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1 Posterior distribution

� Chapter 12 of Tsay (2005) provides an elegant introduction to Markov Chain
Monte Carlo Methods with applications.

� Greenberg (2008) provides a very good introduction to fundamentals of Bayesian
inference and simulation.

� Geweke (2005) provides a more advanced treatment of Bayesian econometrics.

� Bayesian inference combines prior belief (knowledge) with empirical data to form
posterior distribution, which is the basis for statistical inference.



� � : the parameters of a DSGE model

� Y : the empirical data

� P (�) : prior distribution for the parameters

� The prior distribution P (�) incorporates the prior belief and knowledge of the
parameters.

� f (Y j�) : the likelihood function of the data for given parameters

� By the de�nition of conditional probability:



f (�jY ) = f (�; Y )

f (Y )
=
f (Y j�)P (�)

f (Y )
(1)

� The marginal distribution f (Y ) is de�ned as:

f (Y ) =
Z
f (Y; �) d� =

Z
f (Y j�)P (�) d�

� f (�jY ) is called the posterior distribution of �.



� It is the probability density function (PDF) of � given the observed empirical
data Y .

� Omit the scale factor and equation (1) can be expressed as:

f (�jY ) / f (Y j�)P (�)

� Bayes theorem

posterior PDF / (likelihood function) � (prior PDF )



� Expressed in logarithm:

log (posterior PDF ) / log (likelihood function) + log (prior PDF )

2 Markov Chain Monte Carlo (MCMC) methods

� This section draws from Chapter 7 of Greenberg (2008).



� An advanced textbook is Carlin and Louis (2009), Bayesian Methods for Data
Analysis, CRC Press.

� The basis of an MCMC algorithm is the construction of a transition kernel,
denoted by p (x; y), that has an invariant density equal to the target density.

� Given such a kernel, we can start the process at x0 to yield a draw x1 from
p (x0; x1), x2 from p (x1; x2), x3 from p (x2; x3),..., and xg from p

�
xg�1; xg

�
.

� The distribution of xg is approximately equal to the target distribution after a
transient period.



� Therefore, MCMC algorithms provide an approximation to the exact posterior
distribution of a parameter.

� How to �nd a kernel that has the target density as its invariant distribution?

� Metropolis-Hasting algorithm provides a general principle to �nd such kernels.

� Gibbs sampler is a special case of the Metropolis-Hasting algorithm.



2.1 Gibbs algorithm

� The Gibbs algorithm is applicable when it is possible to sample from each con-
ditional distribution.

� Suppose we want to sample from the joint distribution f (x1; x2).

� Further suppose that we are able to sample from the two conditional distributions
f (x1jx2) and f (x2jx1).

� Gibbs algorithm



1. Choose x(0)2 (you can also start from x
(0)
1 )

2. The �rst iteration

draw x
(1)
1 from f

�
x1jx

(0)
2

�

draw x
(1)
2 from f

�
x2jx

(1)
1

�

3. The g-th iteration



draw x
(g)
1 from f

�
x1jx

(g�1)
2

�

draw x
(g)
2 from f

�
x2jx

(g)
1

�

4. Draw until the desired number of iterations is obtained.

� We discard some portion of the initial sample.

� This portion is the transient or burn-in sample.



� Let n be the number of total iterations and m be the number of burn-in sample.

� The point estimate of x1 (similarly for x2) and its variance are:

x̂1 =
1

n�m

nX
j=m+1

x
(j)
1

�̂21 =
1

n�m� 1

nX
j=m+1

�
x
(j)
1 � x̂1

�2



� The invariant distribution of the Gibbs kernel is the target distribution.

� Proof:

� x = (x1; x2)

� y = (y1; y2)

� p (x; y) : x! y , x1 ! y1; x2 ! y2

� The Gibbs kernel is:



p (x; y) = f (y1jx2) � f (y2jy1)

f (y1jx2) : draw x
(g)
1 from f

�
x1jx

(g�1)
2

�

f (y2jy1) : draw x
(g)
2 from f

�
x2jx

(g)
1

�

� It follows that:



Z
p (x; y) f (x) dx =

Z
f (y1jx2) � f (y2jy1) f (x1; x2) dx1dx2

= f (y2jy1)
Z
f (y1jx2) f (x1; x2) dx1dx2

= f (y2jy1)
Z
f (y1jx2) f (x2) dx2

= f (y2jy1) f (y1) = f (y1; y2) = f (y)

� This proves that f (y) is the invariant distribution for the Gibbs kernel p (x; y).

� The invariant distribution of the Gibbs kernel is the target distribution is a nec-
essary, but not a su¢ cient condition for the kernel to converge to the target
distribution.



� Please refer to Tierney (1994) for a further discussion of such conditions.

� The Gibbs sampler can be easily extended to more than two blocks.

� In practice, convergence of Gibbs sampler is an important issue.

� I will use Brooks and Gelman (1998)�s method for convergence check.

2.2 Metropolis-Hasting algorithm

� Metropolis-Hasting algorithm is more general than the Gibbs sampler because
it does not require the availability of the full set of conditional distribution for



sampling.

� Suppose that we want to draw a random sample from the distribution f (X).

� The distribution f (X) contains a complicated normalization constant so that a
direct draw is either too time-consuming or infeasible.

� However, there exists an approximate distribution (jumping distribution, proposal
distribution) for which random draws are easy to obtain.

� The Metropolis-Hasting algorithm generates a sequence of random draws from
the approximate distribution whose distributions converge to f (X).



� MH algorithm

1. Given x, draw Y from q (x; y).

2. Draw U from U (0; 1).

3. Return Y if:

U � � (x; Y ) = min
(
f (Y ) q (Y; x)

f (x) q (x; Y )
; 1

)



4. Otherwise, return x and go to step 1.

5. Draw until the desired number of iterations is obtained.

� q (x; y) is the proposal distribution.

� The normalization constant of f (X) is not needed because only a ratio is used
in the computation.

� How to choose the proposal density q (x; y)?



� The proposal density should generate proposals that have a reasonably good
probability of acceptance.

� The sampling should be able to explore a large part of the support.

� Two well-known proposal kernels are the random walk kernel and the independent
kernel.

A. Random walk kernel:

y = x+ u



� h (u) = h (�u)! q (x; y) = q (y; x)! � (x; y) =
f(y)
f(x)

B. Independent kernel:

q (x; y) = q (y)

� q (x; y) = q (y)! � (x; y) =
f(y)=q(y)
f(x)=q(x)



2.2.1 Metropolis algorithm

� The algorithm uses a symmetric proposal function, namely q (Y; x) = q (x; Y ).

� Metropolis algorithm

1. Given x, draw Y from q (x; y).

2. Draw U from U (0; 1).

3. Return Y if:



U � � (x; Y ) = min
(
f (Y )

f (x)
; 1

)

4. Otherwise, return x and go to step 1.

5. Draw until the desired number of iterations is obtained.

2.2.2 Properties of MH algorithm

� This part draws from Chib and Greenberg (1995), �Understanding the Metropolis-
Hasting Algorithm,�The American Statistician, 49 (4), pp. 327-335.



� A kernel q (x; y) is reversible if:

f (x) q (x; y) = f (y) q (y; x)

� It can be shown that f is the invariant distribution for the reversible kernel q
de�ned above.

� Now we begin with a kernel that is not reversible:

f (x) q (x; y) > f (y) q (y; x)



� We make the irreversible kernel into a reversible kernel by multiplying both sides
by a function �.

f (x)� (x; y) q (x; y)| {z } = f (y)� (y; x) q (y; x)| {z }
� p (x; y) � � (x; y) q (x; y)

f (x) p (x; y) = f (y) p (y; x)



� This turns the irreversible kernel q (x; y) into the reversible kernel p (x; y).

� Now set � (y; x) = 1.

f (x)� (x; y) q (x; y) = f (y) q (y; x)

� (x; y) =
f (y) q (y; x)

f (x) q (x; y)
< 1

� By letting � (x; y) < � (y; x), we equalize the probability that the kernel goes
from x to y with the probability that the kernel goes from y to x.



� Similar consideration for the general case implies that:

� (x; y) = min

(
f (y) q (y; x)

f (x) q (x; y)
; 1

)

2.2.3 Metropolis-Hasting algorithm with two blocks

� Suppose we are at the (g � 1)-th iteration x = (x1; x2) and want to move to
the g-th iteration y = (y1; y2).

� MH algorithm



1. Draw Z1 from q1 (x1; Zj x2).

2. Draw U1 from U (0; 1).

3. Return y1 = Z1 if:

U1 � � (x1; Z1j x2) =
f (Z1; x2) q1 (Z1; x1j x2)

f (x1; x2) q1 (x1; Z1j x2)

4. Otherwise, return y1 = x1.



5. Draw Z2 from q2 (x2; Zj y1).

6. Draw U2 from U (0; 1).

7. Return y2 = Z2 if:

U2 � � (x2; Z2j y1) =
f (y1; Z2) q (Z2; x2j y1)

f (y1; x2) q (x2; Z2j y1)

8. Otherwise, return y2 = x2.



3 Estimation algorithm

� Karagedikli et al. (2010) provide an overview of the Bayesian estimation of a
simple RBC model.

� This paper provides internet linkages of several sources of useful computation
code.

� The program appendix includes a whole set of DYNARE programs to estimate,
simulate the simple RBC model by using the U.S. output data, as well as to
diagnose the convergence of MCMC.



� The references include a rich and most updated literature on estimation of DSGE
models.

� However, the paper is con�ned to Bayesian estimation, and it is not useful for
researchers who want to understand the computational details and to build their
own programs.

� An and Schorfheide (2007) review Bayesian estimation and evaluation techniques
that have been developed in recent years for empirical work with DSGE models.

� Why using Bayesian method to estimate DSGE models?



� Bayesian estimation of DSGE models has 3 characteristics (An and Schorfheide,
2007).

� First, compared to GMM estimation, Bayesian estimation is system-based. (This
is also true for maximum likelihood estimation)

� Second, the estimation is based on likelihood function generated by the DSGE
model, rather than the discrepancy between model-implied impulse responses
and VAR impulse responses.

� Third, prior distributions can be used to incorporate additional information into
the parameter estimation.



� Counter-argument:

� Fukaµc and Pagan (2010) show that DSGE models should be not estimated and
evaluated only with full information methods.

� If the assumption that the complete system of equations is speci�ed properly
seems dubious, limited information estimation, which focuses on speci�c equa-
tions, can provide useful complementary information about the adequacy of the
model equations in matching the data.



3.1 Draw from the posterior by Random Walk Metropolis algo-

rithm

� Remember that posterior is proportional to likelihood function times prior.

f (�jY ) / f (Y j�)P (�)

� How to compute posterior moments?

� Random Walk Metropolis (RWM) algorithm allows us to draw from the posterior
f (�jY ).



� RWM algorithm belongs to the more general class of Metropolis-Hasting algo-
rithm.

� RWM algorithm

1. Initialize the algorithm with an arbitrary value �0 and set j = 1.

2. Draw ��j from ��j = �j�1 + " � N
�
�j�1;�"

�
.

3. Draw u from U (0; 1).

4. Return �j = ��j if



u � �
�
�j�1; �

�
j�1

�
= min

8<: f
�
Y j��j

�
P
�
��j
�

f
�
Y j�j�1

�
P
�
�j�1

�; 1
9=;

5. Otherwise, return �j = �j�1.

6. If j � N then j ! j + 1 and go to step 2.

� Kalman �lter is used to evaluate the above likelihood values f
�
Y j��j

�
and

f
�
Y j�j�1

�
.



3.2 Computational algorithm

� Schorfheide (2000) and An and Schorfheide (2007).

1. Use a numerical optimization routine to maximize log f (Y j�) + logP (�).

2. Denote the posterior model by ~�.

3. Denote by ~� the inverse of the Hessian computed at the posterior mode ~�.

4. Specify an initial value for �0, or draw �0 from N
�
~�; c20 � ~�

�
.



5. Set j = 1 and set the number of MCMC N .

6. Evaluate f (Y j�0) and P (�0)

A evaluate P (�0) for given �0

B use Paul Klein�s method to solve the model for given �0

C use Kalman �lter to evaluate f (Y j�0)

7. Draw ��j from ��j = �j�1 + " � N
�
�j�1; c2 � ~�

�
.



8. Draw u from U (0; 1).

9. Evaluate f
�
Y j��j

�
and P

�
��j
�

A evaluate P
�
��j
�
for given ��j

B use Paul Klein�s method to solve the model for given ��j

C use Kalman �lter to evaluate f
�
Y j��j

�

10. Return �j = ��j if



u � �
�
�j�1; �

�
j�1

�
= min

8<: f
�
Y j��j

�
P
�
��j
�

f
�
Y j�j�1

�
P
�
�j�1

�; 1
9=;

11. Otherwise, return �j = �j�1.

12. If j � N then j ! j + 1 and go to step 7.

13. Approximate the posterior expected value of a function h (�) by:



E [h (�) jY ] = 1

Nsim

NsimX
j=1

h
�
�j
�

� Nsim = N �Nburn�in

� It is recommended to adjust the scale factor c so that the acceptance rate is
roughly 25 percent in WRM algorithm.



4 An example: business cycle accounting

� This example illustrates Bayesian estimation of the wedges process in Chari,
Kehoe and McGrattan (2007)�s business cycle accounting.

� The wedges process is st =
�
Ât; �̂ lt; �̂xt; ĝt

�
.

st+1 = Pst +Q"t+1



P =

26664
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

37775

Q =

26664
q11 0 0 0
q21 q22 0 0
q31 q32 q33 0
q41 q42 q43 q44

37775

"t+1 � N (04�1; I4�4)



� We estimate the lower triangular matrix Q to ensure that the estimate of V =

QQ0 is positive semide�nite.

� The matrix Q has no structural interpretation.

� Given the wedges, which are functionally similar to shocks, the next step is to
solve the log-linearized model.

� We use Paul Klein�s MATLAB code to solve the log-linearized model.

� The state variables of the model are:
�
k̂t; st

�
=
�
k̂t; Ât; �̂ lt; �̂xt; ĝt

�



� The control variables of the model are:
�
ĉt; x̂t; ŷt; l̂t

�

� The observed variables of the model are:
�
ŷt; x̂t; l̂t; ĝt

�

� Here again the log-linearized model:

~c

~y
ĉt +

~x

~y
x̂t +

~g

~y
ĝt = ŷt (1.c)

ŷt = Ât + �k̂t + (1� �) l̂t (2.c)



ĉt = Ât + �k̂t �
"
�+

l

(1� l)

#
l̂t �

1

(1� � l)
�̂ lt (3.c)

�̂xt
(1 + 
)

�
+ (1 + �x)

(1 + 
)

�
Etĉt+1 � (1 + �x)

(1 + 
)

�
ĉt (4.c)

= Et

�
�
~y
~k

�
ŷt+1 � k̂t+1

�
+ (1� �) �̂xt+1

�

(1 + 
n) (1 + 
) k̂t+1 = (1� �) k̂t +
~x
~k
x̂t (5.c)



� In Lecture 4, I have shown the maximum likelihood estimation of the wedges
process.

� Going from MLE to Bayesian estimation is straightforward.

� The �rst step is to set the priors.

� The choice of the priors follows Saijo, Hikaru (2008), "The Japanese Depres-
sion in the Interwar Period: A General Equilibrium Analysis," B. E. Journal of
Macroeconomics.

� The prior for diagonal terms of matrix P is assumed to follow a beta distribution
with mean 0:7 and standard deviation 0:2.



� The prior for non-diagonal terms of matrix P is assumed to follow a normal
distribution with mean 0 and standard deviation 0:3.

� The prior for diagonal terms of matrix Q is assumed to follow an uniform distri-
bution between 0 and 0:5.

� The prior for non-diagonal terms of matrix Q is assumed to follow an uniform
distribution between �0:5 and 0:5.

� The table below summarizes the priors.



Prior
Name Domain Density Parameter 1 Parameter 2

p11; p22; p33; p44 [0; 1) Beta 0:035 0:015
p12; p13; p14 R Normal 0 0:3
p21; p23; p24 R Normal 0 0:3
p31; p32; p34 R Normal 0 0:3
p41; p42; p43 R Normal 0 0:3

q11; q22; q33; q44 [0; 0:5] Uniform 0 0:5
q21; q31; q32; q41;q42; q43 [�0:5; 0:5] Uniform �0:5 0:5

� If the sequence obtained from MCMC were i.i.d., we could use a central limit
theorem to derive the standard error (known as the numerical standard error)
associate with the estimate.



� Koop, Gary, Dale J. Poirier, and Justin L. Tobias (2007), Bayesian Econometric
Methods, page 119.

E [�jy] = �̂ = 1

R

RX
r=1

�(r)

V ar (�jy) = �̂2 = 1

R

RX
r=1

�
�(r) � �̂

�2

p
R
�
�̂ � �

�
� N

�
0; �̂2

�



�̂
approx� N

 
�;
�̂2

R

!

NSE =
�̂p
R

� However, serial correlation is inherent in MCMC.

� Several methods have been proposed to deal with this problem.

1. the approach of Newey and West (1987)



2. estimate the spectral density at frequency zero

3. batch means

� See Greenberg (2008) page 103 and Geweke (2005) page 149 for discussions.

� Newey and West (1987) estimator:

V ar (�jy) = �̂2 = 
̂0 + 2
MTX
j=1

wj;T � 
̂j



wj;T = 1�
j

MT + 1

MT = integer

244 � � T

100

�2
9

35

NSE =
�̂p
R
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