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Example 1: the neoclassical growth model

e Uhlig (1999), section 4

e Model principles

e Specify the environment explicitly:
1. Preferences

2. Technologies



3. Endowments

4. Information

e State the object of study:

1. The social planner’s problem

2. The competition equilibrium

3. The game



e [he environment:

e Preferences: the representative agent experiences utility according to
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m is the coefficient of relative risk aversion

Technologies: we assume a Cobb-Douglas production function

Y; = Z1KPN}F



e Budget constraint:

Kip1 =L+ (1-6) K,

Cir+ It = Y;

e or equivalently

Ct+ Kiy1 = ZthpNtl_p + (1 —0) K¢



e 0<p<«l
e 0<o<1

e /;, the total factor productivity, is exogenously evolving according to

log Zy = (1 — ) log Z + plog Zy_1 + &

et ~ 1.0.d.N (O; (72>



O0<y <1

Endowment:

Information: C%, N¢, and K; 11 need to be chosen based on all information Z;
up to time t.

The social planner’s problem



e The objective of the social planner is to maximize the utility of the representative
agent subject to feasibility,
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e To solve it, form the Lagrangian:
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e [ he first order conditions are:
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e Notice that K; 1 appears in period ¢ and period ¢ + 1.
e The first order conditions are often also called Euler equations.

e One also obtains the transversality condition.

0= Ilim EO [BTCI_vnKT_H_
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e The transversality condition is a limiting Kuhn-Tucker condition.



e It means that in net present value terms, the agent should not have capital left
over at infinity.

e Rewrite the necessary conditions:

Cr=Z1K + (1 - 6) Ky — Kyq1 (1)

Ry = pZ; K\t + (1 - 6) (2)
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t+1

log Z; = (1 — ) log Z 4 o log Zy_1 + €4, et ~ 1.0.dN (O; 02) (4)
e Equation accounting.

e To solve for the steady state, dropping the time indices and yield



C=ZRP+(1—6)K — K

R=pZKrP~ 14+ (1-9)

1=73R

e From the welfare theorems, the solution to the competitive equilibrium yields the
same allocation as the solution to the social planner’s problem.



e The case for competitive equilibrium is provided in Uhlig (1999) section 4.4.



Example 2: Hansen’s real business cycle model

e Uhlig (1999), section 4

e Hansen's real business cycle model

e The model is an extension of the stochastic neoclassical growth model.
e The main difference is to endogenize the labour supply.

e The social planner solves the problem of the representative agent:



s.t.

Ci+ 1t = Y3

K1 = It + (1 —0) Ky



Y; = Z1KPN}F

log Zt = (1 —¢)log Z +plog Zy_1+ &, € ~iidN (0;0°)

e Hansen only consider the case n = 1, so that the objective function is:
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e Proof:
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e To solve it, form the Lagrangian:
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e [ he first order conditions are:
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e After arrangement
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e The steady state for the real business cycle model above is obtained by dropping

the time subscripts and stochastic shocks in the equations above.



e Exercise: Equation accounting.



Example 3: Brock-Mirman growth model |

e Chow (1997), chapter 2

e Consider the Brock-Mirman growth model:

o0
maxEt Z 5t In Ct
leth =0

s.t.



k‘t_|_1 - kf‘zt — Ct

e The Lagrangian is:

oo
L=EY [Bt Inct + BN (Kfzt — et — kt+1)]
t=0

e [ he first order conditions are:
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e The first order conditions can be rearranged as:



At = oS Ey <>\t—|—1kta_|__112t—|—1)
Solve the problem explicitly.
kr41=0
cp = kpzr

ct = d - kf*z; (guess a solution)
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Example 4: Brock-Mirman growth model ||

e Chow (1997), chapter 2
e We shall use dynamic programming to solve the Brock-Mirman growth model.

e Consider the Brock-Mirman growth model:

o0
maxEt Z 5t In Ct
leth =0



s.t.

kt_|_1 - ktazt — Ct

e Control variable: ¢

e State variables: k¢, z¢

e The Bellman equation is:



V (kt, zt) = mc?x [Inct + BELV (kit1, ze41)]

e We conjecture value function takes the form:

V (kt,2¢) = a+blnkg+ cln z

® a, b, c are coefficients to be determined.

o iV (kty1,2¢+41)
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o Eln 241 = 0

R UV (kt_|_1, Zt—l—l) —a-+bln (kf‘zt — Ct)

e |t follows



V (kt,zt) = max [Inci + BELV (kts1, 2e41)]
— mc?x{ln ct + Bla+bin(ki'zt — ct)]}

max {}

e First order condition.




kg <t
1+ Bb

— Ct =

: : : kSzp . :
e Substitute this optimal ¢; = ﬁ;@) into mcax{} and equate the expression to the
t

value function, we can solve the coefficients a, b, ¢, which after some algebraic
manipulation are:

a=(1-8)" In(1-aB)+Ba(l—af) in(ap)

b=ca(l—aB) !



c=(1-ap)"



Example 5: the money-in-the-utility function (MIU)

model

e Walsh (2003), chapter 2

e Utility function, labour supply, and production function.
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e [ wo state variables.

1+ 24_1)bs _
Jr( tl)t1+mt1
1+ ¢ 1+ ¢

e The objective function is:
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s.t.

f(ke,ng,ze) +(1—0) ke +ar = ¢t + kg1 +my + by

e The Bellman equation is:



V (at, kt) = max [u (Ct, mt,l — nt) + BELV (at+1, kt_|_1)]

e Use the definition of a; to substitute for as 1.

(1+’it)bt+ my
L+mepr 14

ar41 = Tt41 +

e Use the budget constraint to eliminate k1.



ki1 = f(kty;ng, 2¢) + (1 —06) kg + ay — cg — my — by

e Rewrite the Bellman equation as:

V (at, kt) = max [u (ct, myg, 1 — nt) + BELV (a1, kt+1)]
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e [ he first order conditions are:
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: Vi (at, kt) = BEVE (aq1, ker1) [fi (B, e, 2¢) + 1 — 4]

e Resources constrains.

yr + (1 —90) kt = ¢t + kg1



e We can eliminate the partial differentiations of value function in the F.O.C,
and then simplify the equilibrium conditions into 9 equations with 9 endogenous
variables to be determined.

e Equilibrium conditions include F.O.C., definitions, and resources constraints.
® Yt, Ct, ki1, M, g, Ry, g, 2, ug
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e Exercises: use Lagrangian to solve the MIU model.
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e Show that combing the F.O.C. of the Lagrangian method gives us the same
equations as by using the Bellman equation.



Example 6: the cash-in-advance (CIA) model

e Walsh (2003), chapter 3, a certainty case

e Utility function:

S Bl (<)
t=0

e CIA constraint:



Piey < My_1 + T3

e CIlA constraint in real terms:




e The budget constraint in real terms:

my—1 + L4—10¢—1
[

f(kt) + (1 —0) ke +7¢ + >ct+ ki1 +me+ by
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e [he budget constraint can be rewritten as:

wt > ¢t + kiy1 +my + by



e Solve the problem

e [wo state variables

e The Bellman equation is:

wt



V (wg, my_1) = max[u(ct) + BV (wig1, my)]

s.t.

wt 2> ¢t + ki1 +mg + by




my_—1 + L4101

wr = f(kt) + (1 —0) ke +7¢+ =
¢

e To solve the problem, first use the definition of wy to eliminate w41 at the RHS
of Bellman equation:

my¢ + 1:b
V (w¢, my_1) = max [U (ct) + BV (f (kegr1) + (1 —6) kg1 + Teg1 + i‘l 1t t,mt>]
t+

e Secondly, from the Lagrangian:
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e [ he first order conditions are:
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e Use envelope theorem to eliminate the partial differentiations of value function
in the first order conditions.

e Envelope theorem:

av. oL _
g 06 —



e For details description of envelope theorem, see Dixit, Avinash K. (1990), Opti-
mization in Economic Theory, Second Edition, Oxford University Press.

Vw (Wi, my—1) = Ly = N
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e Rearrange the first order conditions as:
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BAt+1 [fk (kt41) +1 =01 — A =0




+BEEEL — \ =0

BAt11
;41 ;41

1 R 1t
p— t —
M1 M1

e Exercises: use Lagrangian method to solve the CIA model.



L = Y Blu(e)
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