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1 State space form and the Kalman �lter

1.1 State space form

� xt : the state variables

� zt : the observable variables

� Transition equation
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xt+1 = Fxt +G!t+1

!t+1 � N (0; Q)

� Measurement equation

zt = H
0
txt + �t



�t � N (0; R)

� We want to write the likelihood function of zt.

1.2 Some useful properties of normal distribution

� Assume that
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� Then if follows
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�1
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1.3 Kalman �lter

� zt�1 � fz�1; z0; : : : ; zt�1g

� xtjt�1 : the random variables xt conditional on zt�1, the history of the observ-
able variables
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1.4 Kalman �lter: �rst iteration

� x0j�1

� �0j�1 (symmetric matrix)

� Assume that

"
x0
z0
jz�1

#
� N

 "
x0j�1
H 00x0j�1

#
;

"
�0j�1 �0j�1H0
H 00�0j�1 H 00�0j�1H0 +R

#!



� z�1 � fz�1g

� Then if follows
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� z0 � fz�1; z0g

� It follows that
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� We have moved as follows:
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1.5 Kalman �lter: the algorithm

� xtjt�1

� �tjt�1

� zt

xtjt = xtjt�1 +�tjt�1Ht
�
H 0t�tjt�1Ht +R

��1 �
zt �H 0txtjt�1

�



�tjt = �tjt�1 � �tjt�1Ht
�
H 0t�tjt�1Ht +R

��1
H 0t�tjt�1

xt+1jt = Fxtjt

�t+1jt = F�tjtF
0 +GQG0

zt+1jt = H
0
t+1xt+1jt
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1.6 The likelihood function

� Prediction error decomposition of likelihood:
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�t = zt � ztjt�1 = zt �H 0txtjt�1


tjt�1 = H
0
t�tjt�1Ht +R

1.7 Initial conditions for the Kalman �lter

� All of the eigenvalues of F are inside the unit circle.

� GQG0 and R are p.s.d. symmetric matrices.



� H = lim
t!1

Ht

� We use the unconditional mean of xt to initialize the Kalman �lter.

� In other words, x1j0 = 0.

� We also use the unconditional variance of xt to initialize the Kalman �lter.

� In other words, we are setting vec
�
�1j0

�
= (I � F 
 F )�1 vec

�
GQG0

�
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xt+1 = Fxt +G!t+1

� = F�F 0 +GQG0
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�
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� An alternative is to choose the stationary value of the variance as the initial value
for the variance.

�tjt = �tjt�1 � �tjt�1Ht
�
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� � is the solution to the above algebraic Ricatti equation.



2 DSGE estimation

2.1 Express solution of DSGE models in state-space form

� We use the modi�ed Paul Klein�s code (solabHO.m) to solve the linearized sys-
tem.

� Klein�s code treats exogenous shocks as part of the state variables, and solves

A0 �
"
kt+1
ut+1

#
= B0 �

"
kt
ut

#



� kt : state variables plus exogenous shocks

� ut : control variables

� Klein�s code gives the results

kt+1 = p � kt (1)

ut = f � kt (2)



� Assume that exogenous shocks follow:

Zt+1 = �Zt + ~�"t+1

"t+1 � N (0; V1)

� You can follow Schmitt-Grohé and Uribe (2004, henceforth SGU) and assume
that exogenous shocks follow:



Zt+1 = �Zt + ~��"t+1

"t+1 � N (0; I)

� We follow Ireland (2004) to transform the solution of DSGE models into a state-
space form.

� First, the complete form of equation (1) is expressed as: (SGU, 2004, page 759):



kt+1 = p � kt +
"
0
~�

#
"t+1

A � p

B �
"
0
~�

#

kt+1 = A � kt +B � "t+1 (3)



� We use empirical and observable variables dt to estimate the DSGE models.

� Second, equation (2) is related to observable variables dt by:

dt = C � kt

� If the observables dt are contained in kt, namely, they belong to the state vari-
ables of the models, then C is simple a selection matrix, such as:

C =

"
1 0 � � � 0 0
0 0 � � � 0 1

#



� In this example, C matrix selects the �rst and last variables of vector kt.

� In contrast, if the observables dt are not contained in kt, namely, they belong
to the control variables of the models, then C is f pre-multiplied by a selection
matrix (or is formed by simple taking out the corresponding rows of f), for
example

C =

"
0 1 0 0 � � � 0
0 0 1 0 � � � 0

#
� f

C =

"
f2;:
f3;:

#



� In this example, C matrix takes out the second and third rows of matrix f .

� In other words, the observables for estimation are the second and third control
variables.

2.2 Stochastic singularity

� The number of exogenous shocks must be as least as many as the number of
observable variables.

� Otherwise, there is the problem of stochastic singularity and estimation is im-
possible.



� Ingram, Kocherlakota, and Savin (1994) �rst notice the issue of stochastic sin-
gularity in the estimation of the real business cycle model with single technology
shock.

� Ruge-Murcia (2007) provides a very good explanation to the issue of stochastic
singularity.

� Here I draw on Ruge-Murcia (2007).

� Why stochastic singularity makes maximum likelihood estimation impossible?

� Stochastic singularity arises because DSGE models use a small number of struc-
tural shocks to generate predictions about a large number of observable variables.



� Therefore, the models predict that certain linear combinations of the observable
variables should hold without noises, namely, be deterministic.

� Take Hansen�s real business cycle with indivisible labor as an example.

� The model has only one technology shock.

� Observable variables: (yt; nt; ct)

� State variables: (kt)

� Exogenous structural shocks: (zt)



� The solution of the endogenous observable variables is expressed as:

264ytnt
ct

375
z}|{
st

=

264�yk �yz
�nk �nz
�ck �cz

375
z}|{
H

"
kt
zt

#
z}|{
xt

� Multiply out the decision rule:

("
yt = �ykkt + �yzzt
nt = �nkkt + �nzzt

#
(A)



ct = �ckkt + �czzt (B)

� Use (A) to solve for (kt; zt), and then substitute into (B) to obtain:

�
�yk�cz � �yz�ck

�
nt + (�nz�ck � �nk�cz) yt �

�
�nz�yk � �yz�nk

�
ct = 0

� There exists a linear combination of observable variables that hold without noise.

� Under the models, the variance-covariance matrix of (yt; nt; ct) is singular for
any sample size and parameter values.



� xt � (kt; zt)

� st � (yt; nt; ct)

� st�1 � fs�1; s0; : : : ; st�1g

� �tjt�1 � E
��
xt � xtjt�1

� �
xt � xtjt�1

�0 jst�1�

� 
tjt�1 � E
��
st � stjt�1

� �
st � stjt�1

�0 jst�1�



st = Hxt

st � stjt�1 = H
�
xt � xtjt�1

�


tjt�1 = H�tjt�1H
0

� We can follow the same procedure to show that elements of
�
st � stjt�1

�
are

not linear independent, since they are all proportional to the only technology
shock.



� Therefore, the matrix 
tjt�1 � E

��
st � stjt�1

� �
st � stjt�1

�0 jst�1� is sin-
gular.

� The inverse of 
tjt�1 is not well de�ned and therefore likelihood cannot be
evaluated.

2.3 Adding measurement errors

� To avoid the problem of stochastic singularity, we add measurement errors in the
above equation:



dt = C � kt + �t (4)

�t+1 = D � �t + �t+1 (5)

�t+1 � N (0; V2)

E
�
"t+1 � �0t+1

�
= 0



� To address the issue of stochastic singularity, one can also estimate the model
using at most as many observable variables as structural shocks, or to extend
the model to permit additional structural shocks.

� While adding measurement errors preserves the original economic model, adding
structural errors does not.

� Please refer to Ruge-Murcia (2007) and Tovar (2008) for further discussion.

� There are 3 ways to specify the measurement errors D and V2.



� McGrattan et al. (1997), "An equilibrium model of the business cycle with
household production and �scal policy," International Economic Review : Add as
many measurement errors as the number of observable variables.

� The matrices D and V2 are restricted to be diagonal.

� For example,

D =

264�1 0 0
0 �2 0
0 0 �3

375



V2 =

264�v1 0 0
0 �v2 0
0 0 �v3

375

� Canova (2007): Add measurement errors until the number of measurement errors
plus the exogenous shocks are just equal to the number of observable variables.

� Matrix D is assumed to be a zero matrix.

� For example,



D =

2640 0 0
0 0 0
0 0 0

375

V2 =

264�v1 0 0
0 �v2 0
0 0 0

375

� Ireland (2004): like McGrattan et al. (1997), but relax the restriction that
matrices D and V2 are diagonal.

� The eigenvalues of the matrix D are constrained to lie inside the unit circle, and
the covariance matrix V2 is constrained to the positive de�nite.



� For example,

D =

264 �1 �12 �13
�21 �2 �23
�31 �32 �3

375

V2 =

264 �v1 �v12 �v13
�v12 �v2 �v23
�v13 �v23 �v3

375



� Here we follow McGrattan et al. (1997).

� Once this is done, we can proceed with the transformation, and employ the
Kalman �lter, and use the prediction error decomposition of likelihood to com-
pute the likelihood value.

2.4 Use Kalman �lter to compute likelihood function

� We de�ne an augmented state vector:



xt �
"
kt
�t

#

�t+1 �
"
B � "t+1
�t+1

#

� Equations (3), (4), and (5) can be rearranged as:

xt+1 = Fxt + �t+1 (6)



dt = Gxt (7)

F =

"
A 0nk�nd

0nd�nk D

#

G =
h
C Ind�nd

i

�t+1 � N (0; Q)



Q � E
�
�t+1�

0
t+1

�
=

"
BV1B

0 0nk�nd
0nd�nk V2

#

� nk is the dimension of kt, namely, the number of state variables plus exogenous
shocks in the DSGE models.

� nd is the dimension of dt, namely, the number of observable variables used in
the estimation.

� Equations (6) and (7) constitute the state space form we employ in computing
the likelihood function.



� The sequence of computation is as follows (we use the unconditional mean and
variance of xt to initialize the Kalman �lter):

x1j0 = 0(nk+nd)�1

vec
�
�1j0

�
=
�
I
(nk+nd)2�(nk+nd)2 � (F 
 F )

��1
vec (Q)

�
xtjt�1;�tjt�1
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dtjt�1 � E
�
dtjdt�1

�
= G � xtjt�1; dt�1 � fd�1; d0; : : : ; dt�1g

ut = dt � dtjt�1 = dt �G � xtjt�1


tjt�1 �
�
E
�
dt � dtjt�1

� �
dt � dtjt�1

�0 jdt�1� = G � �tjt�1 �G0

Ktjt�1 = F � �tjt�1 �G0 � 

�1
tjt�1



xt+1jt = F � xtjt�1 +Ktjt�1 � ut

�t+1jt = Q+ F � �tjt�1 � F 0 �Ktjt�1 �G � �tjt�1 � F 0

�
xt+1jt;�t+1jt

�

� � �



log ` = �
TX
t=1

�
nd

2
log 2� +

1

2
log

���
tjt�1���+ 12u0t
�1tjt�1ut
�

� Peter Ireland provides a very useful technical note to his 2004 paper (Ireland,
2003).

� I strongly recommend you to read it.

� The technical note of Ireland (2003) also explains how to compute impulse re-
sponses, variance decomposition, forecasting and to recover exogenous shocks.



� I use the transformation and formulation described here in the estimation of
Monacelli (2005)�s small open economy model.

2.5 Extension

� Now instead of adding as many measurement errors as the number of observ-
able variables, I will only add the number of measurement errors until the sum
of number of exogenous shocks and measurement errors just are equal to the
number of observables.

� The reason for doing so is that for a large-scale DSGE model, it is necessary to
be sparse on parameters, otherwise convergence of the parameters estimation is
a problem.



� I follow the notation of Ireland (2003).

st+1 = Ast +B"t+1

dt = Cst + P � �t

Pnd�(nd�nz)



� P is a selection matrix.

� We assign measurement errors to the variables that are most likely to su¤er from
this measurement problem.

�t+1 = D�t + �t+1

E
�
"t+1"

0
t+1

�
= V1
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�
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0
t+1

�
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E
�
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0
t+1

�
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xt =

"
st
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#
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"
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xt+1 = Fxt + �t+1

dt = Gxt

F =

"
A 0nk�(nd�nz)

0(nd�nz)�nk D

#

G =
h
C P

i



�t+1 � N (0; Q)

Q � E
�
�t+1�

0
t+1

�
=

"
BV1B

0 0nk�(nd�nz)
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#

2.6 Anderson�s transformation

� Hansen, Lars Peter, Ellen R. McGrattan, and Thomas J. Sargent, "Mechanics
of forming and estimating dynamic linear economies," Federal Reserve Bank of
Minneapolis, Research Department Sta¤ Report 182, September 1994.



� Anderson, Evan W., Ellen R. McGrattan, Lars Peter Hansen, and Thomas J. Sar-
gent (1996), "Mechanics of forming and estimating dynamic linear economies,"
in H.M. Amman, D.A. Kendrick, and J. Rust (eds.), Handbook of Computational
Economics, Chapter 4, pp. 171-252, 1996.

� This is correct only when the vector white noise that drive the system is of the
same dimension as that of vector of observable.

� A system (xt; zt) of the form:

xt+1 = Aoxt + C!t+1 (8)



zt = Gxt + �t (9)

�t = D�t�1 + �t

E
�
!t!

0
t

�
= I

E
�
�t�

0
t

�
= R

E
�
!t+1�

0
s

�
= 0; 8s; t



� Equation (8) is the transition equation.

� Equation (9) is the measurement equation.

� �t : a martingale di¤erence sequence

� !t+1 is a martingale di¤erence sequence with E
�
!t!

0
t
�
= I.

� D : a matrix whose eigenvalues are bounded in modulus by unity

� �t : a serially correlated measurement error process



� rede�ne

�zt � zt+1 �Dzt

�G = GAo �DG

� state space system (xt; �zt)

xt+1 = Aoxt + C!t+1



�zt = �Gxt +GC!t+1 + �t+1

� The state noise remains C!t+1

� The new measurement noise is GC!t+1 + �t+1

� Kt � Ktjt�1 : the Kalman gain

� �t � �tjt�1 : the state covariance matrix



� It follows that

Kt =
�
CC0G0 +Ao�t �G0

�

�1t


t = �G�t �G
0 +R+GCC0G0

�t+1 = A0�tA
0
0 + CC

0 �
�
CC0G0 +Ao�t �G0

�

�1t

�
�G�tA

0
o +GCC

0�
= A0�tA

0
0 + CC

0 �Kt
�
�G�tA

0
o +GCC

0�



� The state space system can be expressed in an innovation representation:

ut = �zt � �Gxtjt�1

xt+1jt = Aoxtjt�1 +Ktut

� I use this transformation and formulation in the estimation of Chari, Kehoe and
McGrattan (2007)�s prototype model for business cycle accounting.



� Christensen, Hurn, and Lindsay (2008) provide useful tips for numerical opti-
mization.
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