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1 State space form and the Kalman filter

1.1 State space form

e x; : the state variables
e z; : the observable variables

e Transition equation
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e Measurement equation
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e \We want to write the likelihood function of z;.

1.2 Some useful properties of normal distribution

e Assume that
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e [hen if follows
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1.3 Kalman filter

¢ Zt_l = {Z—la Z R Zt—].}

® x;;_1 : the random variables z; conditional on 2t~ the history of the observ-
able variables
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1.4 Kalman filter: first iteration

® Zo|-1
® Xp_1 (symmetric matrix)
e Assume that
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e [hen if follows
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® ZO = {2_1,2’0}

e It follows that
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e \We have moved as follows:
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1.5 Kalman filter: the algorithm

® Tyit—1

® 2
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e \We have moved as follows:

($t|t—17zt\t—1) AT <xt|t7zt\t> — ($t+1|taZt+1|tazt+1|t79t+1|t)

1.6 The likelihood function

e Prediction error decomposition of likelihood:
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1.7 Initial conditions for the Kalman filter

e All of the eigenvalues of F' are inside the unit circle.

e GQG' and R are p.s.d. symmetric matrices.
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t—00
We use the unconditional mean of x; to initialize the Kalman filter.
In other words, xqg = 0.

We also use the unconditional variance of x; to initialize the Kalman filter.

In other words, we are setting vec (Zl‘o> = (I — F® F) tvec (GQRG).
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vec(X) = vec (FZF’) + vec (GQG’)

vec(X) = (F ® F)vec(X) + vec (GQG’)



vec(E) = (I — F® F) vec (GQG/)

e An alternative is to choose the stationary value of the variance as the initial value
for the variance.
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e 2 is the solution to the above algebraic Ricatti equation.



2 DSGE estimation

2.1 Express solution of DSGE models in state-space form

e We use the modified Paul Klein's code (solabHO.m) to solve the linearized sys-
tem.

e Klein's code treats exogenous shocks as part of the state variables, and solves

ki+1

Ap -
Ut+1




e k; : state variables plus exogenous shocks

e u; : control variables

e Klein's code gives the results

kiy1=p" ke

ur = f -kt



e Assume that exogenous shocks follow:

Zir1 = N+ ey
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e You can follow Schmitt-Grohé and Uribe (2004, henceforth SGU) and assume
that exogenous shocks follow:
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e We follow Ireland (2004) to transform the solution of DSGE models into a state-
space form.

e First, the complete form of equation (1) is expressed as: (SGU, 2004, page 759):



kiy1=A -ki+ B-epy1



e We use empirical and observable variables d; to estimate the DSGE models.

e Second, equation (2) is related to observable variables dy by:

di = C -kt

e If the observables d; are contained in k¢, namely, they belong to the state vari-
ables of the models, then C' is simple a selection matrix, such as:



e In this example, C matrix selects the first and last variables of vector k;.

e In contrast, if the observables d; are not contained in k¢, namely, they belong
to the control variables of the models, then C' is f pre-multiplied by a selection
matrix (or is formed by simple taking out the corresponding rows of f), for
example



e In this example, C' matrix takes out the second and third rows of matrix f.

e In other words, the observables for estimation are the second and third control
variables.

2.2 Stochastic singularity

e The number of exogenous shocks must be as least as many as the number of
observable variables.

e Otherwise, there is the problem of stochastic singularity and estimation is im-
possible.



Ingram, Kocherlakota, and Savin (1994) first notice the issue of stochastic sin-
gularity in the estimation of the real business cycle model with single technology
shock.

Ruge-Murcia (2007) provides a very good explanation to the issue of stochastic
singularity.

Here | draw on Ruge-Murcia (2007).

Why stochastic singularity makes maximum likelihood estimation impossible?

Stochastic singularity arises because DSGE models use a small number of struc-
tural shocks to generate predictions about a large number of observable variables.



Therefore, the models predict that certain linear combinations of the observable
variables should hold without noises, namely, be deterministic.

Take Hansen's real business cycle with indivisible labor as an example.

The model has only one technology shock.

Observable variables: (y¢, nt, ct)

State variables: (k¢)

Exogenous structural shocks: (z¢)



e The solution of the endogenous observable variables is expressed as:
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e Multiply out the decision rule:

Yt = Qyrkt + &y 2t
ny = ¢nkkt + ¢nzzt



Ct = ¢ckkt + qbczzt (B)

e Use (A) to solve for (K¢, z¢), and then substitute into (B) to obtain:

<¢yk¢cz — ¢yz¢ck) nt + (PnzPek — Prkbez) Yt — (¢nz¢yk - Qbyz?bnk) ct =0
e [ here exists a linear combination of observable variables that hold without noise.

e Under the models, the variance-covariance matrix of (y¢, n¢, c¢) is singular for
any sample size and parameter values.
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e We can follow the same procedure to show that elements of (st — Styt—l) are
not linear independent, since they are all proportional to the only technology
shock.



/
o Therefore, the matrix €y, 1 = E ((st — St\t—l) (st — St\t—l) |st_1> is sin-

gular.

e The inverse of Qt|t—1 is not well defined and therefore likelihood cannot be
evaluated.

2.3 Adding measurement errors

e To avoid the problem of stochastic singularity, we add measurement errors in the
above equation:



€t—|—1 ~ N(Oa V2)

E (€t+1 ' fi+1) =0



To address the issue of stochastic singularity, one can also estimate the model
using at most as many observable variables as structural shocks, or to extend
the model to permit additional structural shocks.

While adding measurement errors preserves the original economic model, adding
structural errors does not.

Please refer to Ruge-Murcia (2007) and Tovar (2008) for further discussion.

There are 3 ways to specify the measurement errors D and V5.



e McGrattan et al. (1997), "An equilibrium model of the business cycle with
household production and fiscal policy," International Economic Review: Add as

many measurement errors as the number of observable variables.

e The matrices D and V5 are restricted to be diagonal.

e For example,
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9
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e Canova (2007): Add measurement errors until the number of measurement errors
plus the exogenous shocks are just equal to the number of observable variables.

e Matrix D is assumed to be a zero matrix.

e For example,



o1 0 O
Vo=10 o, O
0 0 0

e Ireland (2004): like McGrattan et al. (1997), but relax the restriction that
matrices D and V5 are diagonal.

e The eigenvalues of the matrix D are constrained to lie inside the unit circle, and
the covariance matrix V5 is constrained to the positive definite.



e For example,

p1 P12 P13
D = |p21 p2 p23
P31 P32 P3 ]

Oyl Oyp12 0Oypi13
Vo = |op12 0p2 023
| Ovpl3 0923 Owu3




e Here we follow McGrattan et al. (1997).

e Once this is done, we can proceed with the transformation, and employ the
Kalman filter, and use the prediction error decomposition of likelihood to com-

pute the likelihood value.

2.4 Use Kalman filter to compute likelihood function

e \We define an augmented state vector:
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M+l = §e41

e Equations (3), (4), and (5) can be rearranged as:

Tip1 = Py +npyq
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e nk is the dimension of k;, namely, the number of state variables plus exogenous
shocks in the DSGE models.

e nd is the dimension of d¢, namely, the number of observable variables used in
the estimation.

e Equations (6) and (7) constitute the state space form we employ in computing
the likelihood function.



e The sequence of computation is as follows (we use the unconditional mean and
variance of x; to initialize the Kalman filter):
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e Peter Ireland provides a very useful technical note to his 2004 paper (lreland,
2003).

e | strongly recommend you to read it.

e The technical note of Ireland (2003) also explains how to compute impulse re-

sponses, variance decomposition, forecasting and to recover exogenous shocks.



e | use the transformation and formulation described here in the estimation of
Monacelli (2005)’s small open economy model.

2.5 Extension

e Now instead of adding as many measurement errors as the number of observ-
able variables, | will only add the number of measurement errors until the sum
of number of exogenous shocks and measurement errors just are equal to the

number of observables.

e The reason for doing so is that for a large-scale DSGE model, it is necessary to
be sparse on parameters, otherwise convergence of the parameters estimation is

a problem.



e | follow the notation of Ireland (2003).

St11 = Ast + Begyq

di = Csy + P - vy

Prdx (nd—nz)



e P is a selection matrix.

e We assign measurement errors to the variables that are most likely to suffer from

this measurement problem.

Vi1 = Do + &1

E (8t+182+1> =W



E (§418041) = Vo

E (€t+1§§5+1> =0




Ti41 = Fog + 1m0

dy = Guxy
F = [ A Onkx(nd—nz)]
O(nd—nz)Xnk D

G=|C P



Mt41 ™ N(07 Q)

BV, B’ Onkx(nd—nz)

Q=FE(n1m41) = [
( a H_l) O(nd—nz)Xnk: Vo

2.6 Anderson’s transformation

e Hansen, Lars Peter, Ellen R. McGrattan, and Thomas J. Sargent, "Mechanics
of forming and estimating dynamic linear economies," Federal Reserve Bank of
Minneapolis, Research Department Staff Report 182, September 1994.



e Anderson, Evan W., Ellen R. McGrattan, Lars Peter Hansen, and Thomas J. Sar-

gent (1996), "Mechanics of forming and estimating dynamic linear economies,"
in H.M. Amman, D.A. Kendrick, and J. Rust (eds.), Handbook of Computational
Economics, Chapter 4, pp. 171-252, 1996.

e This is correct only when the vector white noise that drive the system is of the
same dimension as that of vector of observable.

e A system (x¢, z¢) of the form:

Ti41 = Aoxt + Cwiyg (8)



zt = Gxy + vy

vt = Dvg_1 + 1

E (wtwg) =1

I
oy

E (Ut”%)
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Equation (8) is the transition equation.

Equation (9) is the measurement equation.

Nt -

a martingale difference sequence

w1 is a martingale difference sequence with E (www}) = I.

D : a matrix whose eigenvalues are bounded in modulus by unity

vt : a serially correlated measurement error process



e redefine

Zt = zp41 — Dz

G =GA, — DG

e state space system (x¢, Z¢)

Tl = Aozt + th—i—l



Z = Gay + GCwiy1 +nyiq

The state noise remains C'wy 1

The new measurement noise is GCwy 1 + My 1

K = Kt|t—1 : the Kalman gain

2; = 24);_1 : the state covariance matrix



e It follows that

K= (CC'G' + Aox:G') Q7

Q=GY,G'+ R+ Geld'd

Tir1 = AgSiAp+ CC — (CC'G + AoiG') Q; 1 (G Al + GCC')
= AoZiAp+ CC' — K (GX A, + GCC')



e The state space system can be expressed in an innovation representation:

Tpp1)t = AoTyjp—q + Kruy

e | use this transformation and formulation in the estimation of Chari, Kehoe and
McGrattan (2007)’s prototype model for business cycle accounting.



e Christensen, Hurn, and Lindsay (2008) provide useful tips for numerical opti-
mization.
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