Derivation and Log-linearization of Chari, Kehoe,
and McGrattan (2007)'s Closed Economy Model

Chi-hong Chen*

*Chari, V. V., Patrick J. Kehoe, and Ellen R. McGrattan (2007), “Business cycle accounting,”
Econometrica, 75 (3), pp. 781-836.



1 The benchmark prototype economy

e The benchmark prototype economy that we employ in our accounting procedure
is a stochastic model.

e The economy has four exogenous stochastic variables: the efficiency wedge =z,
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the labor wedge 1 — 74, the investment wedge and the government

consumption wedge g;.

® c; . per capita consumption

e [; : per capita labor



ki : per capita capital stock

x¢ . per capita investment

w¢  wage rate

r+ : rental rate on capital

Ny : population

13 : per capita lump-sum transfers



Yt . per capita output

Z . productivity <Zt =z (1 + ’y)t)

B : discount factor

d : depreciation rate of capital

1 + ~ : the rate of labor-augmenting technical process

1+ ~,, : the population growth rate



e The representative consumer maximize expected utility subject to the budget
constraint and the capital accumulation law:
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e Solution of consumers’ maximization problem:
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ct + (L + 7o) [(T+vp) kg1 — (1 —0) ke] = (1 — 7)) wily + reky + T3

e The Lagrangian:
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e The production function is:

F (kt7 Ztlt)



e The representative firm maximizes profits:

F(kt, Zgly) — wily — riky

e Solution of firms' maximization problem
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e Substitute (A4) into (Al) and rearrange
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e Substitute (A3) into (A2) and rearrange
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e The government maintains a balanced budget every period:
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e Substituting the government budget constraint and profit function into consumer
budget constraint to get the resource constraint:
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Ct + Xt + gt = Yt

e The equilibrium conditions of the benchmark prototype economy are:

ct + Tt + gt = Yt
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e The method assumes that frictions associated with specific economic environ-
ment manifest themselves as distortions in the first-order condition and resource
constraints in the prototype model.

e These distortions are called wedges.



e The economy with four wedges exactly reproduces the data on output, labor,

investment, and government consumption.

2 In explicit functional form

e We substitute the utility function and production function into the equilibrium
conditions.

e The equilibrium conditions of the prototype economy are:



Cct + Xt + gt = Yt

yr = F (kt, Zilt)
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e Production function and utility function are:

F (k,zl) = k% (z1)17¢

u(c,l) =logec+log(l—1)

e Equilibrium conditions in explicit form:

Ct + Xt + gt = Yt
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e We assume that ¢; fluctuates around a trend of (1 + W)t

e Equilibrium conditions in detrended per-capita form:
& + Tt + Gt = B (1.b)

G = ke (Z)° (2.b)
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e Endogenous variables are: ¢, x¢, Yy, ke, lt.

e We need the capital accumulation law to close the model.
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3 Steady state of the prototype model

e Variables without time index are steady state values.
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e We obtain the steady-state of %
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~

[

k) [ — G (ss2)

(ss3)



) s a e -a-on(G) g =4 a - zie

-

— %(1—7‘5)21_0‘ <E> —1(1—71)21_0‘ <E> [

~

k

1 Wb

) -~ -a-al(;)fi-2

[ [

(2



~

{7 (5] S -a-al(f)+ Ja-mzie

~

1 N AN
_ §+$(1—n)zl—a (7)

e The above equation solves the steady-state value of [.

o It follows:
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4 Log-linearization

e We log-linearize the equilibrium conditions around the steady state.
e ¢t = logc — logce
o ¥y = logxy — logx
e Yy = logys —logy

° Et = Iog%t— IogE



lAt = Iogit — Iogzv

gt = log gt — logg

2,5 = log Zt — IogZ

T = Tt — T]

Tt — Tyt — Tx

Equilibrium conditions in detrended per-capita form:



(14 720) (1 49) 5 = 8B [ (Feyn) " (Zeraisn)

¢t + T+ gt = Ut (1.b)

G = ke (Z)° (2.b)

(1‘&_@%) =(1—7m) Zt (1 — )k (Zily) (3.b)

1

(1= 8) (1 Tarr1)
(4.b)

Ct Ct+1



e Equation (1.b)
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e Equation (3.b)

1+ 9 =1+4aki+ (1 —a) Zt+ (1 —a)ls

(

gr=aki+(1—a)Zi+(1—a)l

Yy

(1 _ 7 (1 _ N (71 ¢
- lt) = (1 —7) 2 (1 — a) ki (Ztlt)

(2.c)



Wor = (1— 7)) Ze (1 — a) k¢ (Zily) (1= 1)

Ye=(1-7)Z(1—a)k*(21) " (1-1)

1 1 ~ ~0 (S~
e AL D

C ~ 7 ~ 2\Y /. 5 )\ TG ~
paelt = (1= — ) ZeP (1= o) (heft) " (ZePuel) ™ (1 1eh)



paett = (1= — ) [Z (1 - @)k (20)0] et @izl (1 )

R 1 - . . s » .
et = (1—7Fy— 1) Lb—~Z (1 —a)k® (Zl) a] ekt +(1—a)Zy—aly (1 — lelt)
C

eét — (1 o %lt o Tl) eal%t+(1—a)2t—aft (1 . ZGZ\t>
(1—7¢)(1—1)

R 1—7p—7 ~ A ~ ~
1+ 8 = ((1_755(1 _li) (1+ake+(1— ) 2y —oly) [1 =1 (1+1})]



(l—Tt)(l—l)(l—Fét):(1—6\'175—7'1)<1+Oé]%t—|—(1—05)2t—az\t) {1—l—ll}]



(L—7)(1—=10)(1+&)

(1—ﬁ\'lt—Tl)(1—|—Oé]%t—|—(1—oz)2t—oéz\t) [1—l—ll}]

1—|—Q{kt—|—(1—a)Zt—Ozlt—l—Ozlkt
(L— 7y — 1) — (1 —a) th—i—Q{llt — llt — lltOAkt
—llt (1 — Q{) Zt + lltalt

~ 1—|—Oé]%t—|—(1—04)2t_05z\t_l_al]%t
1— — 5 7 [
( Tt Tl)( —(1—a)lZ; + ally — Uy

[(1—7) =l [ = 1) (1+ o+ (1 — ) Z; — adi) — 1]
(1—7) (1= 1) (1 + ake + (1 — @) Z¢ — ay) — (1 — 7)) 1y
—71 (1 —1) (1+047%t+(1—04)2t—04it) + Pyl
(1—7) (X =1) (1 + ke + (1 — &) Z; — oly)

— (=7 Uy — 7 (1—1)



Q-m)A-DA+&) = A—7)@—1)(1+ak+(1-a)Z—al)
— (L —7p) Uy — # (1= 1)

A A A A 1
(L+¢)=(14+akit+ (1 —a)d—aly) — [l — Tt
( ) e N )
=it (1—0) 2 —aly— —— g — 5
& = aky — o) Zp — aly — t— Tt
1= (1-=7)
¢ kt+(1—a)Z [ P z]l“ L (3.c)
Ct — Rt — t — | & t — Tt .C
(1—=1) (1 =)



e Equation (4.b)

1 1 ~ a—1 / ~
(L+70t) (L +7) - = BE [Oé (k1) (Zegrlesr)
Ct Ct+1

"+ (1= 8) (1 Tars)
(14 72) (1 + ’y)% = 5% [a (B)* 7 (z2) "+ a-oa+ Tx)]

@+ ) (L 4y) =8 |a(B)" (20 -6 1+ 7a)



(l—l—Tx)(].—I—’)/):B[a%+(1—5)(1—|—7$)]

Qrr) @4 [ g
; —[a~+(1 5)(1 + x)]

yeyt—l—l

1 4 1 4
(L4 #ar 4 72) (14 7) e = g Lot [a
C C

(a

: -~ +(1—-9)(1+ Tppr1 + Tm)]
e

(14 #at 4+ 72) (1 +7) e = BEe 4+ ) DRt | (1 6) (1 + Fappr + m)]

Y




e Ignore E} for a moment
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e Add back expectation
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