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Example 1: the neoclassical growth model

� Uhlig (1999), section 4

� Model principles

� Specify the environment explicitly:

1. Preferences

2. Technologies



3. Endowments

4. Information

� State the object of study:

1. The social planner�s problem

2. The competition equilibrium

3. The game



� The environment:

� Preferences: the representative agent experiences utility according to

U = Et

24 1X
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� 0 < � < 1

� � > 0



� Absolute risk aversion: �u
00(c)
u0(c)

� Relative risk aversion: �cu
00(c)

u0(c)

� � is the coe¢ cient of relative risk aversion

� Technologies: we assume a Cobb-Douglas production function

Yt = ZtK
�
tN

1��
t



� Budget constraint:

Kt+1 = It + (1� �)Kt

Ct + It = Yt

� or equivalently

Ct +Kt+1 = ZtK
�
tN

1��
t + (1� �)Kt



� 0 < � < 1

� 0 < � < 1

� Zt, the total factor productivity, is exogenously evolving according to

logZt = (1�  ) log �Z +  logZt�1 + �t

�t � i:i:d:N
�
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� 0 <  < 1

� Endowment:

� Nt = 1

� K0

� Information: Ct, Nt, and Kt+1 need to be chosen based on all information It
up to time t.

� The social planner�s problem



� The objective of the social planner is to maximize the utility of the representative
agent subject to feasibility,

max
(Ct;Kt)
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s:t: K0; Z0

Ct +Kt+1 = ZtK
�
t + (1� �)Kt



logZt = (1�  ) log �Z +  logZt�1 + �t

�t � i:i:d:N
�
0;�2

�

� To solve it, form the Lagrangian:

L = max
(Ct;Kt+1)
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� The �rst order conditions are:
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� Notice that Kt+1 appears in period t and period t+ 1.

� The �rst order conditions are often also called Euler equations.

� One also obtains the transversality condition.

0 = lim
T!1

E0
h
�TC

��
T KT+1

i

� The transversality condition is a limiting Kuhn-Tucker condition.



� It means that in net present value terms, the agent should not have capital left
over at in�nity.

� Rewrite the necessary conditions:

Ct = ZtK
�
t + (1� �)Kt �Kt+1 (1)

Rt = �ZtK
��1
t + (1� �) (2)



1 = Et
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(3)

logZt = (1�  ) log �Z +  logZt�1 + �t; �t � i:i:d:N
�
0;�2

�
(4)

� Equation accounting.

� To solve for the steady state, dropping the time indices and yield



�C = �Z �K� + (1� �) �K � �K

�R = � �Z �K��1 + (1� �)

1 = � �R

� From the welfare theorems, the solution to the competitive equilibrium yields the
same allocation as the solution to the social planner�s problem.



� The case for competitive equilibrium is provided in Uhlig (1999) section 4.4.



Example 2: Hansen�s real business cycle model

� Uhlig (1999), section 4

� Hansen�s real business cycle model

� The model is an extension of the stochastic neoclassical growth model.

� The main di¤erence is to endogenize the labour supply.

� The social planner solves the problem of the representative agent:



maxEt
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s:t:

Ct + It = Yt

Kt+1 = It + (1� �)Kt



Yt = ZtK
�
tN

1��
t

logZt = (1�  ) log �Z +  logZt�1 + �t; �t � i:i:d:N
�
0;�2

�

� Hansen only consider the case � = 1, so that the objective function is:

Et

1X
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�t (logCt �ANt)



� Proof:

lim
��!1

C
1��
t � 1
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� To solve it, form the Lagrangian:



L = max
(Ct;Nt;Kt+1)
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� The �rst order conditions are:

@L

@Ct
= C
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@Nt
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� After arrangement

A = C
��
t (1� �)

Yt

Nt
(1)

Rt = �
Yt
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� The steady state for the real business cycle model above is obtained by dropping
the time subscripts and stochastic shocks in the equations above.

A = �C�� (1� �)
�Y
�N

1 = � �R



�R = �
�Y
�K
+ 1� �

� Exercise: Equation accounting.



Example 3: Brock-Mirman growth model I

� Chow (1997), chapter 2

� Consider the Brock-Mirman growth model:

max
fctg

Et

1X
t=0

�t ln ct

s:t:



kt+1 = k�t zt � ct

� The Lagrangian is:

L = Et

1X
t=0

h
�t ln ct + �t�t (k

�
t zt � ct � kt+1)

i

� The �rst order conditions are:
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@ct
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� The �rst order conditions can be rearranged as:

1

ct
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�t = ��Et
�
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� Solve the problem explicitly.

� kT+1 = 0

� cT = k�TzT

� ct = d � k�t zt (guess a solution)



Et
�
�t+1k

��1
t+1 zt+1

�
= Et

 
1

ct+1
k��1t+1 zt+1

!

= Et

 
1

d � k�t+1zt+1
k��1t+1 zt+1

!

= Et

 
1

d

1

kt+1

!
=
1

d

1

k�t zt � ct

�t = ��Et
�
�t+1k

��1
t+1 zt+1

�
, 1

ct
= ��

1

d

1

k�t zt � ct

ct =
d

��
(k�t zt � ct)



d � k�t zt =
d

��
(k�t zt � d � k�t zt)

1 =
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d = 1� ��

) ct = d � k�t zt = (1� ��) k�t zt



Example 4: Brock-Mirman growth model II

� Chow (1997), chapter 2

� We shall use dynamic programming to solve the Brock-Mirman growth model.

� Consider the Brock-Mirman growth model:

max
fctg

Et

1X
t=0

�t ln ct



s:t:

kt+1 = k�t zt � ct

� Control variable: ct

� State variables: kt; zt

� The Bellman equation is:



V (kt; zt) = maxct
[ln ct + �EtV (kt+1; zt+1)]

� We conjecture value function takes the form:

V (kt; zt) = a+ b ln kt + c ln zt

� a, b, c are coe¢ cients to be determined.

� EtV (kt+1; zt+1)



V (kt+1; zt+1) = a+ b ln kt+1 + c ln zt+1

= a+ b ln (k�t zt � ct) + c ln zt+1

* Et ln zt+1 = 0

) EtV (kt+1; zt+1) = a+ b ln (k�t zt � ct)

� It follows



V (kt; zt) = max
ct
[ln ct + �EtV (kt+1; zt+1)]

= max
ct
fln ct + � [a+ b ln (k�t zt � ct)]g

� max
ct
fg

� First order condition.

@ fg
@ct

=
1

ct
� �b

k�t zt � ct
= 0



) ct =
k�t zt

1 + �b

� Substitute this optimal ct =
k�t zt
1+�b into maxct

fg and equate the expression to the
value function, we can solve the coe¢ cients a, b, c, which after some algebraic
manipulation are:

a = (1� �)�1
h
ln (1� ��) + �� (1� ��)�1 ln (��)

i

b = � (1� ��)�1



c = (1� ��)�1



Example 5: the money-in-the-utility function (MIU)

model

� Walsh (2003), chapter 2

� Utility function, labour supply, and production function.
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Ct �
h
ac1�bt + (1� a)m1�bt
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1�b

nt = 1� lt

yt = eztk�t n
1��
t = f (kt; nt; zt)

zt = �zt�1 + et



� Two state variables.

at � � t +
(1 + it�1) bt�1

1 + �t
+
mt�1
1 + �t

kt

� The objective function is:
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s:t:

f (kt; nt; zt) + (1� �) kt + at = ct + kt+1 +mt + bt

� The Bellman equation is:



V (at; kt) = max
h
u
�
ct;mt;1� nt

�
+ �EtV (at+1; kt+1)
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� Use the de�nition of at to substitute for at+1.

at+1 � � t+1 +
(1 + it) bt

1 + �t+1
+

mt

1 + �t+1

� Use the budget constraint to eliminate kt+1.



kt+1 = f (kt; nt; zt) + (1� �) kt + at � ct �mt � bt

� Rewrite the Bellman equation as:

V (at; kt) = max
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= max
ct;bt;mt;nt

fg



� The �rst order conditions are:

@ fg
@ct
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�
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�
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@V (at; kt)

@at
=
@ fg
@at

: Va (at; kt) = �EtVk (at+1; kt+1)

@V (at; kt)

@kt
=
@ fg
@kt

: Vk (at; kt) = �EtVk (at+1; kt+1) [fk (kt; nt; zt) + 1� �]

� Resources constrains.

yt + (1� �) kt = ct + kt+1



� We can eliminate the partial di¤erentiations of value function in the F.O.C.
and then simplify the equilibrium conditions into 9 equations with 9 endogenous
variables to be determined.

� Equilibrium conditions include F.O.C., de�nitions, and resources constraints.

� yt; ct; kt+1;mt; nt; Rt; �t; zt; ut
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�
ct;mt;1� nt
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= um
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Rt = 1� � + fk (kt; nt; zt) (4)

yt + (1� �) kt = ct + kt+1 (5)



yt = f (kt; nt; zt) (6)
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!
mt�1 (7)

zt = �zt�1 + et (8)

ut = 
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� Exercises: use Lagrangian to solve the MIU model.

L =
1X
t=0

�tu
�
ct;mt;1� nt

�

+
1X
t=0

�t+1Et�t+1

24 f (kt; nt; zt) + (1� �) kt + � t +
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+
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�ct � kt+1 �mt � bt
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� @L
@ct
; @L@mt

; @L@nt
; @L
@kt+1

; @L@bt

� Show that combing the F.O.C. of the Lagrangian method gives us the same
equations as by using the Bellman equation.



Example 6: the cash-in-advance (CIA) model

� Walsh (2003), chapter 3, a certainty case

� Utility function:

1X
t=0

�tu (ct)

� CIA constraint:



Ptct �Mt�1 + Tt

� CIA constraint in real terms:

ct �
mt�1
�t

+ � t

�t �
Pt

Pt�1
; � t �

Tt

Pt
; It = 1 + it



� The budget constraint in real terms:

f (kt) + (1� �) kt + � t +
mt�1 + It�1bt�1

�t
� ct + kt+1 +mt + bt

wt � f (kt) + (1� �) kt + � t +
mt�1 + It�1bt�1

�t

� The budget constraint can be rewritten as:

wt � ct + kt+1 +mt + bt



� Solve the problem

� Two state variables

wt

mt�1

� The Bellman equation is:



V (wt;mt�1) = max [u (ct) + �V (wt+1;mt)]

s:t:

wt � ct + kt+1 +mt + bt

ct �
mt�1
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+ � t



wt = f (kt) + (1� �) kt + � t +
mt�1 + It�1bt�1

�t

� To solve the problem, �rst use the de�nition of wt to eliminate wt+1 at the RHS
of Bellman equation:

V (wt;mt�1) = max
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� Secondly, from the Lagrangian:
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� The �rst order conditions are:
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1

�t+1
= Rt �
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� Use envelope theorem to eliminate the partial di¤erentiations of value function
in the �rst order conditions.

� Envelope theorem:

dV

d�
=
@L

@�
� L�



� For details description of envelope theorem, see Dixit, Avinash K. (1990), Opti-
mization in Economic Theory, Second Edition, Oxford University Press.

Vw (wt;mt�1) = Lw = �t

Vm (wt;mt�1) = Lm =
�t
�t

� Rearrange the �rst order conditions as:



uc (ct)� �t � �t = 0 (1)

��t+1 [fk (kt+1) + 1� �]� �t = 0 (2)

��t+1Rt � �t = 0 (3)
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� Exercises: use Lagrangian method to solve the CIA model.
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