The Proof of Assertion (3.54)

S.-Y. Huang and S.-H. Wang

1. Introduction

Assume that e5 = ,/% <e<eg= %. We recall the assertion (3.54):
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for some positive numbers py,, po., P53, pos and p} satisfying p;, < p; and
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To prove (3.54), we need the following lemma.

Lemma 1.1. Assume that e < ¢ < &4,
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The proof of this lemma can be seen in Section 2. The first inequality of
assertion (3.54) follows immediately by Lemma 1.1. For any e < £ < g4, wWe
choice suitable numbers p;,, pa«, D5, P2« and p3, and then apply Lemma 1.1 to
prove second inequality of assertion (3.54). We put the detail of proof of assertion
(3.54) in Section 3.

We remark that most of the computation in this paper has been checked using
the symbolic manipulator Maple 16.



2. The proof of Lemma 1.1

We divide the proof of Lemma 1.1 into three steps.
Step 1. We prove that, for e < e < g4,
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By Lemma 3.8(iii) in [1], we compute that
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It follows that
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For the sake of convenience, we recall the functions

N
P2 = P2 = o8- 100e

(o —uw)*”? 6 [0(cr) — O(u)]
Hi(u,a) = 5 Ha(u,a) = TR
) 6[F(a) — F(u)]” ) (o —u)¥

) < ——— < pax < p2 < Ps.

(2.1)

(2.2)

2
L(u,0) = —[-15eu® — (3% — 140) u® — (87ea” — 4200) u — 279ea®

35
+154a%0 — 210p).

We note that [ Ho(u, @)du = /a — ul(u,«). By (2.2) and Lemma 3.8(1)—(iv) in

[1], we observe that, for ps < u < po,

Hy(u,p2) < Hi(P2,p2) < Hi(Pax, p2s) and [1(P2, p2) < 11 (55, pas)-

(2.3)

By Lemma 3.1 in [1], we see that Hy(u,p2) < 0 for py < u < ps. So by (2.3), we

obtain that
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By (2.3) and (2.4), we observe that
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So inequality (2.1) holds.
Step2. We prove that, for e5 < & < g4,
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We note that [ Hy(u, a)du = I(u, ) /v/a — u. Clearly, H3(u,p2) > 0 for 0 < u <
po. By Lemma 3.1 in [1], we see that

L(u,a) =

—6/(U> <0 for0<u<p1,
H4(U’7p2) 3/2 =0 foru= b2, (26)
(p2 — u) >0 for p; < u < ps.

Since I5(u, p2) is a polynomial of u and

L(pa, p2) = —15 (2ep3 — op3 + 1) = —150'(p2) = 0,

we see that Ir(u, ps) = (p2 — u) Io(u, po) where Ir(u, py) is a polynomial of u. Then
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e = = lim [v/po — ul —0. (2
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By Lemma 3.4(iv) in [1], we see that p; < Z2. So by (2.6), (2.7) and Lemmas
3.8(v)—(vii) in [1], we observe that
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Step 3. Lemma 1.1 follows immediately by (2.1) and (2.5).
This proof of Lemma 1.1 is complete. m

3. The proof of Assertion (3.54)

We divide this proof into four parts:

Part I: If £, <& < /$2% then (3.54) holds.

Part IT: If | /555 < e < | /55205, then (3.54) holds.

28800p

3 o3
Part IIL: If | /3327 < ¢ < \/zgi%mp’ then (3.54) holds.

43200p

Part IV: If | /2882 < & < ¢4, then (3.54) holds.

In folloiwng subsections, we prove Part I, Part II, Part III and Part IV, re-
spectively. In fact, these proofs are similar.

3.1. The Proof of Part I

For the sake of convenience, we assume that
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We let

5 1200 . 1360 290 4120 d v 4170
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P2 =000 2= 1000e” P T 1250 P T 1000e P2 = 9000¢
By Lemma 3.4 in [!], we compute and find that, for €,, <& < gy,
0.23260  K(ep)o
~ <pm
€ €
0.12070 - R(ey)o <y < R(eym)o - 0.13560’
€ € € €
041220 _ Liew)os __ Llen)o 041660
€ € € €
So we have that
0< pP1. < P1, (31)
2o 390 . 4T 5.9
Pae = P2 =P = P50 = q00e ~ P S P25 P27 0. '

By Lemma 1.1, (3.1) and (3.2), we see that
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where
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e2
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x (8544707890° + 3894 x 10%07a + 12 x 10%p) .

Clearly, Ay > 0. By (3.3), it is sufficient to prove that A; > 0. Since &,, < € < gy,
we compute that

201365137
202968752 p — 1485260° > 29296875¢2 p — 1485260° = Tcﬁ”,

231020219 4
———0".

10937500002 p — 359260110* > 1093750000£2, p — 359260110° = =

So we observe that

201365137
Ay > 1078007562240000v/139 (—03)

288
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2
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03 3/2 3/2 3/2
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where k = 7/,/0p,

2/3
Iy (k) = (1145867506637952 x 109\/119401) (187192283 + 41562500\/5k> ,

2/3
Ty(k) = (37828817195172779431710\/ﬁ) (10815237101 + 146025000\/1718/<:> .

We compute and observe that
Ii(k) —Ta(k) (= 3.9 x 10%k + 7.3 x 10*°) >0 for k > 0. (3.5)

So by (3.4) and (3.5), Ay > 0 for £ > 0. It implies that (3.54) holds by (3.3).



3.2. The Proof of Part I1

Assume that

85903 o 132703
Em <le<ey = .
288000 M 43200p

We let

1350 1510 2390 4070 . 4130

P2 =T000e” 2= 10002 P = 10002’ P2 = 10002’ P2 = To00e”

By Lemma 3.4 in [!], we compute and find that, for ¢, < e < gy,

0.23900  K(gp)o
€

0.13560 - R(em)o <y < R(ep)o ~ 0.15080’
€ € € £
0.40750 _ L(em)o L(en)o 041220

~ <p2 < ~
€ € € €

< p1 < p1,

So we have that
270

100¢’
230 390 - - - 70
T25c < 1002 < P2+ <P2<P2< 5500

By Lemma 1.1, (3.6) and (3.7), we see that

S B -0@) )
200/ Fps) — <u)13/2 - [F(pa) — F(u)?
81 15(0, pax)

__H * 9 * *I ) * H I
200 1]?2 2 \/ — D2 1p2 pz 3(271 Pz) \/p_§

deivo M , (3.8)
45812025 (A,)3/2

0<p, <p1 < (3.6)

Do < Po < Py < —— (3.7)

where

Ay = 282784800/4130 (468750000£2p — 48038210°)
3 1 1 5 3/2
« (1640742190 + 813 x 10°coT 43 x 108p)
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+1590331725v/834 (175 x 107e%p — 5842264710°)

716855303 + 3260000e0r o \*/?
X = +10%p ,

Ag = (1640742190° + 813 x 10%07 + 3 x 10°%p) (71685530°+326x 10°c07+10%p).

Clearly, Ay > 0. By (3.8), it is sufficient to prove that A; > 0. Since &, < € < gy,
we compute that

220255171
468750000£%p — 48038210° > 4687500002, p — 48038210° = ———TZI——-U3,
175xuﬁgp—5&uﬂnﬂa3zl75x10%@p—5&@%%ﬂﬂ3:if@g§g%§a?

So we observe that
220255171
Ay > 282784800+/4130 (-——TZI———U3>
1640742190° + 813 x 10°¢,,07 s\
X 5 +3 x10%
€M
—560381989
+590331725v/834 (—————5—————a3>
1 3 9 3/2
y <7 685530 4—3 600005Aﬂ7r_%108p)
8TI’L
6400001503 p*/2
- O {2 = ()} (3.9)
1299356051449

where k = 7/./0p,

2/3
Ty(k) = <574484764918313081310\/1096102) (23060429714—30487500\/1718k),

2/3

To(k) = (13949582646494525410242\/597005) (913607274—81500\/3981k>.

We compute and observe that We compute and observe that
Ii(k) = To(k) (= 1.1 x 10® +8.7 x 10*'k) > 0 for k > 0. (3.10)

So by (3.9) and (3.10), Ay > 0 for £ > 0. It implies that (3.54) holds by (3.8).
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3.3. The Proof of Part III
Assume that

132753 o 973103
Z=ep<e<ey = .
432000 M =1/ 86400,
We let
___ 150c _, 1670 2450 4020 and vf = 4080
P2=9000" 2= 100027 P = 10002 P> = 10002 P2 = 7000s

By Lemma 3.4 in [1], we compute and find that, for ¢, < e < gy,

0.24580  K(ep)o

~ S D1,
€ €
0.1508¢ - R(epm)o <y < R(ep)o ~ 0.16650’
€ € € €
04020 Llew)s _ _ Llen)o 040750
€ € € €
So we have that o7
o
0< < < — 3.11
P <P < ooz (3.11)
e n 230 - 390 - << 4170 (3.12)
Pae < P2 <Py < 522 < qgpz <P < P2 <P < 500 '
By Lemma 1.1, (3.11) and (3.12), we see that
81 [P [h 0 (u P2 —uf’
Ny [0 LT
200 J5, [F(ps) — F(u)] o [F(p2) — F(u)]
81 I2<O p2*)
——H %y P2 *I sy P2x — H. %) - =
500 1 (B2 P2:) /D3 = P21 (D3, p2v) — Ha(pi., 1) NG
2 A
VELT A , (3.13)
43449280 (A,)3/2

where

Ay = 769450967040000v/17 (9765625¢%p — 14813707
y (350385303 + 172500007

c2

3/2
+ 6250000p)



+13092975v/129 (42 x 10%c%p — 14233716730°)

9210404943 18 x 108 3/2
><(86 040490 +239 8 x 0607’+12X109p> |
13

Ay = (35038530 + 1725000e07 + 6250000£p)
% (8621040490 + 3918 x 10%o7 + 12 x 10%?)p).

Clearly, As > 0. By (3.13), it is sufficient to prove that A; > 0. Since ¢,, < e <
en, we compute that

262378639
9765625¢2p — 14813703 2j9765625€i#)—-14813703::-——EE&ET——US,

1199095057
—_—O0 .

42 x 10%?p — 14233716730° > 42 x 10%2 p — 14233716730° = — 5

So we observe that

9623786390
A, > 769450967040000v/17 (—‘7>

1728

35038530° + 1725000, 32
X ( - o7 +6250000p>
€M
9
8621040490° + 3918 x 10° /07
X 6%1
2240000v/500° p%/2 v ;
- Dy (k)12 — [La(k))* | 3.14
s cosaomssog (L — LRI (3.14)

where k = 7/,/ap,

11 057
+13092975v/129 (—Maf”)

3/2
+12 x 109p)

2/3
Ty(k) = (7935481006726758475468800\/92854) (591775499 + 5175000\/3981k> :

2/3
To(k) = (18065960946756282413043\/57061) (11076436441 n 48975000\/16386k;) .

We compute and observe that We compute and observe that
Ti(k) — To(k) (= 7.7 x 10 +4.2 x 10*°k) > 0 for k > 0. (3.15)
So by (3.14) and (3.15), Ay > 0 for £ > 0. It implies that (3.54) holds by (3.13).
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3.4. The Proof of Part IV

273103 o 1303
Em<le<es| = )
86400 4 400p

Assume that

We let
_ 1660 L 1840 _ 2520 _ 3960 . 4030
P2=T000e” P2~ 1000e° P = 10002 P** = 1000e P2 = To00e”
By Lemma 3.4 in [1], we compute and find that, for ¢, <& < gy,
0.25290  K(ep)o
~ S D1,
19 19
0.16650 - R(ey)o <y < R(em)o - 0.18300’
£ 19 19 19
0.39670c  L(en)o L(en)o  0.40230
~ <p2 < ~ :
19 19 19 19
So we have that
0<pp <p < 200 (3.16)
D1, D1 10057 .
p <‘<”*<230<390< < <*<417J (3.17)
Pre=P2= P2 9950 = 100 ~ P S P25 P2 00 '

By Lemma 1.1, (3.16) and (3.17), we see that

8L 7 ) 0] o b))
200/1)2 [F(pa) — F(u)]*? +/o [F(p2) — F(u)]*?

81 p D D * I Oup *
> —ﬁHl(p%;p%)\/MH(pg,pg*) — H3(p1*7p2)2<—*2)

y2)
7
_ 216e2\/0c Ay ’ (3.18)
244933325 (A2)3/2

where

Ar = 139408998400v/6045 (9765625¢%p — 2025545°%)
3 1 1 5 3/2
» (861976010' + 4215 x 10°coT 415 % 1O7p>

2
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+629828550+/158 (32812500006°p — 11299456105 )

17319139103 106 3/2
><(7i’>9?>90+2786>< 060’T+24X107p> |
13

Ay = (861976010° + 4215 x 10%°c07 + 15 x 10°€%p)
x (1731913910 + 786 x 10507 + 24 x 107e%p).
Clearly, A, > 0. By (3.18), it is sufficient to prove that A; > 0. Since ¢, < e <
€y, We compute that
366770251 4

9765625c%p — 2025540° > 97656252 p — 2025540° = e O
668030267
328125000062 p—1129945610° > 32812500008%#%—11299456103:Z-————?Er———a?
So we observe that
366770251
Ay > 139408998400v/6045 | ——————0°
3456
19760103 + 4215 x 10°%,, 3/2
X(%9nmJ-%25x 0607+wxlwa
Em

+629828550+/158 (32812500006”p — 11299456105 )
x(1nnm3mg3+7&3x1mkMar

2
€m

3/2
+ 24 x 107p)

16000002 p3/2

= Soea0aeiiasr LT O - D012} (.19)

where k =7/, /0p,

2/3
Iy(k) = (5809689893240552768554560\/ 155) (404842803 + 1756250/ 16386k> ,

2/3
Ty(k) = <1151914386337055018730\/647247) (2241472519-+-353700000\/T§k).

We compute and observe that We compute and observe that
Ii(k) — To(k) (=~ 4.8 x 10® +2.6 x 10*°k) > 0 for k > 0. (3.20)

So by (3.19) and (3.20), Ay > 0 for £ > 0. It implies that (3.54) holds by (3.18).
The proof of assertion (3.54) is complete. ®
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