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1 Households

� Utility function
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� Money in the utility function (MIU)

� Budget constraint
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� Rt :gross nominal interest rate

� Law of motion for capital

kt+1 = (1� �) kt + xt

� Decision variables:

� ct;mt; lt; bt+1; kt+1 (xt)

� xt :investment



� nominal variables: mt; bt+1

� Lagrangian
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� First-order conditions
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�t = �t+1� (rt+1 + 1� �)

c��t = c��t+1� (rt+1 + 1� �)

� A summary of �rst-order conditions
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2 Government

� The government sets the nominal interest rates according to the Taylor rule:
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� � :target level of in�ation

� y :the steady state output

� R :steady state gross return of capital

� 't � N (0; �')



� Lump-sum transfers:
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3 Monopolistic competition

� Competitive behavior of �nal good producer

� Continuum of immediate good producers with market power

� Alternative formulation: continuum of goods in the utility function



3.1 Final good producer

� Production function
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� " > 1 and controls the elasticity of substitution

� Final good producer is perfectly competitive and maximizes pro�ts, taking as given
all intermediate goods prices pit and the �nal good price pt

� The maximization problem of the �nal good producer is:
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� First order conditions are:
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� Integrating out:
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� Because of perfect competition, the pro�ts of �nal good producer are zero:
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� Deduction of price level
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3.2 Intermediate good producers

� Continuum of intermediate goods producers

� No entry ; no exit



� Each intermediate good producer i has a production function:

yit = Atk
�
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� At follows the AR(1) process:

logAt = � logAt�1 + zt

zt � N (0; �z)



� Intermediate goods producers solve a two-stage problem

� First, given wt and rt, they rent lit and kit in perfectly competitive factor markets
in order to minimize real cost:
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� Solution
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� Capital-labour ratio is the same for all �rms

� The real cost of optimal production is:
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� The real marginal cost mct is the optimal cost of producing one unit of good
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� The marginal cost is the same for all �rms

� The marginal cost above is in real term

� There is a more convenient way to derive real marginal cost, which is exactly %.
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� Remind
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� The second part of the �rm�s problem is to choose price that maximizes discounted
real pro�ts
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� First order condition:
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� Mark-up condition
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� mct is real value, so that pt �mct is nominal marginal cost

� So far the presence of monopolistic competition is pretty irrelevant.

� Because what we have is a constant mark-up similar to a tax.



� A solution is to introduce price rigidities.

3.3 Price rigidities

� The basic structural of the economy is as before: a representative household, a
monetary authorities, and a perfectly competitive �nal good producer.

� Now we introduce one additional constraint: the intermediate good producers face
the constraint that they can only change prices following a Calvo-type rule.

� Now the second part of the problem of the intermediate good producers is to choose
price that maximizes discounted real pro�ts:
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� Calvo price setting

� Degree of price rigidity �p

� vt is the marginal value of a dollar to the household, which is treated as exogenous
by the �rm.



� There are complete markets in securities, so that the marginal value is constant
across households.

� Again the problem
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� First order condition
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� Firms choose p�it so as to set a weighted average of the di¤erence between marginal
revenue and marginal cost to zero.

� All �rms that re-optimize will charge the same price.

� If �p = 0
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� At this point, much of the literature using the Calvo-Yun price setting proceeds to
linearize the above equation around a deterministic steady state with zero in�ation.

� This strategy yields the famous linear New Keynesian Phillips curve involving in�ation
and marginal costs of the form

�̂t = �Et�̂t+1 +
(1� �) (1� ��)

�
dmct

� Galí, Jordi and Tammaso Monacelli (2005), "Monetary Policy and Exchange Rate
Volatility in a Small Open Economy," Review of Economic Studies, 72, pp. 707-734.

� Monacelli, Tommaso (2005), "Monetary Policy in a Low Pass-Through Environ-
ment," Journal of Money, Crdit, and Banking, 37 (6), pp. 1047-1066.



� We do not follow this strategy because we do not want to restrict attention to the
case of log-linear dynamics around a zero in�ation steady state.

� For this purpose, we have to de�ne two more variables.
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� Rearrange
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� auxiliary equation 2
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� Now for x2t
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� auxiliary equation 3
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� Price level

� The price index evolves according to
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� Deduction
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4 Aggregation

� To derive an expression for aggregate output

� Remember
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� It follows
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� An ine¢ cient variable

� pit = pjt = p�t
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5 Discount factor

� vt+� is the pricing kernel used to value random date t+ � payo¤s.

� Since �rms are assumed to be owned by the representative household, it is assumed
that �rms value future payo¤s according to the household�s inter-temporal marginal
rate of substitution in consumption (Bergin, Paul R. (2003), "Putting the �New



Open Economy Macroeconomics�to a test," Journal of International Economics, 60
(1), pp. 3-34).
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6 Summarizing the equilibrium conditions

� Endogenous variables (14)

� ct; rt; Rt; �t; lt; wt;mct; x1t ; x2t ; ~pt; yt; kt; st; xt

� Exogenous variables (1)



� At

� We have a total of 15 equilibrium conditions.

� We can include more variables of interest such as mt and vt+1.

� The �rst order conditions of the household
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� Pricing decisions by �rms
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� Production function
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� Aggregate conditions
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� Taylor rule
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� Technological shocks

log (At) = � log (At�1) + zt (15)
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