(p1∗ , p

∗
2)
I2(0, p2∗)√

p∗2

=
ε
7
2
√
σ

394210950

Λ1

(Λ2)3/2
, (3.3)

where

Λ1 ≡ 1078007562240000
√

139
(
29296875ε2ρ− 148526σ3

)
×
(

10006909σ3 + 49875000εστ

ε2
+ 1875× 105ρ

)3/2

+123162763950
√

11
(
1093750000ε2ρ− 35926011σ3

)
×
(

854470789σ3 + 3894× 106εστ

ε2
+ 12× 109ρ

)3/2

,

Λ2 ≡
(
10006909σ3 + 49875000εστ + 1875× 105ε2ρ

)
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×
(
854470789σ3 + 3894× 106εστa+ 12× 109ε2ρ

)
.

Clearly, Λ2 > 0. By (3.3), it is suffi cient to prove that Λ1 > 0. Since εm ≤ ε ≤ εM ,
we compute that

29296875ε2ρ− 148526σ3 ≥ 29296875ε2
mρ− 148526σ3 =

201365137

288
σ3,

1093750000ε2ρ− 35926011σ3 ≥ 1093750000ε2
mρ− 35926011σ3 = −231020219

54
σ3.

So we observe that

Λ1 ≥ 1078007562240000
√

139

(
201365137

288
σ3

)
×
(

10006909σ3 + 49875000εmστ

ε2
M

+ 1875× 105ρ

)3/2

+123162763950
√

11

(
−231020219

54
σ3

)
×
(

854470789σ3 + 3894× 106εMστ

ε2
m

+ 12× 109d

)3/2

=
2368
√

6σ3ρ3/2

55341075

{
[Γ1(k)]3/2 − [Γ2(k)]3/2

}
, (3.4)

where k ≡ τ/
√
σρ,

Γ1(k) ≡
(

1145867506637952× 109
√

119401
)2/3 (

187192283 + 41562500
√

6k
)
,

Γ2(k) ≡
(

37828817195172779431710
√

11
)2/3 (

10815237101 + 146025000
√

1718k
)
.

We compute and observe that

Γ1(k)− Γ2(k)
(
≈ 3.9× 1025k + 7.3× 1025

)
> 0 for k ≥ 0. (3.5)

So by (3.4) and (3.5), Λ1 > 0 for k ≥ 0. It implies that (3.54) holds by (3.3).
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3.2. The Proof of Part II

Assume that √
859σ3

28800ρ
≡ εm ≤ ε < εM ≡

√
1327σ3

43200ρ
.

We let

p̃2∗ ≡
135σ

1000ε
, p̃∗2 ≡

151σ

1000ε
, p1∗ ≡

239σ

1000ε
, p2∗ ≡

407σ

1000ε
, and p∗2 ≡

413σ

1000ε
.

By Lemma 3.4 in [1], we compute and find that, for εm ≤ ε < εM ,

0.2390σ

ε
≈ K(εm)σ

ε
≤ p1 < p1,

0.1356σ

ε
≈ R(εm)σ

ε
≤ p̄2 ≤

R(εM)σ

ε
≈ 0.1508σ

ε
,

0.4075σ

ε
≈ L(εM)σ

ε
≤ p2 ≤

L(εm)σ

ε
≈ 0.4122σ

ε
.

So we have that
0 < p1∗ < p1 <

27σ

100ε
, (3.6)

p̃2∗ < p̄2 < p̃∗2 <
23σ

125ε
<

39σ

100ε
< p2∗ < p2 < p∗2 <

417σ

1000ε
. (3.7)

By Lemma 1.1, (3.6) and (3.7), we see that

81

200

∫ p2

p̄2

[θ (p2)− θ (u)]

[F (p2)− F (u)]3/2
du+

∫ p2

0

−uθ′ (u)

[F (p2)− F (u)]3/2
du

> − 81

200
H1(p̃2∗, p2∗)

√
p∗2 − p̃2∗I1(p̃∗2, p2∗)−H3(p1∗ , p

∗
2)
I2(0, p2∗)√

p∗2

=
4ε

7
2
√
σ

45812025

Λ1

(Λ2)3/2
, (3.8)

where

Λ1 ≡ 282784800
√

4130
(
468750000ε2ρ− 4803821σ3

)
×
(

164074219σ3 + 813× 105εστ

ε2
+ 3× 108ρ

)3/2
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+1590331725
√

834
(
175× 107ε2ρ− 584226471σ3

)
×
(

7168553σ3 + 3260000εστ

ε2
+ 108ρ

)3/2

,

Λ2 ≡
(
164074219σ3 + 813× 106εστ + 3× 109ε2ρ

)
(7168553σ3+326×105εστ+109ε2ρ).

Clearly, Λ2 > 0. By (3.8), it is suffi cient to prove that Λ1 > 0. Since εm ≤ ε < εM ,
we compute that

468750000ε2ρ− 4803821σ3 ≥ 468750000ε2
mρ− 4803821σ3 =

220255171

24
σ3,

175× 107ε2ρ− 584226471σ3 ≥ 175× 107ε2
mρ− 584226471σ3 =

−560381989

9
σ3.

So we observe that

Λ1 ≥ 282784800
√

4130

(
220255171

24
σ3

)
×
(

164074219σ3 + 813× 105εmστ

ε2
M

+ 3× 108ρ

)3/2

+590331725
√

834

(
−560381989

9
σ3

)
×
(

7168553σ3 + 3260000εMστ

ε2
m

+ 108ρ

)3/2

=
640000

√
15σ3ρ3/2

1299356051449

{
[Γ1(k)]3/2 − [Γ2(k)]3/2

}
, (3.9)

where k ≡ τ/
√
σρ,

Γ1(k) ≡
(

574484764918313081310
√

1096102
)2/3 (

2306042971 + 30487500
√

1718k
)
,

Γ2(k) ≡
(

13949582646494525410242
√

597005
)2/3 (

91360727 + 81500
√

3981k
)
.

We compute and observe that We compute and observe that

Γ1(k)− Γ2(k)
(
≈ 1.1× 1025 + 8.7× 1024k

)
> 0 for k ≥ 0. (3.10)

So by (3.9) and (3.10), Λ1 > 0 for k ≥ 0. It implies that (3.54) holds by (3.8).
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3.3. The Proof of Part III

Assume that √
1327σ3

43200ρ
≡ εm ≤ ε < εM ≡

√
2731σ3

86400ρ
.

We let

p̃2∗ ≡
150σ

1000ε
, p̃∗2 ≡

167σ

1000ε
, p1∗ ≡

245σ

1000ε
, p2∗ ≡

402σ

1000ε
, and p∗2 ≡

408σ

1000ε
.

By Lemma 3.4 in [1], we compute and find that, for εm ≤ ε < εM ,

0.2458σ

ε
≈ K(εm)σ

ε
≤ p1,

0.1508σ

ε
≈ R(εm)σ

ε
≤ p̄2 ≤

R(εM)σ

ε
≈ 0.1665σ

ε
,

0.4023σ

ε
≈ L(εM)σ

ε
≤ p2 ≤

L(εm)σ

ε
≈ 0.4075σ

ε
.

So we have that
0 < p1∗ < p1 <

27σ

100ε
, (3.11)

p̃2∗ < p̄2 < p̃∗2 <
23σ

125ε
<

39σ

100ε
< p2∗ < p2 < p∗2 <

417σ

1000ε
. (3.12)

By Lemma 1.1, (3.11) and (3.12), we see that

81

200

∫ p2

p̄2

[θ (p2)− θ (u)]

[F (p2)− F (u)]3/2
du+

∫ p2

0

−uθ′ (u)

[F (p2)− F (u)]3/2
du

> − 81

200
H1(p̃2∗, p2∗)

√
p∗2 − p̃2∗I1(p̃∗2, p2∗)−H3(p1∗ , p

∗
2)
I2(0, p2∗)√

p∗2

=

√
2ε

7
2
√
σ

43449280

Λ1

(Λ2)3/2
, (3.13)

where

Λ1 ≡ 769450967040000
√

17
(
9765625ε2ρ− 148137σ3

)
×
(

3503853σ3 + 1725000εστ

ε2
+ 6250000ρ

)3/2
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+13092975
√

129
(
42× 108ε2ρ− 1423371673σ3

)
×
(

862104049σ3 + 3918× 106εστ

ε2
+ 12× 109ρ

)3/2

,

Λ2 ≡
(
3503853σ3 + 1725000εστ + 6250000ε2ρ

)
×(862104049σ3 + 3918× 106εστ + 12× 108ε2ρ).

Clearly, Λ2 > 0. By (3.13), it is suffi cient to prove that Λ1 > 0. Since εm ≤ ε <
εM , we compute that

9765625ε2ρ− 148137σ3 ≥ 9765625ε2
mρ− 148137σ3 =

262378639

1728
σ3,

42× 108ε2ρ− 1423371673σ3 ≥ 42× 108ε2
mρ− 1423371673σ3 = −1199095057

9
σ3.

So we observe that

Λ1 ≥ 769450967040000
√

17

(
262378639σ3

1728

)
×
(

3503853σ3 + 1725000εmστ

ε2
M

+ 6250000ρ

)3/2

+13092975
√

129

(
−1199095057

9
σ3

)
×
(

862104049σ3 + 3918× 106εMστ

ε2
m

+ 12× 109ρ

)3/2

=
2240000

√
50σ3ρ3/2

354608392788963

{
[Γ1(k)]3/2 − [Γ2(k)]3/2

}
, (3.14)

where k ≡ τ/
√
σρ,

Γ1(k) ≡
(

7935481006726758475468800
√

92854
)2/3 (

591775499 + 5175000
√

3981k
)
,

Γ2(k) ≡
(

18065960946756282413043
√

57061
)2/3 (

11076436441 + 48975000
√

16386k
)
.

We compute and observe that We compute and observe that

Γ1(k)− Γ2(k)
(
≈ 7.7× 1026 + 4.2× 1026k

)
> 0 for k ≥ 0. (3.15)

So by (3.14) and (3.15), Λ1 > 0 for k ≥ 0. It implies that (3.54) holds by (3.13).
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3.4. The Proof of Part IV

Assume that √
2731σ3

86400ρ
≡ εm ≤ ε < ε4

(
=

√
13σ3

400ρ

)
.

We let

p̃2∗ ≡
166σ

1000ε
, p̃∗2 ≡

184σ

1000ε
, p1∗ ≡

252σ

1000ε
, p2∗ ≡

396σ

1000ε
, and p∗2 ≡

403σ

1000ε
.

By Lemma 3.4 in [1], we compute and find that, for εm ≤ ε ≤ εM ,

0.2529σ

ε
≈ K(εm)σ

ε
≤ p1,

0.1665σ

ε
≈ R(εm)σ

ε
≤ p̄2 ≤

R(εM)σ

ε
≈ 0.1830σ

ε
,

0.3967σ

ε
≈ L(εM)σ

ε
≤ p2 ≤

L(εm)σ

ε
≈ 0.4023σ

ε
.

So we have that
0 < p1∗ < p1 <

27σ

100ε
, (3.16)

p̃2∗ < p̄2 < p̃∗2 <
23σ

125ε
<

39σ

100ε
< p2∗ < p2 < p∗2 <

417σ

1000ε
. (3.17)

By Lemma 1.1, (3.16) and (3.17), we see that

81

200

∫ p2

p̄2

[θ (p2)− θ (u)]

[F (p2)− F (u)]3/2
du+

∫ p2

0

−uθ′ (u)

[F (p2)− F (u)]3/2
du

> − 81

200
H1(p̃2∗, p2∗)

√
p∗2 − p̃2∗I1(p̃∗2, p2∗)−H3(p1∗ , p

∗
2)
I2(0, p2∗)√

p∗2

=
216ε

7
2
√
σ

244933325

Λ1

(Λ2)3/2
, (3.18)

where

Λ1 ≡ 139408998400
√

6045
(
9765625ε2ρ− 202554σ3

)
×
(

86197601σ3 + 4215× 105εστ

ε2
+ 15× 107ρ

)3/2
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+629828550
√

158
(
3281250000ε2ρ− 112994561σ3

)
×
(

173191391σ3 + 786× 106εστ

ε2
+ 24× 107ρ

)3/2

,

Λ2 ≡
(
86197601σ3 + 4215× 105εστ + 15× 107ε2ρ

)
×(173191391σ3 + 786× 106εστ + 24× 107ε2ρ).

Clearly, Λ2 > 0. By (3.18), it is suffi cient to prove that Λ1 > 0. Since εm ≤ ε ≤
εM , we compute that

9765625ε2ρ− 202554σ3 ≥ 9765625ε2
mρ− 202554σ3 =

366770251

3456
σ3,

3281250000ε2ρ−112994561σ3 ≥ 3281250000ε2
mρ−112994561σ3 = −668030267

72
σ3.

So we observe that

Λ1 ≥ 139408998400
√

6045

(
366770251

3456
σ3

)
×
(

86197601σ3 + 4215× 105εmστ

ε2
M

+ 15× 107ρ

)3/2

+629828550
√

158
(
3281250000ε2ρ− 112994561σ3

)
×
(

173191391σ3 + 786× 106εMστ

ε2
m

+ 24× 107ρ

)3/2

=
160000σ3ρ3/2

306292511187

{
[Γ1(k)]3/2 − [Γ2(k)]3/2

}
(3.19)

where k ≡ τ/
√
σρ,

Γ1(k) ≡
(

5809689893240552768554560
√

155
)2/3 (

404842803 + 1756250
√

16386k
)
,

Γ2(k) ≡
(

1151914386337055018730
√

647247
)2/3 (

2241472519 + 353700000
√

13k
)
.

We compute and observe that We compute and observe that

Γ1(k)− Γ2(k)
(
≈ 4.8× 1025 + 2.6× 1025k

)
> 0 for k ≥ 0. (3.20)

So by (3.19) and (3.20), Λ1 > 0 for k ≥ 0. It implies that (3.54) holds by (3.18).
The proof of assertion (3.54) is complete.
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