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1 The problem

� Approaches to solve linear rational expectation models include Sims (2002), An-
derson and Moore (1985), Binder and Pesaran (1994), King and Watson (1998),
Klein (2000), and Uhlig (1999).

� A recent view is Anderson (2008), who compares the accuracy and computational
speed of alternative approaches to solving linear rational expectations models.

� Martin Uribe�s Lectures in Open Economy Macroeconomics, Appendix of Chapter
4, provides a very clear explanation of the linear solution method to dynamic
general equilibrium models.

Fabrice Collard�s lecture note. The latter contains many typos and I have tried my best to make they
right in this document.



� Martin Uribe�s Lectures are available from his website.

� McCandless, George (2008), The ABCs of RBCs: An Introduction to Dynamic
Macroeconomic Models, Harvard University Press.

� This book provides an detailing introduction to solving dynamic stochastic gen-
eral equilibrium model.

� It is very practical for beginners as the author explains the deduction step by
step, and the book includes many examples and solutions that facilitate learning.

� The author uses �rst-order approximation to the model, and adopts Uhlig�s toolk-
its and related computer programs to solve the log-linearized model.



� Klein (2000) uses a complex generalized Schur decomposition to solve linear
rational expectation models.

� Why generalized Schur decomposition?

� First, it treats in�nite and �nite unstable eigenvalues in a uni�ed way.

� Second, Schur decomposition is computationally more preferable.

� Setting the stage



� Measurement equation, which describe variables of interest, such as output or
gross interest rate.

NyYt = NxXt +NzZt (1)

� Endogenous variables

Mx0EtXt+1 +My0EtYt+1 +Mz0EtZt+1 =Mx1Xt +My1Yt +Mz1Zt (2)



� Exogenous shocks (forcing variables)

Zt = �Zt�1 +	�t (3)

� Dimension of variables

Yt : ny � 1
Xt : nx � 1
Zt : nz � 1



� Predetermined variables Xbt : nb

� Jump (control) variables Xft : nf

� nx = nb + nf

Xt =
�Xbt
X
f
t

�

� Dimension of matrices



Ny
(ny � ny)

Nx
(ny � nx)

Nz
(ny � nz)

Mx0
(nx � nx)

My0
(nx � ny)

Mz0
(nx � nz)

Mx1
(nx � nx)

My1
(nx � ny)

Mz1
(nx � nz)

�
(nz � nz)

	
(nz � ne)

� Ny is invertible, which means that the variable of interest is uniquely de�ned.

� All eigenvalues of � lies within the unit circle



� �t � N (0;�)

� Transforming the problem

Yt = N
�1
y NxXt +N

�1
y NzZt

EtZt+1 = �Zt

� Substitute and rewrite equation (2) as:



AEtXt+1 = BXt + CZt

A =Mx0 +My0N
�1
y Nx

B =Mx1 +My1N
�1
y Nx

C =Mz1 +My1N
�1
y Nz �

�
Mz0 +My0N

�1
y Nz

�
�



� This system comes from the linearization of the individual optimization conditions
and market clearing conditions in a dynamic equilibrium model.

� The matrix A is allowed to be singular.

� A singular matrix A implies that static (intra-temporal) equilibrium conditions
are included among the dynamic relationships.



2 Generalized Schur decomposition

� The idea of Klein�s approach is to use complex generalized Schur decomposition
to reduce the system into an unstable and a stable block of equations.

� The stable solution is found by solving the unstable block forward and the stable
block backward.

De�nition of predetermined or backward-looking variables: a process k is called
backward-looking if the prediction error �t+1 � kt+1�Etkt+1 is an exogenous
martingale di¤erence process (Et�t+1 = 0) and k0 is exogenous given.

� The dynamic equation



AEtXt+1 = BXt + CZt

� Generalized Schur decomposition of the pencil (A;B)

S = QAZ

T = QBZ



QQ0 = ZZ0 = I

� See my handout for a description of generalized Schur decomposition

� The dynamic equation can be rewritten as

AZZ0| {z }
I

EtXt+1 = BZZ
0| {z }

I

Xt + CZt

!t = Z
0Xt



AZEt!t+1 = BZ!t + CZt

QAZEt!t+1 = QBZ!t +QCZt

R � QC

SEt!t+1 = T!t +RZt



� Don�t confuse Z with Zt.

� Remark

Z =

 
Z11 Z12
Z21 Z22

!

!t = Z
0Xt =

"
Z011 Z021
Z012 Z022

# "
Xbt
X
f
t

#
=

24Z011Xbt + Z021Xft
Z012X

b
t + Z

0
22X

f
t

35 � "
!bt
!
f
t

#



!bt = Z
0
11X

b
t + Z

0
21X

f
t

!
f
t = Z

0
12X

b
t + Z

0
22X

f
t

� The generalized eigenvalues of the system are

Tii
Sii



� We sort the generalized eigenvalues in ascending order.

� ns stable eigenvalues

� nu unstable eigenvalues

Blanchard and Kahn condition: if nb = ns (and nf = nu) then the system admits
a unique saddle path.

� There are as many predetermined variables as there are stable eigenvalues.

� How likely is that nb = ns?



� In practice, very likely.

� If the system of equations is derived from a linear-quadratic dynamic optimization
problem, we are almost guaranteed that nb = ns.

� Partition the system

Z =

 
Z11 Z12
Z21 Z22

!



S =

 
S11 S12
0 S22

!

T =

 
T11 T12
0 T22

!

Z11 : ns � ns
Z12 : ns � nf
Z21 : nf � ns
Z22 : nf � nf



� Rewrite the system as

 
S11 S12
0 S22

!0@ Et!
b
t+1

Et!
f
t+1

1A =  
T11 T12
0 T22

! 
!bt
!
f
t

!
+

 
R1
R2

!
Zt

� S11 and T22 are invertible by construction.

3 The forward part of the solution

� Look at the unstable part of the system



S22Et!
f
t+1 = T22!

f
t +R2Zt

!
f
t = T

�1
22 S22Et!

f
t+1 � T

�1
22 R2Zt

!
f
t = lim

k!1

�
T�122 S22

�k
Et!

f
t+k �

1X
k=0

�
T�122 S22

�k
T�122 R2�

kZt

Et!
f
t+k <1



lim
k!1

�
T�122 S22

�k
Et!

f
t+k = 0

!
f
t = �

1X
k=0

�
T�122 S22

�k
T�122 R2�

kZt = �Zt

� � �
1X
k=0

�
T�122 S22

�k
T�122 R2�

k

� Some matrix algebraic



vec (A+B) = vec (A) + vec (B)

vec (ABC) =
�
C0 
A

�
vec (B)

(AB 
 CD) = (A
 C) (B 
D)

S =
1X
k=0

AkBCk = B +ASC



� Back to the problem

� �
1X
k=0

�
T�122 S22

�k| {z }
�
�T�122 R2

�
| {z } �k|{z}

� = �T�122 R2 +
�
T�122 S22

�
��

vec (�) = �vec
�
T�122 R2

�
+ vec

��
T�122 S22

�
��
�



vec (�) = �
�
I 
 T�122

�
vec (R2) +

�
�0 


�
T�122 S22

��
vec (�)

vec (�) = �
�
I 
 T�122

�
vec (R2) +

�
�0 
 T�122

�
(I 
 (S22)) vec (�)

(I 
 T22) vec (�) = �vec (R2) +
�
�0 
 S22

�
vec (�)

vec (�) =
�
�0 
 S22 � I 
 T22

��1
vec (R2)



� Important

!
f
t = �Zt

� Recall that

!
f
t = Z

0
12X

b
t + Z

0
22X

f
t

Z012X
b
t + Z

0
22X

f
t = �Zt



� Guess a solution for Xft

X
f
t = �X

b
t + �Zt

Z012X
b
t + Z

0
22

�
�Xbt + �Zt

�
= �Zt

Z012 + Z
0
22� = 0 (4)



Z022� = � (5)

� �; �?

Z0Z = I

 
Z011 Z021
Z012 Z022

! 
Z11 Z12
Z21 Z22

!
= I



"
Z011Z11 + Z

0
21Z21 Z011Z12 + Z

0
21Z22

Z012Z11 + Z
0
22Z21 Z012Z12 + Z

0
22Z22

#
=

"
I 0
0 I

#

Z012Z11 + Z
0
22Z21 = 0

Z012 + Z
0
22Z21Z

�1
11 = 0

� Recall equation (4)



Z012 + Z
0
22� = 0 (4)

� = Z21Z
�1
11

� Let � = ~��

� Recall equation (5)

Z022� = � (5)



Z022� = �

Z022~�� = �

Z012Z11 + Z
0
22Z21 = 0

Z012 = �Z022Z21Z�111



Z012Z12 + Z
0
22Z22 = I

Z022
�
Z22 � Z21Z�111 Z12

�
= I

Z022
�
Z22 � Z21Z�111 Z12

�
| {z } � = �

~� =
�
Z22 � Z21Z�111 Z12

�



� =
�
Z22 � Z21Z�111 Z12

�
�

� We obtain the forward part of the solution

X
f
t = Z21Z

�1
11 X

b
t +

�
Z22 � Z21Z�111 Z12

�
�Zt

� or express the solution as



X
f
t = FxX

b
t + FzZt

Fx � Z21Z�111

Fz �
�
Z22 � Z21Z�111 Z12

�
�

vec (�) =
�
�0 
 S22 � I 
 T22

��1
vec (R2)



4 The backward part of the solution

� The upper part of the transformed system is

S11Et!
b
t+1 + S12Et!

f
t+1 = T12!

f
t + T11!

b
t +R1Zt

Et!
b
t+1 = S

�1
11 T11!

b
t + S

�1
11 T12!

f
t � S

�1
11 S12Et!

f
t+1 + S

�1
11 R1Zt

� Recall that



!t = Z
0Xt ( !bt = Z

0
11X

b
t + Z

0
21X

f
t

X
f
t = Z21Z

�1
11 X

b
t +

�
Z22 � Z21Z�111 Z12

�
�Zt

� Substitute and rearrange,

!bt =
�
Z011 + Z

0
21Z21Z

�1
11

�
Xbt + Z

0
21

�
Z22 � Z21Z�111 Z12

�
�Zt



Z011Z11 + Z
0
21Z21 = I ) Z011 + Z

0
21Z21Z

�1
11 = Z

�1
11

Z021Z22 + Z
0
11Z12 = 0) Z021Z22 = �Z011Z12

Z021
�
Z22 � Z21Z�111 Z12

�
= Z021Z22 � Z021Z21Z�111 Z12
= �

�
Z011 + Z

0
21Z21Z

�1
11

�
Z12

= �Z011Z12



!bt = Z
�1
11 X

b
t � Z�111 Z12�Zt

Z�111 X
b
t = !

b
t + Z

�1
11 Z12�Zt

Xbt = Z11!
b
t + Z11Z

�1
11 Z12�Zt = Z11!

b
t + Z12 �Ztz }| {

= !
f
t

= Z11!
b
t + Z12!

f
t

� Xbt are predetermined variables



Xbt+1 � EtXbt+1 = 0

� Klein (2000) assumes Xbt+1 � EtXbt+1 = �t+1

Xbt = Z11!
b
t + Z12!

f
t

Xbt+1 � EtXbt+1 = 0



Z11
�
!bt+1 � Et!bt+1

�
+ Z12

�
!
f
t+1 � Et!

f
t+1

�
= 0

!bt+1 = Et!
b
t+1 � Z�111 Z12

�
!
f
t+1 � Et!

f
t+1

�

� !ft+1 � Et!
f
t+1 = �	�t+1

�
* !ft = �Zt

�

!bt+1 = Et!
b
t+1 � Z�111 Z12�	�t+1



� Recall that

Et!
b
t+1 = S

�1
11 T11!

b
t + S

�1
11 T12!

f
t � S

�1
11 S12Et!

f
t+1 + S

�1
11 R1Zt

!bt+1 = S
�1
11 T11!

b
t + S

�1
11 (T12�� S12�� +R1)Zt � Z

�1
11 Z12�	�t+1

!bt = Z
�1
11 X

b
t � Z�111 Z12�Zt



!bt+1 = Z
�1
11 X

b
t+1 � Z�111 Z12�Zt+1

Z�111 X
b
t+1 � Z�111 Z12�Zt+1 = S�111 T11

�
Z�111 X

b
t � Z�111 Z12�Zt

�
+S�111 (T12�� S12�� +R1)Zt � Z

�1
11 Z12�	�t+1

Xbt+1 � Z12�Zt+1 = Z11S
�1
11 T11

�
Z�111 X

b
t � Z�111 Z12�Zt

�
+Z11S

�1
11 (T12�� S12�� +R1)Zt � Z12�	�t+1



Zt+1 = �Zt +	�t+1

Xbt+1 = Z11S
�1
11 T11Z

�1
11 X

b
t

+
h
Z11S

�1
11

�
T12�� S12��� T11Z�111 Z12� +R1

�
+ Z12��

i
Zt

� The dynamics of the predetermined variables is

Xbt+1 =MxX
b
t +MzZt



Mx = Z11S
�1
11 T11Z

�1
11

Mz = Z11S
�1
11

�
T12�� S12��� T11Z�111 Z12� +R1

�
+ Z12��

5 Computing variables of interest

NyYt = NxXt+NzZt =
h
Nx1 Nx2

i "Xbt
X
f
t

#
+NzZt = Nx1X

b
t +Nx2X

f
t +NzZt



NyYt = NxXt +NzZt = Nx1X
b
t +Nx2

�
FxX

b
t + FzZt

�
+NzZt

Yt = N
�1
y (Nx1 +Nx2Fx)X

b
t +N

�1
y (Nz +Nx2Fz)Zt

Yt = PxX
b
t + PzZt

Px � N�1y (Nx1 +Nx2Fx)



Pz � N�1y (Nz +Nx2Fz)

� Express the solution of the whole system is state-space form

Xbt+1 =MxX
b
t +MzZt

Zt+1 = �Zt +	�t+1



X
f
t = FxX

b
t + FzZt

Yt = PxX
b
t + PzZt

6 When Xbt+1 � EtXbt+1 = �t+1

� Klein (2000) assumes Xbt+1 � EtXbt+1 = �t+1



Xbt = Z11!
b
t + Z12!

f
t

Xbt+1 � EtXbt+1 = �t+1

Z11
�
!bt+1 � Et!bt+1

�
+ Z12

�
!
f
t+1 � Et!

f
t+1

�
= �t+1

!bt+1 = Et!
b
t+1 � Z�111 Z12

�
!
f
t+1 � Et!

f
t+1

�
+ Z�111 �t+1



!bt+1 = Et!
b
t+1 � Z�111 Z12�	�t+1 + Z

�1
11 �t+1

� Recall that

Et!
b
t+1 = S

�1
11 T11!

b
t + S

�1
11 T12!

f
t � S

�1
11 S12Et!

f
t+1 + S

�1
11 R1Zt

!bt+1 = S
�1
11 T11!

b
t+S

�1
11 (T12�� S12�� +R1)Zt�Z

�1
11 Z12�	�t+1+Z

�1
11 �t+1



!bt = Z
�1
11 X

b
t � Z�111 Z12�Zt

!bt+1 = Z
�1
11 X

b
t+1 � Z�111 Z12�Zt+1

Z�111 X
b
t+1 � Z�111 Z12�Zt+1 = S�111 T11

�
Z�111 X

b
t � Z�111 Z12�Zt

�
+S�111 (T12�� S12�� +R1)Zt
�Z�111 Z12�	�t+1 + Z

�1
11 �t+1



Xbt+1 � Z12�Zt+1 = Z11S
�1
11 T11

�
Z�111 X

b
t � Z�111 Z12�Zt

�
+Z11S

�1
11 (T12�� S12�� +R1)Zt � Z12�	�t+1 + �t+1

Zt+1 = �Zt +	�t+1

Xbt+1 = Z11S
�1
11 T11Z

�1
11 X

b
t

+
h
Z11S

�1
11

�
T12�� S12��� T11Z�111 Z12� +R1

�
+ Z12��

i
Zt + �t+1



� The dynamics of the predetermined variables is

Xbt+1 =MxX
b
t +MzZt + �t+1

Mx = Z11S
�1
11 T11Z

�1
11

Mz = Z11S
�1
11

�
T12�� S12��� T11Z�111 Z12� +R1

�
+ Z12��



7 In practice

� In practice, we can treat exogenous shocks as part of the pre-determined vari-
ables.

� In other words, we rede�ne the dynamic system as

AEtXt+1 = BXt +

264 ;
	�t+1
;

375



Xt =

2664X
b
t
Zt

X
f
t

3775 �
"
X bt
X
f
t

#

X bt �
"
Xbt
Zt

#

� The solution to the system becomes

X bt+1 =MxX bt + �t+1 (6)



Mx = Z11S
�1
11 T11Z

�1
11

�t+1 =

"
;

	�t+1

#

X
f
t = FxX

b
t (7)

Fx = Z21Z
�1
11



� This is the solution form employed in Klein�s MATLAB code.

� To implement Paul Klein�s method, you need 3 MATLAB m �les: solab.m;
qzswitch.m; and qzdiv.m.

� These MATLAB m �les are available from Paul Klein�s website.

� The 2 MATLAB m �les, qzswitch.m and qzdiv.m, are originally written by C.
Sims.
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