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1 The benchmark prototype economy

e The representative consumer depends on an expected intertemporal discounted
utility function that includes utility from consumption and disutility from labor:
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e The utility is:

u(ct, i) = log(ct — x1¥)



e where parameters x(> 0) and v(> 1) represent the level and curvature of the
utility cost of labor respectively.

e subject to the budget constraint:
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e The law of motion for capital:
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e where define ' = (1 + v)(1 + n), ~ is the growth rate of labor augmenting
technical progress and n is the population growth rate.
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e The debt adjustment cost function, ®(ds11), as ¢(dt+21 4) , Where d is the
steady state foreign debt.

e Solution of consumers’ maximization problem:
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e The Lagrangian
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e First-order-condition of the model show in Equation (A1) to (A4) can be simpli-
fied to the below four equations.
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e Use Equation (Al) substitute \¢, and we obtain:
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e The firm produces a final good (output y with a constant returns to scale) from
capital and labor using a Cobb-Douglas production function.

Yt = ztkfl%_e

e The firm’s profit maximization problem is:
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e Solution of firms' maximization problem:
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e Substitute (A6) into (A2), and we get the labor wedge.

1
Xz/lty_l — Wt _ (1-— 9)%—
a Lt Tt



¢ 1

it =1 -
It Ty

e Substitute (A5) into (A3), and we get the investment wedge.
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e Substitute ®'(d;11) = ¢(dii1 — d) into (A4), and we get the foreign debt
wedge.
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e The government collects tax revenues at date ¢, and the government budget
constraint:
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e Substitute the government budget constraint into the consumer budget con-
straint and we can get the economy’s resource constraint at last:
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e where the trade balance is:
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e The equilibrium conditions in the detrended per-capita form:
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e Endogenous variables are : ¢t ,x¢ ,yt .kt .di lt.

e Exogenous variables are: z¢, 744, T, and 7.

e We need the capital accumulation law to close the model.
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2 Steady state of the prototype model

e From equation(5), the calculation process is below:
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e From equation(4), the calculation process is below:
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e From equation(6), the calculation process is below:
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e From equation(2), the calculation process is below:
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e From equation(1), the calculation process is below:
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e From equation(3), the calculation process is below:
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3 Log-linearization
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e Equilibrium conditions in the detrended per-capita form:
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e From equation (1)
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e equation (2)
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e Ignore E; for a moment
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1 1
———— | 55— — &(dir1 — d)| = BE[ucry1]
ct — xlf | R7qy
1 1 A 1
- | =—— — div1+1)d—d)| =BE -
ceCt — xlVerlt [RTdert ¢ (( e ) >] g tceétJrl — XlVeVlHl

e Ignore E} for the moment.
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e Add back expectation.
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e We will solve the model by the linearizing the equations that characterize the
competitive equilibrium around the steady state.

e Here again the log-linearized model :
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