

Solving Linear Rational Expectation Models

Dr. Tai-kuang Ho*

*Associate Professor. Department of Quantitative Finance, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, Tel: +886-3-571-5131, ext. 62136, Fax: +886-3-562-1823, E-mail: tkho@mx.nthu.edu.tw. This lecture note is based on Klein's paper and

1 The problem

- Approaches to solve linear rational expectation models include Sims (2002), Anderson and Moore (1985), Binder and Pesaran (1994), King and Watson (1998), Klein (2000), and Uhlig (1999).
- A recent view is Anderson (2008), who compares the accuracy and computational speed of alternative approaches to solving linear rational expectations models.
- Martin Uribe's *Lectures in Open Economy Macroeconomics*, Appendix of Chapter 4, provides a very clear explanation of the linear solution method to dynamic general equilibrium models.

Fabrice Collard's lecture note. The latter contains many typos and I have tried my best to make they right in this document.

- Martin Uribe's Lectures are available from his website.
- McCandless, George (2008), *The ABCs of RBCs: An Introduction to Dynamic Macroeconomic Models*, Harvard University Press.
- This book provides an detailing introduction to solving dynamic stochastic general equilibrium model.
- It is very practical for beginners as the author explains the deduction step by step, and the book includes many examples and solutions that facilitate learning.
- The author uses first-order approximation to the model, and adopts Uhlig's toolkits and related computer programs to solve the log-linearized model.

- Klein (2000) uses a complex generalized Schur decomposition to solve linear rational expectation models.
- Why generalized Schur decomposition?
 - First, it treats infinite and finite unstable eigenvalues in a unified way.
 - Second, Schur decomposition is computationally more preferable.
- Setting the stage

- Measurement equation, which describe variables of interest, such as output or gross interest rate.

$$N_y Y_t = N_x X_t + N_z Z_t \quad (1)$$

- Endogenous variables

$$M_{x0} E_t X_{t+1} + M_{y0} E_t Y_{t+1} + M_{z0} E_t Z_{t+1} = M_{x1} X_t + M_{y1} Y_t + M_{z1} Z_t \quad (2)$$

- Exogenous shocks (forcing variables)

$$Z_t = \Phi Z_{t-1} + \Psi \epsilon_t \quad (3)$$

- Dimension of variables

$$\begin{aligned} Y_t &: n_y \times 1 \\ X_t &: n_x \times 1 \\ Z_t &: n_z \times 1 \end{aligned}$$

- Predetermined variables $X_t^b : n_b$

- Jump (control) variables $X_t^f : n_f$

- $n_x = n_b + n_f$

$$X_t = \begin{pmatrix} X_t^b \\ X_t^f \end{pmatrix}$$

- Dimension of matrices

$$\begin{array}{ccc}
N_y & N_x & N_z \\
(n_y \times n_y) & (n_y \times n_x) & (n_y \times n_z) \\
M_{x0} & M_{y0} & M_{z0} \\
(n_x \times n_x) & (n_x \times n_y) & (n_x \times n_z) \\
M_{x1} & M_{y1} & M_{z1} \\
(n_x \times n_x) & (n_x \times n_y) & (n_x \times n_z) \\
\Phi & \Psi & \\
(n_z \times n_z) & (n_z \times n_e) &
\end{array}$$

- N_y is invertible, which means that the variable of interest is uniquely defined.
- All eigenvalues of Φ lies within the unit circle

- $\epsilon_t \sim \mathcal{N}(0, \Sigma)$
- Transforming the problem

$$Y_t = N_y^{-1} N_x X_t + N_y^{-1} N_z Z_t$$

$$E_t Z_{t+1} = \Phi Z_t$$

- Substitute and rewrite equation (2) as:

$$AE_tX_{t+1}=BX_t+CZ_t$$

$$A = M_{x0} + M_{y0}N_y^{-1}N_x$$

$$B = M_{x1} + M_{y1}N_y^{-1}N_x$$

$$C = M_{z1} + M_{y1}N_y^{-1}N_z - \left(M_{z0} + M_{y0}N_y^{-1}N_z \right) \Phi$$

- This system comes from the linearization of the individual optimization conditions and market clearing conditions in a dynamic equilibrium model.
- The matrix A is allowed to be singular.
- A singular matrix A implies that static (intra-temporal) equilibrium conditions are included among the dynamic relationships.

2 Generalized Schur decomposition

- The idea of Klein's approach is to use complex generalized Schur decomposition to reduce the system into an unstable and a stable block of equations.
- The stable solution is found by solving the unstable block forward and the stable block backward.

Definition of predetermined or backward-looking variables: a process k is called backward-looking if the prediction error $\epsilon_{t+1} \equiv k_{t+1} - E_t k_{t+1}$ is an exogenous martingale difference process ($E_t \epsilon_{t+1} = 0$) and k_0 is exogenous given.

- The dynamic equation

$$AE_tX_{t+1} = BX_t + CZ_t$$

- Generalized Schur decomposition of the pencil (A, B)

$$S = QAZ$$

$$T = QBZ$$

$$QQ' = ZZ' = I$$

- See my handout for a description of generalized Schur decomposition
- The dynamic equation can be rewritten as

$$\underbrace{AZZ'}_I E_t X_{t+1} = \underbrace{BZZ'}_I X_t + CZ_t$$

$$\omega_t = Z' X_t$$

$$A Z E_t \omega_{t+1} = B Z \omega_t + C Z_t$$

$$QAZ E_t \omega_{t+1} = QBZ \omega_t + QCZ_t$$

$$R\equiv QC$$

$$S E_t \omega_{t+1} = T \omega_t + R Z_t$$

$$R\equiv QC$$

$$R\equiv QC$$

$$S E_t \omega_{t+1} = T \omega_t + R Z_t$$

$$R\equiv QC$$

$$S E_t \omega_{t+1} = T \omega_t + R Z_t$$

- Don't confuse Z with Z_t .

- Remark

$$Z = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix}$$

$$\omega_t = Z' X_t = \begin{bmatrix} Z'_{11} & Z'_{21} \\ Z'_{12} & Z'_{22} \end{bmatrix} \begin{bmatrix} X_t^b \\ X_t^f \end{bmatrix} = \begin{bmatrix} Z'_{11} X_t^b + Z'_{21} X_t^f \\ Z'_{12} X_t^b + Z'_{22} X_t^f \end{bmatrix} \equiv \begin{bmatrix} \omega_t^b \\ \omega_t^f \end{bmatrix}$$

$$\omega_t^b = Z'_{11} X_t^b + Z'_{21} X_t^f$$

$$\omega_t^f = Z'_{12} X_t^b + Z'_{22} X_t^f$$

- The generalized eigenvalues of the system are

$$\frac{T_{ii}}{S_{ii}}$$

- We sort the generalized eigenvalues in ascending order.
- n_s stable eigenvalues
- n_u unstable eigenvalues

Blanchard and Kahn condition: if $n_b = n_s$ (and $n_f = n_u$) then the system admits a unique saddle path.

- There are as many predetermined variables as there are stable eigenvalues.
- How likely is that $n_b = n_s$?

- In practice, very likely.
- If the system of equations is derived from a linear-quadratic dynamic optimization problem, we are almost guaranteed that $n_b = n_s$.
- Partition the system

$$Z = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix}$$

$$S = \left(\begin{array}{cc} S_{11} & S_{12} \\ 0 & S_{22} \end{array}\right)$$

$$T = \left(\begin{array}{cc} T_{11} & T_{12} \\ 0 & T_{22} \end{array}\right)$$

$$\begin{array}{lcl} Z_{11} & : & n_s \times n_s \\ Z_{12} & : & n_s \times n_f \\ Z_{21} & : & n_f \times n_s \\ Z_{22} & : & n_f \times n_f \end{array}$$

- Rewrite the system as

$$\begin{pmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{pmatrix} \begin{pmatrix} E_t \omega_{t+1}^b \\ E_t \omega_{t+1}^f \end{pmatrix} = \begin{pmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{pmatrix} \begin{pmatrix} \omega_t^b \\ \omega_t^f \end{pmatrix} + \begin{pmatrix} R_1 \\ R_2 \end{pmatrix} Z_t$$

- S_{11} and T_{22} are invertible by construction.

3 The forward part of the solution

- Look at the unstable part of the system

$$S_{22}E_t\omega_{t+1}^f=T_{22}\omega_t^f+R_2Z_t$$

$$\omega_t^f=T_{22}^{-1}S_{22}E_t\omega_{t+1}^f-T_{22}^{-1}R_2Z_t$$

$$\omega_t^f=\lim_{k\rightarrow\infty}\left(T_{22}^{-1}S_{22}\right)^kE_t\omega_{t+k}^f-\sum_{k=0}^{\infty}\left(T_{22}^{-1}S_{22}\right)^kT_{22}^{-1}R_2\Phi^kZ_t$$

$$E_t\omega_{t+k}^f<\infty$$

$$\lim_{k \rightarrow \infty} \left(T_{22}^{-1} S_{22} \right)^k E_t \omega_{t+k}^f = 0$$

$$\omega_t^f = - \sum_{k=0}^{\infty} \left(T_{22}^{-1} S_{22} \right)^k T_{22}^{-1} R_2 \Phi^k Z_t = \Gamma Z_t$$

$$\Gamma \equiv - \sum_{k=0}^{\infty} \left(T_{22}^{-1} S_{22} \right)^k T_{22}^{-1} R_2 \Phi^k$$

- Some matrix algebraic

$$vec\left(A+B\right)=vec\left(A\right)+vec\left(B\right)$$

$$vec\left(ABC\right)=\left(C'\otimes A\right)vec\left(B\right)$$

$$\left(AB\otimes CD\right)=\left(A\otimes C\right)\left(B\otimes D\right)$$

$$S=\sum_{k=0}^{\infty}A^kBC^k=B+ASC$$

- Back to the problem

$$\Gamma \equiv \sum_{k=0}^{\infty} \underbrace{\left(T_{22}^{-1} S_{22} \right)^k}_{\left(-T_{22}^{-1} R_2 \right)} \underbrace{\Phi^k}_{\Gamma \Phi}$$

$$\Gamma = -T_{22}^{-1} R_2 + \left(T_{22}^{-1} S_{22} \right) \Gamma \Phi$$

$$vec(\Gamma) = -vec\left(T_{22}^{-1} R_2\right) + vec\left(\left(T_{22}^{-1} S_{22}\right) \Gamma \Phi\right)$$

$$vec\left(\Gamma\right) = -\left(I\otimes T_{22}^{-1}\right)vec\left(R_2\right) + \left(\Phi'\otimes \left(T_{22}^{-1}S_{22}\right)\right)vec\left(\Gamma\right)$$

$$vec\left(\Gamma\right) = -\left(I\otimes T_{22}^{-1}\right)vec\left(R_2\right) + \left(\Phi'\otimes T_{22}^{-1}\right)\left(I\otimes \left(S_{22}\right)\right)vec\left(\Gamma\right)$$

$$\left(I\otimes T_{22}\right)vec\left(\Gamma\right) = -vec\left(R_2\right) + \left(\Phi'\otimes S_{22}\right)vec\left(\Gamma\right)$$

$$vec\left(\Gamma\right) = \left(\Phi'\otimes S_{22} - I\otimes T_{22}\right)^{-1}vec\left(R_2\right)$$

- Important

$$\omega_t^f = \Gamma Z_t$$

- Recall that

$$\omega_t^f = Z'_{12} X_t^b + Z'_{22} X_t^f$$

$$Z'_{12} X_t^b + Z'_{22} X_t^f = \Gamma Z_t$$

- Guess a solution for X_t^f

$$X_t^f = \alpha X_t^b + \beta Z_t$$

$$Z'_{12}X_t^b + Z'_{22}(\alpha X_t^b + \beta Z_t) = \Gamma Z_t$$

$$Z'_{12} + Z'_{22}\alpha = 0 \tag{4}$$

$$Z_{22}'\beta=\Gamma \tag{5}$$

$$\bullet~\alpha,\beta?$$

$$Z'Z=I$$

$$\left(\begin{array}{cc} Z_{11}' & Z_{21}' \\ Z_{12}' & Z_{22}' \end{array}\right)\left(\begin{array}{cc} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{array}\right)=I$$

$$\begin{bmatrix} Z'_{11}Z_{11} + Z'_{21}Z_{21} & Z'_{11}Z_{12} + Z'_{21}Z_{22} \\ Z'_{12}Z_{11} + Z'_{22}Z_{21} & Z'_{12}Z_{12} + Z'_{22}Z_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

$$Z'_{12}Z_{11} + Z'_{22}Z_{21} = 0$$

$$Z'_{12} + Z'_{22}Z_{21}Z_{11}^{-1} = 0$$

- Recall equation (4)

$$Z'_{12} + Z'_{22}\alpha = 0 \quad (4)$$

$$\alpha = Z_{21}Z_{11}^{-1}$$

- Let $\beta = \tilde{\beta}\Gamma$
- Recall equation (5)

$$Z'_{22}\beta = \Gamma \quad (5)$$

$$Z_{22}'\beta=\Gamma$$

$$Z_{22}'\tilde{\beta}\Gamma=\Gamma$$

$$Z_{12}'Z_{11}+Z_{22}'Z_{21}=0$$

$$Z_{12}'=-Z_{22}'Z_{21}Z_{11}^{-1}$$

$$Z_{12}'Z_{12}+Z_{22}'Z_{22}=I$$

$$Z_{22}'\left(Z_{22}-Z_{21}Z_{11}^{-1}Z_{12}\right)=I$$

$$Z_{22}'\underbrace{\left(Z_{22}-Z_{21}Z_{11}^{-1}Z_{12}\right)}_{\Gamma}=\Gamma$$

$$\tilde{\beta}=\left(Z_{22}-Z_{21}Z_{11}^{-1}Z_{12}\right)$$

$$\beta = (Z_{22} - Z_{21}Z_{11}^{-1}Z_{12})\Gamma$$

- We obtain the forward part of the solution

$$X_t^f = Z_{21}Z_{11}^{-1}X_t^b + (Z_{22} - Z_{21}Z_{11}^{-1}Z_{12})\Gamma Z_t$$

- or express the solution as

$$X_t^f=F_xX_t^b+F_zZ_t$$

$$F_x\equiv Z_{21}Z_{11}^{-1}$$

$$F_z\equiv\left(Z_{22}-Z_{21}Z_{11}^{-1}Z_{12}\right)\Gamma$$

$$\textit{vec}\left(\Gamma\right)=\left(\Phi'\otimes S_{22}-I\otimes T_{22}\right)^{-1}\textit{vec}\left(R_2\right)$$

$$\mathbb{C}^{\mathbb{N}}$$

4 The backward part of the solution

- The upper part of the transformed system is

$$S_{11}E_t\omega_{t+1}^b + S_{12}E_t\omega_{t+1}^f = T_{12}\omega_t^f + T_{11}\omega_t^b + R_1Z_t$$

$$E_t\omega_{t+1}^b = S_{11}^{-1}T_{11}\omega_t^b + S_{11}^{-1}T_{12}\omega_t^f - S_{11}^{-1}S_{12}E_t\omega_{t+1}^f + S_{11}^{-1}R_1Z_t$$

- Recall that

$$\omega_t = Z' X_t \Leftarrow \omega_t^b = Z'_{11} X_t^b + Z'_{21} X_t^f$$

$$X_t^f = Z_{21} Z_{11}^{-1} X_t^b + (Z_{22} - Z_{21} Z_{11}^{-1} Z_{12}) \Gamma Z_t$$

- Substitute and rearrange,

$$\omega_t^b = (Z'_{11} + Z'_{21} Z_{21} Z_{11}^{-1}) X_t^b + Z'_{21} (Z_{22} - Z_{21} Z_{11}^{-1} Z_{12}) \Gamma Z_t$$

$$Z'_{11}Z_{11} + Z'_{21}Z_{21} = I \Rightarrow Z'_{11} + Z'_{21}Z_{21}Z_{11}^{-1} = Z_{11}^{-1}$$

$$Z'_{21}Z_{22} + Z'_{11}Z_{12} = 0 \Rightarrow Z'_{21}Z_{22} = -Z'_{11}Z_{12}$$

$$\begin{aligned} Z'_{21} \left(Z_{22} - Z_{21}Z_{11}^{-1}Z_{12} \right) &= Z'_{21}Z_{22} - Z'_{21}Z_{21}Z_{11}^{-1}Z_{12} \\ &= - \left(Z'_{11} + Z'_{21}Z_{21}Z_{11}^{-1} \right) Z_{12} \\ &= -Z'_{11}Z_{12} \end{aligned}$$

$$\omega_t^b = Z_{11}^{-1} X_t^b - Z_{11}^{-1} Z_{12} \Gamma Z_t$$

$$Z_{11}^{-1} X_t^b = \omega_t^b + Z_{11}^{-1} Z_{12} \Gamma Z_t$$

$$X_t^b = Z_{11} \omega_t^b + Z_{11} Z_{11}^{-1} Z_{12} \Gamma Z_t = Z_{11} \omega_t^b + Z_{12} \underbrace{\Gamma Z_t}_{{= \omega_t^f}} = Z_{11} \omega_t^b + Z_{12} \omega_t^f$$

- X_t^b are predetermined variables

$$X_{t+1}^b - E_t X_{t+1}^b = 0$$

- Klein (2000) assumes $X_{t+1}^b - E_t X_{t+1}^b = \xi_{t+1}$

$$X_t^b = Z_{11}\omega_t^b + Z_{12}\omega_t^f$$

$$X_{t+1}^b - E_t X_{t+1}^b = 0$$

$$Z_{11}\left(\omega_{t+1}^b-E_t\omega_{t+1}^b\right)+Z_{12}\left(\omega_{t+1}^f-E_t\omega_{t+1}^f\right)=0$$

$$\omega_{t+1}^b=E_t\omega_{t+1}^b-Z_{11}^{-1}Z_{12}\left(\omega_{t+1}^f-E_t\omega_{t+1}^f\right)$$

$$\bullet \;\; \omega_{t+1}^f-E_t\omega_{t+1}^f=\Gamma\Psi\epsilon_{t+1} \qquad \left(\because \omega_t^f=\Gamma Z_t\right)$$

$$\omega_{t+1}^b=E_t\omega_{t+1}^b-Z_{11}^{-1}Z_{12}\Gamma\Psi\epsilon_{t+1}$$

- Recall that

$$E_t \omega_{t+1}^b = S_{11}^{-1} T_{11} \omega_t^b + S_{11}^{-1} T_{12} \omega_t^f - S_{11}^{-1} S_{12} E_t \omega_{t+1}^f + S_{11}^{-1} R_1 Z_t$$

$$\omega_{t+1}^b = S_{11}^{-1} T_{11} \omega_t^b + S_{11}^{-1} (T_{12} \Gamma - S_{12} \Gamma \Phi + R_1) Z_t - Z_{11}^{-1} Z_{12} \Gamma \Psi \epsilon_{t+1}$$

$$\omega_t^b = Z_{11}^{-1} X_t^b - Z_{11}^{-1} Z_{12} \Gamma Z_t$$

$$\omega_{t+1}^b = Z_{11}^{-1} X_{t+1}^b - Z_{11}^{-1} Z_{12} \Gamma Z_{t+1}$$

$$\begin{aligned} Z_{11}^{-1} X_{t+1}^b - Z_{11}^{-1} Z_{12} \Gamma Z_{t+1} &= S_{11}^{-1} T_{11} \left(Z_{11}^{-1} X_t^b - Z_{11}^{-1} Z_{12} \Gamma Z_t \right) \\ &\quad + S_{11}^{-1} (T_{12} \Gamma - S_{12} \Gamma \Phi + R_1) Z_t - Z_{11}^{-1} Z_{12} \Gamma \Psi \epsilon_{t+1} \end{aligned}$$

$$\begin{aligned} X_{t+1}^b - Z_{12} \Gamma Z_{t+1} &= Z_{11} S_{11}^{-1} T_{11} \left(Z_{11}^{-1} X_t^b - Z_{11}^{-1} Z_{12} \Gamma Z_t \right) \\ &\quad + Z_{11} S_{11}^{-1} (T_{12} \Gamma - S_{12} \Gamma \Phi + R_1) Z_t - Z_{12} \Gamma \Psi \epsilon_{t+1} \end{aligned}$$

$$Z_{t+1} = \Phi Z_t + \Psi \epsilon_{t+1}$$

$$\begin{aligned} X_{t+1}^b &= Z_{11} S_{11}^{-1} T_{11} Z_{11}^{-1} X_t^b \\ &+ \left[Z_{11} S_{11}^{-1} \left(T_{12} \Gamma - S_{12} \Gamma \Phi - T_{11} Z_{11}^{-1} Z_{12} \Gamma + R_1 \right) + Z_{12} \Gamma \Phi \right] Z_t \end{aligned}$$

- The dynamics of the predetermined variables is

$$X_{t+1}^b = M_x X_t^b + M_z Z_t$$

$$M_x = Z_{11}S_{11}^{-1}T_{11}Z_{11}^{-1}$$

$$M_z = Z_{11}S_{11}^{-1} \left(T_{12}\Gamma - S_{12}\Gamma\Phi - T_{11}Z_{11}^{-1}Z_{12}\Gamma + R_1 \right) + Z_{12}\Gamma\Phi$$

5 Computing variables of interest

$$N_y Y_t = N_x X_t + N_z Z_t = \begin{bmatrix} N_{x1} & N_{x2} \end{bmatrix} \begin{bmatrix} X_t^b \\ X_t^f \end{bmatrix} + N_z Z_t = N_{x1} X_t^b + N_{x2} X_t^f + N_z Z_t$$

$$N_yY_t=N_xX_t+N_zZ_t=N_{x1}X_t^b+N_{x2}\left(F_xX_t^b+F_zZ_t\right)+N_zZ_t$$

$$Y_t=N_y^{-1}\left(N_{x1}+N_{x2}F_x\right)X_t^b+N_y^{-1}\left(N_z+N_{x2}F_z\right)Z_t$$

$$Y_t=P_xX_t^b+P_zZ_t$$

$$P_x\equiv N_y^{-1}\left(N_{x1}+N_{x2}F_x\right)$$

$$P_z \equiv N_y^{-1} (N_z + N_{x2} F_z)$$

- Express the solution of the whole system is state-space form

$$X_{t+1}^b = M_x X_t^b + M_z Z_t$$

$$Z_{t+1} = \Phi Z_t + \Psi \epsilon_{t+1}$$

$$X_t^f = F_x X_t^b + F_z Z_t$$

$$Y_t = P_x X_t^b + P_z Z_t$$

6 When $X_{t+1}^b - E_t X_{t+1}^b = \xi_{t+1}$

- Klein (2000) assumes $X_{t+1}^b - E_t X_{t+1}^b = \xi_{t+1}$

$$X_t^b = Z_{11} \omega_t^b + Z_{12} \omega_t^f$$

$$X_{t+1}^b - E_t X_{t+1}^b = \xi_{t+1}$$

$$Z_{11}\left(\omega_{t+1}^b-E_t\omega_{t+1}^b\right)+Z_{12}\left(\omega_{t+1}^f-E_t\omega_{t+1}^f\right)=\xi_{t+1}$$

$$\omega_{t+1}^b = E_t\omega_{t+1}^b - Z_{11}^{-1}Z_{12}\left(\omega_{t+1}^f-E_t\omega_{t+1}^f\right) + Z_{11}^{-1}\xi_{t+1}$$

$$\omega_{t+1}^b = E_t \omega_{t+1}^b - Z_{11}^{-1} Z_{12} \Gamma \Psi \epsilon_{t+1} + Z_{11}^{-1} \xi_{t+1}$$

- Recall that

$$E_t \omega_{t+1}^b = S_{11}^{-1} T_{11} \omega_t^b + S_{11}^{-1} T_{12} \omega_t^f - S_{11}^{-1} S_{12} E_t \omega_{t+1}^f + S_{11}^{-1} R_1 Z_t$$

$$\omega_{t+1}^b = S_{11}^{-1} T_{11} \omega_t^b + S_{11}^{-1} (T_{12} \Gamma - S_{12} \Gamma \Phi + R_1) Z_t - Z_{11}^{-1} Z_{12} \Gamma \Psi \epsilon_{t+1} + Z_{11}^{-1} \xi_{t+1}$$

$$\omega_t^b = Z_{11}^{-1}X_t^b - Z_{11}^{-1}Z_{12}\Gamma Z_t$$

$$\omega_{t+1}^b = Z_{11}^{-1}X_{t+1}^b - Z_{11}^{-1}Z_{12}\Gamma Z_{t+1}$$

$$\begin{aligned} Z_{11}^{-1}X_{t+1}^b - Z_{11}^{-1}Z_{12}\Gamma Z_{t+1} &= S_{11}^{-1}T_{11}\left(Z_{11}^{-1}X_t^b - Z_{11}^{-1}Z_{12}\Gamma Z_t\right) \\ &\quad + S_{11}^{-1}\left(T_{12}\Gamma - S_{12}\Gamma\Phi + R_1\right)Z_t \\ &\quad - Z_{11}^{-1}Z_{12}\Gamma\Psi\epsilon_{t+1} + Z_{11}^{-1}\xi_{t+1} \end{aligned}$$

$$\begin{aligned}
X_{t+1}^b - Z_{12}\Gamma Z_{t+1} &= Z_{11}S_{11}^{-1}T_{11} \left(Z_{11}^{-1}X_t^b - Z_{11}^{-1}Z_{12}\Gamma Z_t \right) \\
&\quad + Z_{11}S_{11}^{-1} (T_{12}\Gamma - S_{12}\Gamma\Phi + R_1) Z_t - Z_{12}\Gamma\Psi\epsilon_{t+1} + \xi_{t+1}
\end{aligned}$$

$$Z_{t+1} = \Phi Z_t + \Psi \epsilon_{t+1}$$

$$\begin{aligned}
X_{t+1}^b &= Z_{11}S_{11}^{-1}T_{11}Z_{11}^{-1}X_t^b \\
&\quad + \left[Z_{11}S_{11}^{-1} (T_{12}\Gamma - S_{12}\Gamma\Phi - T_{11}Z_{11}^{-1}Z_{12}\Gamma + R_1) + Z_{12}\Gamma\Phi \right] Z_t + \xi_{t+1}
\end{aligned}$$

- The dynamics of the predetermined variables is

$$X_{t+1}^b = M_x X_t^b + M_z Z_t + \xi_{t+1}$$

$$M_x = Z_{11} S_{11}^{-1} T_{11} Z_{11}^{-1}$$

$$M_z = Z_{11} S_{11}^{-1} \left(T_{12} \Gamma - S_{12} \Gamma \Phi - T_{11} Z_{11}^{-1} Z_{12} \Gamma + R_1 \right) + Z_{12} \Gamma \Phi$$

7 In practice

- In practice, we can treat exogenous shocks as part of the pre-determined variables.
- In other words, we redefine the dynamic system as

$$AE_t X_{t+1} = BX_t + \begin{bmatrix} \emptyset \\ \Psi \epsilon_{t+1} \\ \emptyset \end{bmatrix}$$

$$X_t = \begin{bmatrix} X_t^b \\ Z_t \\ X_t^f \end{bmatrix} \equiv \begin{bmatrix} \mathcal{X}_t^b \\ X_t^f \end{bmatrix}$$

$$\mathcal{X}_t^b \equiv \begin{bmatrix} X_t^b \\ Z_t \end{bmatrix}$$

- The solution to the system becomes

$$\mathcal{X}_{t+1}^b = M_x \mathcal{X}_t^b + \xi_{t+1} \tag{6}$$

$$M_x = Z_{11}S_{11}^{-1}T_{11}Z_{11}^{-1}$$

$$\xi_{t+1} = \begin{bmatrix} \emptyset \\ \Psi \epsilon_{t+1} \end{bmatrix}$$

$$X_t^f=F_xX_t^b \hspace{1cm} (7)$$

$$F_x = Z_{21}Z_{11}^{-1}$$

- This is the solution form employed in Klein's MATLAB code.
- To implement Paul Klein's method, you need 3 MATLAB m files: *solab.m*; *qzswitch.m*; and *qzdiv.m*.
- These MATLAB m files are available from Paul Klein's website.
- The 2 MATLAB m files, *qzswitch.m* and *qzdiv.m*, are originally written by C. Sims.

References

- [1] Anderson, Gary S. (2008), "Solving Linear Rational Expectations Models: A Horse Race," *Computational Economics*, 31, pp. 95-113.
- [2] Klein, Paul (2000), "Using the generalized Schur form to solve a multivariate linear rational expectations model," *Journal of Economic Dynamics and Control*, 24, pp. 1405-1423.