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1 The problem

e Approaches to solve linear rational expectation models include Sims (2002), An-
derson and Moore (1985), Binder and Pesaran (1994), King and Watson (1998),
Klein (2000), and Uhlig (1999).

e A recent view is Anderson (2008), who compares the accuracy and computational
speed of alternative approaches to solving linear rational expectations models.

e Martin Uribe's Lectures in Open Economy Macroeconomics, Appendix of Chapter
4, provides a very clear explanation of the linear solution method to dynamic
general equilibrium models.

Fabrice Collard's lecture note. The latter contains many typos and | have tried my best to make they
right in this document.



Martin Uribe's Lectures are available from his website.

McCandless, George (2008), The ABCs of RBCs: An Introduction to Dynamic
Macroeconomic Models, Harvard University Press.

This book provides an detailing introduction to solving dynamic stochastic gen-
eral equilibrium model.

It is very practical for beginners as the author explains the deduction step by
step, and the book includes many examples and solutions that facilitate learning.

The author uses first-order approximation to the model, and adopts Uhlig's toolk-
its and related computer programs to solve the log-linearized model.



Klein (2000) uses a complex generalized Schur decomposition to solve linear
rational expectation models.

Why generalized Schur decomposition?

First, it treats infinite and finite unstable eigenvalues in a unified way.

Second, Schur decomposition is computationally more preferable.

Setting the stage



e Measurement equation, which describe variables of interest, such as output or
gross interest rate.

e Endogenous variables

MyoEt Xt y1 + MyoEYe 1 + MyoErZy 11 = My Xe + MonYe + MaaZy  (2)



e Exogenous shocks (forcing variables)

Zt =®Zy 1+ Ve

e Dimension of variables

Yi 1 nyx1
Zy 1 nyzx1



Predetermined variables Xf L M

Jump (control) variables X,;f iny

Ny = Np + Nf

Dimension of matrices



Ny
(ny X ny)
M:UO

M1

(nge X ng)

(

(nz X ny)

Ny
(ny X ng)
MyO
(ne X ny)
Myl
(ne X ny)
v
(nz X ne)

e All eigenvalues of ® lies within the unit circle

N,
(ny X nz)
MzO

M1

(nge X nz)

e Ny is invertible, which means that the variable of interest is uniquely defined.



e ¢: ~N(0,X)

e Transforming the problem

Y; = N, 'N.X; + N, 'N.Z,

bz 1 = PZy

e Substitute and rewrite equation (2) as:



AEtXH—l = BX;+CZ;

A= Mgz + MyONy_le

B = Mgz1 + Mley—le

C = M, + MyN; N, — (Mzo + MyoNy_lNz) ®



e This system comes from the linearization of the individual optimization conditions
and market clearing conditions in a dynamic equilibrium model.

e The matrix A is allowed to be singular.

e A singular matrix A implies that static (intra-temporal) equilibrium conditions
are included among the dynamic relationships.



2 Generalized Schur decomposition

e The idea of Klein's approach is to use complex generalized Schur decomposition
to reduce the system into an unstable and a stable block of equations.

e The stable solution is found by solving the unstable block forward and the stable
block backward.

Definition of predetermined or backward-looking variables: a process k is called
backward-looking if the prediction error €441 = k¢4 1 — Etks41 is an exogenous
martingale difference process (Ete;11 = 0) and kg is exogenous given.

e The dynamic equation



AEtXt—|—1 = BX;+CZ;

e Generalized Schur decomposition of the pencil (A, B)

S =QAZ

T =QBZ



QQ =27"=1
e See my handout for a description of generalized Schur decomposition

e The dynamic equation can be rewritten as

AZIZ’EtXtH — BZIZ’Xt + CZ;

we = 7' Xy



AZEth_l = BZw; + CZy

QAZFwi 11 = QBZwt + QU Zy

SEiwiy1 = Twy + RZy



e Don't confuse Z with Z;.

e Remark




k= 24X + 2]

Wtf = Z0,X7 + ZézXzf

e The generalized eigenvalues of the system are

=

N

27



e We sort the generalized eigenvalues in ascending order.
e ng stable eigenvalues
® 1, unstable eigenvalues

Blanchard and Kahn condition: if n, = ns (and n ¢ = ny) then the system admits
a unique saddle path.

e There are as many predetermined variables as there are stable eigenvalues.

e How likely is that ny = ns?



e In practice, very likely.

e If the system of equations is derived from a linear-quadratic dynamic optimization
problem, we are almost guaranteed that ny = ns.

e Partition the system

N
|
Y

Z11 212
Zo1 4o



Ng X Ng
n3><nf
nf><n3
annf



e Rewrite the system as

S11 S12 Ewyq _ [ Tu1 T12
0 52 Eyw! 1 0 T2

e S11 and I»o are invertible by construction.

3 The forward part of the solution

e Look at the unstable part of the system



SZZEtWtf+1 — T22w{ + RoZy

w] = Tt SmEw], | — Tyl RaZi

. _ k = k,
[ = Jim (T221522) Byl — go (T221522) Tyt Ry®* 7,

Etwi:rk < 00



: _ k
lim (T221522> Etw{—l—k =0

k— o0
oo
—lg \fr—1p gk
wl == (T5'S22) T Ra®" 2y = T2,
k=0

o0
_ k___
=-> (T221522> Tyy Ro®"
k=0

e Some matrix algebraic



vec(A + B) = vec(A) + vec(B)
vec (ABC) = (C’ ® A) vec (B)

(AB® CD) = (A®C)(B® D)

0@
S= Y A*BC* =B+ ASC
k=0



e Back to the problem

S k
k=0" 7 v d

[=—T5" Ry + (T So2) TP

vec () = —wvec (T2_21R2) + vec ((T2_21522) F¢>



vec(lN) = — (I ® T2_21) vec (Ro) + (CI)’ ® (T2_21522)) vec (IN)
vec(lN = — <I ® T2_21> vec (Rp) + (CD' ® T2_21) (I ® (S22))vec(lN)
(I ® Tprp)vec(lN) = —vec(Ry) + (CDI ® 522) vec(IN)

—1
vec(llN) = (CDI ® S0 —1I® T22> vec (Rp)



e Important

e Recall that

w{ = Z0,X7 + Zéthf

Z X0+ Zh X! =T 27,



f

e Guess a solution for X/

X} = aX} + B2z

Z1oX{ + Zhy (a X + BZy) =T 2y

Zio + Zhoa = 0



° a,[3?

(

/ /
Z11 Zpq

Z

/
1

/
> Zpo

ZaoB =T

72'7 =1

Z11 212
41 42

)-1



Zthl + Zélzzl 211212 + Zélzzz _ I 0
212211 -+ 252221 212212 —+ Zé2222 0 [

Z19Z11 + Z5yZ21 =0

Zio + Z 20 %4y =0

e Recall equation (4)



o Let 3 =0T

e Recall equation (5)

Zio + Zhsa =0

—1

ZhoB =T



ZaoB =T

Z5Bl =T

Z19Z11 + Z59Z21 =0

Z1p = —25222121_11



719712 + ZapZog = 1
Zy <Z22 — 22121_11212) =1

Ty (222 — Zo1 211 Z12) T =T

~

B = (Z22 - Z2121_11212>



B = (Zzz - 22121_11212) I

e We obtain the forward part of the solution

X] = 250231 X} + (Zo2 — Zor 217 212 T 24

e or express the solution as



X} = B, X} + F.7
— —1
FZ = (Z22 — Z21Zl_11212> I

—1
vec (N = (CD’ ® Sor — I ® T22> vec (Ry)



4 The backward part of the solution

e The upper part of the transformed system is

S11Ewl 1 + 512Etw{+1 = T12w{ + T1yw] + R1Zy

- - - ~1

e Recall that



wy = Z'X; < Wb = 2 X0+ 75 X/

X/ = Zp 251X + (222 _ 22121—11212) rz,

e Substitute and rearrange,

wi = (Zil + Z§122121_11) X{ + Zby (Zzz - 22121_11212) 'z



Z11211 + Z51Zo1 =1 = Z11 + Z§122121_11 = 21_11

Z51Z20 + Z11Z12 = 0 = Z51Z0p = — 211212

21 (%22 — Zn 731 Z12) = Zh1Zon — Z51 2 737 Zao
= — (Zil + Zélzzlzl_ll) Z12
= —ZnZi



Wl = Z{ XY — Z{1 2107 7y

Z X = Wb+ 21 2107 2
X0 = 71100 + Z41 27 21T 2 = Z11608 + Z1o T2 = Z110l + Zowd
[ 11wy + Z114471 2121 43 11w + Z12 1 4¢ 11W¢ + Z12wy

° Xf are predetermined variables



P 1=0
Xy =
X1 — B Xy

el

f
Xb — lew% —+ ZlZWt
;=

P1=0
X1 =
Xf+1 — I Xy



Z11 (wlt)+1 - Etwltjﬂ) + 212 (W{H - Etwtf+1> =0

b b —1 f /

o w{+1 — Etwtf+1 = r\UEH_l ( w{ = th)

b b —1
wip1 = Bpwiyg — 217 Z1ol Ve



e Recall that

- - - ~1

w1 = 81y Tiawf + S5t (Thal — Sl ® + Ry) Z; — 257 Z15T Ve

b —1+-b —1



b ~1 b 1
Wip1 = 2411 X1 — 211 212l Zin

ZiAXP - 271 Z20oT Zp 1 = ST (Zl—lle - Zl—llzlzrzt)
+S17 (T2l — S12T® + Ry) Zp — Zi7- Z1oTWep i

X{e1— Z120 Zip1 = ZuSi T (200 X7 — 21 Z1aT Z¢)
—|—le51_11 (T12I' — S1ol® + Rl) Lt — ler\llet+1



Zir1 =PZ + Ve
XPp1 = ZuSiiTiZa X!
+ [21151_11 (T12F — S1ol P — Tllzl_llzlzr + Rl) + 212r¢] L

e The dynamics of the predetermined variables is

XPiq = Mg X? + M. 7y



My = Z1187 1127

M, = 21151_11 <T12F — S1ol® — T1121_11212r -+ R1> + Z1ol®

5 Computing variables of interest

Xb
N,Y; = Np X+ N, Z; = [le Nwz} [th] + N.Z; = Ny1 X2+ Ny X/ + N. 7,
t



N,Y; = No Xt + N2 Zy = Np1 X? + Nao (Ffo 4 FZZt) 1+ N.Z

Y = Ny_l (Ng1 + Ny Fi) Xg) + Ny_l (N2 + Ny2Fz) Zy

Yt:PxXE‘FPzZt

Py = N, 1 (Ny1 + NyoFr)



P, = N, 1 (N; + Ny F:)

e Express the solution of the whole system is state-space form

XPiq = Mo XP + M. 2

Zir1=PZ + Ve



Y = PeX? + P. 2,

6 When X7 | — ExX) 1= &1

o Klein (2000) assumes X, — EyX) 1 = &11



XP = Z110? + lewtf

b b
Xi1— Er Xy 1 = &eqa

Z11 (W[t)—l—l — Etw%ﬂ) + Z12 (wtf—l—l - Etwtf+1) = &1

b b —1 —1
Wity = By — Zyp 212 (w{ﬂ - Etw{ﬂ) URZERIS!



b b —1 —1

e Recall that

— — — —1

wlt)+1 — S1_11T11wltj+ Sl_ll (T12F — S1ol® + Rl) Lt — ZfllZlQr\UGH_l —+ Zl_llgt—l—l



1 _
Wl = Z{ XY — 211 Z10T 7y

b _ 7—1xb —1
Wip1 = 2411 X1 — 211 212l Zen

—1 —1 — — _
Z3 XD — 27 22T Zyr = Si7 T (201 X — 241 Z1aT Zt)
+831 (T12l — S12F® + Ry) Z;
— 751 Z1oT Ve 1+ Zy1 €1



Xf—i—l — lerZH_l = 21151_11T11 (Zl_lle — Zl_llzIZFZt)
—|—le51_11 (T12r — 812Fd> + Rl) Zt — ZlZFWEt—i—l + €t+1

Zt—i—l — (bZt + Wet_|_]_

XPy1 = ZuSiiTuZya X!
+| 211817 (T1al — S12T® — T11 207" Z1oT + Ry) + Z12T®| Zi + €444



e The dynamics of the predetermined variables is

Xf+1 = My X + M.Z¢ + §e41

My = Z118{T11 27

M, = 21151_11 <T12F — S1ol® — T1121_11212F + R1> + Z1ol'®



7 In practice

e In practice, we can treat exogenous shocks as part of the pre-determined vari-
ables.

e In other words, we redefine the dynamic system as

AFEiXi11 = BXe + | Ve




e The solution to the system becomes

b b
Xip1 = MzXy + &4q



My = Z118{'T11 27

g p— @
LT Ve
b
X/ = F, x|

F, = 22121_11



This is the solution form employed in Klein's MATLAB code.

To implement Paul Klein's method, you need 3 MATLAB m files: solab.m;
gzswitch.m; and qgzdiv.m.

These MATLAB m files are available from Paul Klein's website.

The 2 MATLAB m files, gzswitch.m and gzdiv.m, are originally written by C.
Sims.
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