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S1 BACKGROUND 
In vivo dynamic contrast-enhanced imaging tools provide noninvasive methods for 
analyzing various functional changes associated with disease initiation, progression, and 
responses to therapy (McDonald, et al., 2003). Typical modalities include dynamic 
contrast-enhanced magnetic resonance imaging (DCE-MRI) (Costouros, et al., 2002), 
dynamic optical imaging (Hillman, et al., 2007), positron emission tomography (Zhou, et 
al., 1997), and spectroscopic computed tomography (Anderson, et al., 2010). These tools 
exploit the dynamics of contrast accumulation and washout to produce functionally 
relevant images of vascular perfusion and permeability, metabolism, or gene expression, 
and can potentially test novel hypotheses and predict drug efficacy.      

However, due to spatially-mixed tissue heterogeneity, the precise imaging-based 
phenotyping by these tools has been hindered by its inability to accurately resolve and 
characterize targeted functional tissue compartments (Hillman, et al., 2007). This 
indistinction between contributions of different tissues to the mixed tracer signals, while 
often conveniently overlooked, could significantly confound pharmacokinetics 
compartmental modeling (CM) (Zhou, et al., 1997) and affect the accuracy of genotype-
phenotype association studies (Costouros, et al., 2002; Segal, et al., 2007).  

We developed convex analysis of mixtures – compartment modeling (CAM-CM) 
signal deconvolution tool that enables geometrically-principled, unsupervised, and 
accurate characterization and delineation of major functional tissue structures using 
dynamic contrast-enhanced imaging data, not only dissecting complex tissue into regions 
with differential tracer kinetics on a pixel-wise resolution but also substantially 
improving tissue-specific pharmacokinetics parameter estimation (Wang, et al., 2010). 
CAM-CM is supported by a well-grounded mathematical framework, and combines the 
advantages of multivariate clustering, convex geometry analysis, and compartmental 
modeling. The algorithm possesses a novel, powerful feature allowing pure-volume 
pixels to be readily identified from the measured pixel time series, without any 
knowledge of the associated compartment pharmacokinetics, leading to a completely 
unsupervised approach. We provide CAM-CM software as an open-source standalone 
MATLAB application. 
 

S2 THEORY  
We first introduce the typical compartment modeling for analyzing dynamic contrast-
enhanced imaging data, and then present the theory of how the tissue compartments can 
be identified, which gives prime motivations of CAM-CM method.   
 

S2.1 Compartment Modeling  
Consider J-tissue compartment model for dynamic contrast-enhanced image time series, 
where the tracer concentration kinetics is governed by a set of linear first-order 
differential equations (Port, et al., 1999; Roberts, et al., 2006; Tofts, et al., 1999; Zhou, et 
al., 1997):  
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where ( )jC t , 1,2,..., 1j J= − , is the tracer concentration (TC) in the interstitial space 
weighted by the fractional interstitial volume in the tissue-type j, at time t ; ( )pC t  is the 
tracer concentration in plasma (or the plasma input function) and corresponds to the Jth 
tissue type; ms ( )C t  is the measured tracer concentration in the region of interest (ROI); 

In
jK  and Out

jk  are the wash-in rate and wash-out rate constants in the tissue-type j, 
respectively; and pK  is the plasma volume in tissue. We acknowledge that there are 
alternative compartment models that may be more suitable for some particular 
applications, and we are currently investigating extended methods that can adapt to the 
alternative compartment models. Equation (1) can be solved for 1 1( ), , ( )JC t C t−…  in terms 
of the rate constants as 

( ) ( ) exp( ),  1,..., 1In Out
j j p jC t K C t k t j J= ⊗ − = −                             (2) 

where ⊗  denotes the mathematical convolution operation.  
Let ( ) ( ) exp( )Out

j p jF t C t k t= ⊗ − , 1,2,..., 1j J= − , and ( ) ( )J pF t C t= . By equations 
(1) and (2), the spatial-temporal patterns of tracer concentrations in dynamic contrast-
enhanced imaging data can be expressed as the following latent tissue-specific 
compartment model (Wang, et al., 2006):  
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at pixel i with 1,...,i N=  (with N being the total number of pixels), where ms ( , )lC i t  is the 
tracer concentration measured at time lt , 1,2,...,l L= , L  is the number of sampling time 
points, 1 1( ),..., ( )In In

JK i K i−  are the local wash-in constants of the tissue-type 1 to tissue-type 
J-1, at pixel i, respectively, and ( )pK i  is the local plasma volume at pixel i . We should 
emphasize that our goal is to estimate these (unknown) kinetic parameters 

1 1( ),..., ( ), ( )In In
J pK i K i K i−  and the tissue-specific concentration curves 1( ),..., ( )l J lF t F t  

determined by the parameters 1 1,...,Out Out
Jk k −  from the measurements ms ( , )lC i t . Next some 

realistic conditions on these kinetic parameters will be given, by which the tissue-specific 
compartments can be shown to be perfectly identifiable.  
 

S2.2 Identifiability of Tissue-specific Compartments  
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For ease of analysis in the sequel, we normalize ms ( , )C i t  and ( )jF t  over their effective 
interval of L time samples via a sum-based normalization that projects the scatter plot 
data points onto the standard simplex as follows 

ms

ms '' 1

( , )( , )
( , )
l

l L
ll

C i tx i t
C i t

=

=
∑

,  
'' 1

( )
( )

( )
j l

j l L
j ll

F t
a t

F t
=

=
∑

,  1,...,l L= .          

We then re-express (3) as  
[ ]1( ) ,..., ( ),   1,...,Ji i i N= =x a a K ,                                         (4) 

where ( ) [ ]1( , ),..., ( , ) T
Li x i t x i t=x , 1( ),..., ( )

T

j j j La t a t⎡ ⎤= ⎣ ⎦a , 1( ) [ ( ),..., ( )]T
Ji K i K i=K is 

accordingly normalized with 
1

( ) 1J
jj

K i
=

=∑ . After normalization, the physical meanings 

of the pharmacokinetics parameters shall be interpreted as the relative local wash-in 
constants. Since these local wash-in constants and local plasma volume, 
{ }1 1( ),..., ( ), ( )In In

J pK i K i K i−  or { }1( ),..., ( )JK i K i , are non-negative, the pixel time series 

model (4) immediately indicates that the observed pixel time series ( )ix  is a non-
negative linear combination of the tissue-specific compartment TCs, 1,..., Ja a , weighted 

by their spatially-distributed local wash-in constants, 1( ),..., ( )JK i K i  with 
1

( ) 1J
jj

K i
=

=∑ . 

This immediately implies that the observed set of pixel time series { }(1),..., ( )N= x xX  is 
a subset of the convex hull of the set of compartment TCs (a convex set readily defined 
by compartment TCs), { }H A  where { }1,..., J= a aA (Boyd, et al., 2004); that is,  

{ } { }1 1
| ,  0, 1J J

j j j j jj j
α α α

= =
⊆ = ∈ ≥ =∑ ∑a aX H A A .                 (5) 

With (5) in mind, an important question is which conditions are needed to support that 
the tissue compartment TCs A  can be theoretically identified from the pixel time series 
X .  

 
Before answering this question, some definitions shall be first introduced as 

follows (Chen, et al., 2008) (Wang, et al., 2010):  
Definition 1. (Corner points) A compartment TC ja  is a corner point of the convex set 

{ }H A  if and only if it can only be expressed as a trivial convex combination of 1,..., Ja a .   
Definition 2. (Well-grounded points) Any pixel time course whose associated normalized 
spatially-distributed wash-in constants are in the form of WGP( )( )j ji =K e  (where { }je  is 
the standard basis of J-dimensional real space) is called a well-grounded point (WGP) 
and corresponds to a pure-volume pixel, i.e., [ ]( ) 1 WGP( )( ) ,..., ( )WGP j J j ji i= =x a a K a .   
 

The following theorem provides the identifiability of the tissue compartments:  
Theorem 1 (Convexity of pixel time series). Suppose that the J compartment TCs 

1,..., Ja a  are linearly independent, and 
1

( ) ( )J
j jj

i K i
=

=∑x a where non-negative 

normalized spatially-distributed wash-in constants { }( )iK  have at least one well-
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grounded point on each of the J coordinate axes, then the convex set specified by X  , i.e., 
( ) ( ){ }1 1

{ } | ,  0,  1N N
i i ii i

i iα α α
= =

= ∈ ≥ =∑ ∑x xH X X , is identical to the convex set 

{ }H A , and its corner points are the J compartment TCs 1,..., Ja a . 
 
Proof: By Definition 2 that ( )WGP( )j ji =x a , then for any { }∈z H A  we have 
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On the other hand, for any { }∈z H X , we have  

( )
( )

( )

( )

1

1 1

1 1

1 1 1

  

  

  = ,  where  and 1,

N
ii

N J
i j ji j

J N
i j jj i

J N J
j j j i j jj i j

i

K i

K i

K i

α

α

α

β β α β

=

= =

= =

= = =

=

=

⎡ ⎤= ⎣ ⎦

= =

∑
∑ ∑
∑ ∑
∑ ∑ ∑

z x

a

a

a

                    

implying { }∈z H A , i.e., { } { }⊆H X H A . Therefore, combining { } { }⊇H X H A  and 

{ } { }⊆H X H A  gives { } { }=H X H A . Next, we show that 1,... Ja a  are corner points of 

{ }H A . Since 1,... Ja a  are linearly independent, we have 
1

 iff 0 J
j j jj

jα α
=

= = ∀∑ a 0  

which implies that  
' ' '

11
=  iff [ ,..., ]  J T

j j j J jj
jα α α

=
= ∀∑a a e  

i.e., ja  can only be a trivial convex combination of 1,..., Ja a . By Definition 1, 1,..., Ja a  

are therefore the corner points of convex set { }H A , and together with { } { }=H X H A , 
we readily complete the proof of Theorem 1.                                                            Q.E.D                                
  
The inferences of Theorem 1 are twofold: Firstly, given a set of observed pixel time 
series, the compartment TCs A  can be identified by searching the corner points of the 
pixel time series convex set { }H X  when pure-volume pixels exist for each of the tissue 
compartments (Rijpkema, et al., 2001). Secondly, the pure-volume pixels constitute the 
corner points of the observed pixel time series convex set, while the partial-volume pixels 
constitute the interior points of the observed pixel time series convex set.  

One important consideration with the present method is the existence of 
functionally pure-volume pixels for each of the underlying compartments, and this 
reasonable assumption reflects only the ideal scenario and constitutes the necessary and 
sufficient condition for the mathematical identifiability of the signal deconvolution model 
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(equations (1)-(3)). Also, our CAM-CM solution, introduced in the next section, is 
proposed to identify the corners of { }H A , i.e. the time series of pure-volume pixels, by 
identifying the corners of { }H X . Nevertheless, it is possible that in some datasets, no 
pixel is pure and it would be helpful to provide an accurate interpretation of the CAM-
CM solution in such non-ideal scenarios. The following theorems show that, if source-
dominance pixels exist for each of the underlying tissue compartments, CAM-CM will 
provide the optimal solution that captures maximum source information (i.e., with the 
identified corners of the pixel time series scatter simplex corresponding to maximum 
source-dominance). 
 
Theorem 2 (Source dominance). Suppose that the non-negative normalized pixel-wise 
local wash-in rates K(cj)=[K1(cj),…, Km(cj),…,KJ(cj)] are the corners of the pixel time 
series scatter simplex. Then the CAM-CM solution based on these corners achieves the 
maximum source dominance in the sense of  Km(cj)=maxi=1,2,…,N Km(i).  
 
Proof of theorem 2. Consider the pixel K(i*)=α1(i*)K(c1)+α2(i*)K(c2)+…+αJ(i*)K(cJ) of 
the convex hull defined by these corners, whose mth entry is the largest among all pixels, 
i.e., Km(i*)=maxi=1,2,…,N Km(i). Since α1(i*)+α2(i*)+…+αJ(i*)=1, we may therefore write  
 

Km(i*)= (α1(i*)+α2(i*)+…+αJ(i*))Km(i*)=α1(i*)Km(i*)+α2(i*)Km(i*)+…+αJ (i*)Km(i*). 
 
Alternatively, the mth entry of K(i*) can be expressed as 
 

Km(i*)=α1(i*)Km(c1)+α2(i*)Km(c2)+…+αJ (i*)Km(cJ). 
 
By the unique convex expression of Km(i*), we have 
 
           α1(i*)[Km(i*)-Km(c1)]+α2 (i*)[Km(i*)-Km(c2)]+…+αJ (i*)[Km(i*)-Km(cJ)]=0,                       
 
which, together with the fact α1(i*)≥0 and Km(i*)-Km(cj)≥0, implies i*={cj}.            Q.E.D 
 
The results provided by Theorem 1 and Theorem 2 would allow us to gain further 
insights beyond the dynamic contrast-enhanced data themselves into how the temporal 
patterns of the underlying compartment TCs geometrically located at the pixel time series 
scatter simplex, facilitating the design of separation principle in CAM-CM.  
 

S3 METHODS  
As we introduced in the Background section, the CAM-CM method uses in vivo dynamic 
contrast-enhanced imaging data to analyze various functional changes associate with 
disease initiation, progression and responses to therapy. We herein demonstrate the 
procedure in the CAM-CM method in Fig. S1. Input pixel time courses within the tumor 
ROI are first normalized onto a simplex and then processed by the following three core 
components: (1) initialization-free multivariate clustering method that assumes observed 
pixel time series { }(1),..., ( )N= x xX  follow standard finite normal mixture (SFNM) 
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model, and aggregates X   into a few clusters by using expectation-maximization (EM) 
algorithm (Miller, et al., 2003) initialized with affinity propagation clustering (APC) 
(Frey, et al., 2007), in an attempt to reduce the impact of noise/outlier pixels on model 
learning; see Section S2.1; (2) convex analysis of mixtures (CAM) that identifies the 
tissue-specific compartment TCs 1,..., Ja a by finding the pure-volume clusters located at 
the corners of the clustered pixel time series scatter simplex; the details will be given in 
Section S2.2; and (3) compartment modeling that estimates tissue-specific kinetic 
parameters 1 1( ),..., ( ), ( )In In

J pK i K i K i−  using only pure-volume pixel time series. See 
discussion in Section S3.3.  
 

 
Figure S1. Pictorial flow chart of the CAM-CM method (illustrated on the special case of 
J=3, with three tissue types, “plasma input”, “fast flow”, and “slow flow”, associated 
with the compartment model (Wang, et al., 2006). 
 
S3.1 Multivariate Clustering of Pixel Time Series  
There has been considerable success in using SFNMs to model clustered data sets, such 
as dynamic contrast-enhanced imaging data (Chen, et al., 2008), taking a sum of the 
following general form:  

( ) ( ) ( ), , ,1 1
( ) ( ) | , ( ) | ,J M

m m m m m mm m J
p i g i g iπ π

= = +
= +∑ ∑K K KK K e Σ K μ Σ ,      (6) 
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where the first term corresponds to the clusters of pure volume pixels ( )1,...,m J=� , the 

second term corresponds to the clusters of partial volume pixels ( )1,...,m J M= + , M  is 

the total number of pixel clusters, mπ  is the mixing factor, ( )g ⋅  is the Gaussian 
probability density function, and ,mKμ  and ,mKΣ  are the mean vector and covariance 
matrix of cluster m�, respectively. By incorporating (4) into (6), the SFNM model for 
pixel time series becomes 

( ) ( ) ( ), , ,1 1
( ) ( ) | , ( ) | ,J M

m m m m m mm m J
p i g i g iπ π

= = +
= +∑ ∑x x xx x a Σ x μ Σ� ,        (7) 

where , ,
T

m m=x KΣ AΣ A  and , ,m m=x Kμ Aμ , with [ ]1,..., J=A a a . Accordingly, the first 
term of (7) represents the pure volume clusters and the second term of (7) represents the 
partial volume clusters, and as shown in Fig. S1 the clustered pixel time series set X  is 
(approximately) confined within a convex set whose corner centers are the J 
compartment TCs 1,..., Ja a .  
 It has been shown that significant computational savings can be achieved by using 
the EM algorithm to allow a mixture of the form (7) to be fitted to the data (Chen, et al., 
2004; Titterington, et al., 1985). Determination of the parameters of the model (7) can be 
viewed as a “missing data” problem in which the missing information corresponds to 
pixel labels ( ),iml i m= I  specifying which cluster generated each data point with ( ),i mI  
denoting the indicator function. If we were given a set of already clustered data with 
specified pixel labels, then the log likelihood (known as the “complete” data log-
likelihood) becomes  

{ }, ,
1 1

( | , ) log ( ) | ,
N M

im m m m
i m

l g iπ
= =

⎡ ⎤= ⎣ ⎦∑∑ x xΘ L x μ ΣL X ,                          (8) 

where , ,{ , , , }m m m mπ= ∀x xΘ μ Σ  and { , 1,2,..., , 1, 2,..., }iml i N m N= = =L . However, we 
only have indirect, probabilistic information in the form of the posterior responsibilities 

imz  for each model m having generated the pixel time series ( )ix . Taking the expectation 
of (8), we then obtain the complete data log likelihood in the form  

{ }, , ,
1 1

( | , ) log ( ) | ,
N M

i m m m m
i m

z g iπ
= =

⎡ ⎤= ⎣ ⎦∑∑ x xΘ Z x μ ΣL X ,                        (9) 

where the ( ), Pr 1| ( )i m imz l i= = x  are constants and ,{ , 1, 2,..., , 1, 2,..., }i mz i N m N= = =Z .  
 Maximization of (9) can be performed using the two-stage form of the EM 
algorithm. At each complete cycle of the algorithm we commence with an “old” set of 
parameter values , ,{ , , , }m m m mπ= ∀x xΘ μ Σ . We first use these parameters in the E-step to 
evaluate the posterior probabilities ,i mz  using Bayes theorem  

 ( ) { }, ,
,

' , ' , '' 1

( ) | ,
Pr 1| ( ) ,  1,...,

( ) | ,
m m m

i m im M
m m mm

g i
z l i m M

g i

π

π
=

⎡ ⎤⎣ ⎦= = = ∈
⎡ ⎤⎣ ⎦∑

x x

x x

x μ Σ
x

x μ Σ
.           (10) 

These posterior probabilities are then used in the M-step to obtain “new” values 
, ,{ , , , }m m m mπ= ∀x xΘ μ Σ  using the following re-estimation formulas 
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 To reduce the likelihood of pixel time series clustering being trapped into local 
maxima, an effective and initialization-free affinity propagation clustering (APC) is 
attempted to initialize the parameter Θ  for the EM algorithm and to estimate the number 
of obtainable clusters (Frey, et al., 2007). We simultaneously consider all data points as 
potential exemplars (cluster centers) and recursively exchange real-valued messages 
between data points until a high-quality set of exemplars and corresponding clusters 
gradually emerges. Let the “similarity” ( ) ( ) ( ) 2

,s i m i m= − −x x  indicate how well the 

data point ( )mx  is suited to be the exemplar for data point ( )ix ; the “responsibility” 

( ),r i m  reflects the accumulated evidence for how well-suited data point ( )mx  is to 

serve as the exemplar for data point ( )ix , and the “availability” ( ),a i m  reflects the 

accumulated evidence for how appropriate the data point ( )ix  chooses data point ( )mx  

as its exemplar. Then, the responsibilities ( ),r i m  are computed based on  

( ) ( ) ( ) ( ){ }
'

, , max , ' , '
m m

r i m s i m a i m s i m
≠

← − + ,                               (14) 

where the availabilities ( ),a i m  are initialized to zero and the competitive update rule (14) 
is purely data-driven. Whereas the responsibility update (14) allows all candidate 
exemplars to compete for ownership of a data point, the availability update rule 

( ) ( ) ( ){ }
{ }' ,

, min 0, , max 0, ',
i i m

a i m r m m r i m
∉

⎧ ⎫⎪ ⎪← +⎨ ⎬
⎪ ⎪⎩ ⎭

∑                           (15) 

collects evidence from data points to support a good exemplar, where the “self-
availability” is updated differently 

( ) ( ){ }
'

, max 0, ',
i m

a m m r i m
∉

←∑ .                                         (16) 

At any iteration during affinity propagation, availabilities and responsibilities are 
combined to identify exemplars and to terminate the algorithm when these decisions do 
not change for 10 iterations (Frey, et al., 2007). One advantage of APC is that the number 
of clusters need not be specified a priori but emerges from the message-passing 
procedure and only depends on the density distribution of the data points and a parameter. 
The preference associated with similarities s(k,k) for all data points can be taken as input 
of APC, and can be varied to produce different number of clusters. The shared value 
could be the median of the input similarities (resulting in a moderate number of clusters) 
or their minimum (resulting in a small number of clusters). We use the median of the 
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input similarities in our experiments, which enables automatic model selection on M 
(Frey, et al., 2007).  
 
S3.2 Convex Analysis of Mixtures 

Suppose that the M cluster centers ,1 ,,..., Mx xμ μ  were obtained by the APC-SFNM-
EM method. As theoretically supported by Theorem 1, CAM can estimate the 
compartments by detecting the most probable J  corner clusters of the convex hull 
containing all clusters of pixel TCs. Assuming the number of compartments J  is known 
a priori, an exhaustive combinatorial search (with total M

JC  combinations) is used to find 

the compartments { }1, ,,...,
Jm mx xμ μ  (any subset of { },1 ,,..., Mx xμ μ ) based on a minimum-

error-margin convex-hull-to-data fitting criterion. The margin (i.e., distance) between 

,mxμ  and the convex hull { }1, ,,...,
Jm mx xμ μH  is computed by 

( )1
1

, ,, ,..., 1,... 2
min ,

j jJ m mJ

J
m m mm m m jα α

δ α
=

= −∑x xμ μ                                 (17) 

where 0
jmα ≥ and 

1
1

j

J
mj

α
=

=∑ . It shall be noted that if ,mxμ  is inside { }1, ,,...,
Jm mx xμ μH  

then ( )1, ,..., 0
Jm m mδ = . Next, we define the convex-hull-to-data fitting error as the sum of the 

margin between the convex hull and the “exterior” cluster centers and detect the most 
probably J corners with cluster indices ( )* *

1 ,... Jm m  when the criterion function reaches its 
minimum: 

( )
( )

( )1
1

* *
1 , ,...,1

,...,
,... = arg min

J
J

M
J m m mm

m m
m m δ

=∑ .                                     (18) 

The optimization problems of (17) and (18) can be solved by advanced optimization 
method, such as sequential quadratic programming (SQP) (Boyd, et al., 2004), and an 
exhaustive combinatorial search (for realistic values of J and M, in practice), respectively.  
The principle of (17) and (18) is illustrated by Fig. S2, where given a set of points the 
fitted convex hull with minimum error margin will be chosen. 
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Figure S2. Principle of minimum-error-margin criterion.  

 
S3.3 Tissue-specific Compartment Analysis  

Having determined the probabilistic pixel memberships associated with the pure-

volume compartments, { }* *1, ,
,...,

j jm N m
z z  for 1,...,j J=  by APC-SFNM-EM and CAM 

methods, we can directly estimate the cluster of different tissue types from the dynamic 
contrast-enhanced image pixel time series ms ( , )lC i t as follows:  

*

*

ms,1

,1

( , )
( ) ,     1,..., ,    =1,...,L.j

j

N
li mi

j l N

i mi

z C i t
C t j J l

z
=

=

= =
∑
∑

                      (19) 

It can be known from (1)-(3) that there exists one tissue type called plasma input function 
( )p lC t  which is a crucial factor in estimating the tissue-specific kinetic parameters 

1 1( ),..., ( ), ( )In In
J pK i K i K i− . Based on widely accepted biological knowledge, we first specify 

the cluster associated with the plasma input among 1( ),..., ( )l J lC t C t by selecting the one 
with fastest wash-in and wash-out rates; for instance, the Jth cluster is selected without 
loss of generality ( ) ( )p l J lC t C t= . Moreover, we rewrite (2) in the form of discrete 
acquisition with temporal resolution tΔ  (/min) as below 

( )  ( ) exp( ),  1,..., 1,In Out
j l j p l j lC t K t C t k t j J= Δ ⊗ − = −                          (20) 
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where the J-1 clusters { }1 1( ),..., ( )l J lC t C t− , the plasma input ( )p lC t  and temporal 

resolution tΔ  are given. Hence, the wash-in and wash-out rate constants,  In
jK  and Out

jk , 
can be estimated by solving the following minimum-sum-square-errors optimization 
problem 

{ } ( )2

, 1

ˆˆ , arg  min  ( )  ( ) exp( )

                        s.t.  0, 0

In Out
j j

L
In Out In Out
j j j l j p l j l

K k l

In Out
j j

K k C t K t C t k t

K k
=

= − Δ ⊗ −

≥ ≥

∑
               (21) 

for 1,..., 1j J= − . Since { }ˆˆ ,In Out
j jK k  only reflect representative kinetic values for the jth 

pure-volume cluster, to shed some light on the spatial heterogeneity of vascular 
permeability (Zhou, et al., 1997), based on (3), we can further estimate the local wash-in 
constants 1 1( ),..., ( ), ( )

TIn In
local J pK i K i K i−⎡ ⎤= ⎣ ⎦K  by solving the following optimization 

problem:  

( )2

1
( ) 1

ˆ ˆ ˆ( ) arg  min   ( , ) ( ),..., ( ) ( )

                s.t.  ( ) 0,  ( ) 0, 1,..., 1
local

L

local ms l l J l local
i l

In
p j

i C i t F t F t i

K i K i j J
=

⎡ ⎤= − ⎣ ⎦

≥ ≥ = −

∑
K

K K
                (22) 

where ˆˆ ( )  ( ) exp( )Out
j l p l j lF t t C t k t= Δ ⊗ − , 1,..., 1j J= −  and ˆ ( ) ( )J l P lF t C t= . Eventually, 

the local wash-in constant maps can be constructed by solving (22) for 1,...,i N= . Again, 
the problems (21) and (22) can be efficiently handled by SQP.  
 

S4 SOFTWARE DEVELOPMENT 
To facilitate the use of CAM-CM algorithm, we have developed a MATLAB software 
package for different application scenarios in dynamic contrast-enhanced imaging. The 
software package contains two main functions, namely CAM and CM, that implement the 
CAM-CM method. The software package is constructed using MATLAB common 
operations, and various functions for performing convex optimization, multivariate 
clustering, deconvolution, and supervised linear projection. Although our software 
package is mainly for implementing CAM-CM, the functions for convex optimization, 
multivariate clustering, and supervised linear projection can be freely extended to other 
applications.  
 
S4.1 CAM-CM software 
Before using CAM-CM software, users need to do the following three things: 
(1) Set the CAM-CM folder as the "current directory" of MATLAB. 
(2) Add the CAM-CM folder and its subfolders as MATLAB paths by clicking "File"-

"Set Path"-"Add with Subfolder" on MATLAB main menu, in order to allow CAM-
CM to call the required functions.  

(3) Make sure that MATLAB has the optimization toolbox installed.  
The CAM-CM software takes as input the .mat data files that record the pixel 

time series of the dynamic contrast-enhanced images in matrices. Each row corresponds 
to a time frame and each column corresponds to a pixel. The CAM-CM contains three 
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sub-procedures: (1) an initialization-free multivariate clustering method, APC, is applied 
with the author-suggested parameter setting; i.e., median of the input similarities 
(resulting in moderate number of clusters) (Frey, et al., 2007); (2) taking APC exemplars 
as the initialization of cluster centers, the EM algorithm is then performed to cluster pixel 
time series under a SFNM model; (3) a novel convex hull algorithm, based on the 
minimum-error-margin criterion, is performed to identify the pure-volume cluster centers 
as compartment TCs. Given the measured TCs and the estimated compartment TCs, CM 
is then performed to estimate the tissue-specific kinetic parameters. The outputs of CAM-
CM software include not only the numerical records for tissue-specific TCs and 
pharmacokinetic parameters estimates, but also a multiplatform graphical summary that 
includes compartment TCs, convexity-preserved clustered scatter simplex, and dissected 
and composite compartment parametric images. The systematic flowchart of CAM-CM 
software is given in Fig. S3. 

 

 
Figure S3. The systematic flow chart of CAM-CM software 

 
Running CAM-CM software is automatic and convenient, with only two user-

controlled parameters: the number of tissue types/compartments (J) and the sampling 
time interval between two consecutive dynamic image frames ( tΔ ). We also provide two 
options for users to decide whether the denoising procedure and visualization of 
convexity is needed or not.  

There are three files and three folders within the root directory of CAM-CM 
software. The three files are “CAM.m”, “CM.m” and a readme file, and the three folders 
are “\docs\”, “\functions\”, and “\simulation data\”. “CAM.m” and “CM.m” are the main 
functions to perform CAM-CM method on contrast-enhanced dynamic imaging data, and 
both CAM.m and CM.m call the functions under the folder “\functions\”. Folder “\docs\” 
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includes a descriptive document. The other folder, “\simulation data\”, provides examples 
on how to use the CAM function and CM function. The experimental results of these 
examples are stored in the same folde.  
  CAM is to find the J corner points of a convex hull formed by the given data X. 
The syntax of CAM function is: 

[A_est S_est] = CAM(X, J, denoise, vis),  
where the inputs are: 

X            - M × N matrix where M is the number of image time frames, and N is the 
number of pixels; ROI-outlined dynamic imaging data, each column is 
the measured TC curve of a pixel in the ROI.  

J             - the number of organs/tissues (or compartments) to be extracted 
(maximally 10). 

denoise   - the option for whether multivariate clustering is used to denoise 
(denoise=1) or not to denoise (denoise=0) the raw data. In our experiments, 
we set denoise=1 for DCE-MRI, and denoise=0 for optical imaging. 

vis          - visualization of the convexity-preserved simplex (if denoise=1).  
and the outputs are:  

A_est     - M × K matrix; the tracer/contrast concentration of the major organs  
S_est      - K × N matrix; estimated spatial distribution maps of the 

organs/tissues/compartments. 
 

CM is to estimate wash-in and wash-out rates for J-tissue compartment model. 
The syntax of CM function is: 

[eKtrans, eKep, pixelwise_Ktrans]=CM(X, TCs, initk, del_t), 
where the inputs are: 

X              - M × N matrix where M is the number of image time frames, and N is the 
number of pixels; ROI-outlined dynamic imaging data, each column is 
the measured TC curve of a pixel in the ROI.  

TCs           - the estimated tracer/contrast concentration from CAM, i.e. 
1 1 1 1 1

1 2 1 2 2

1 1

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

J J

J J

L J L J L

F t F t F t
F t F t F t

F t F t F t

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# " # #
"

 

initk           - the initialization for kinetic parameters 

1 1

2 2

1 1

( ) ( )

( ) ( )
...

( ) ( )

In Out

In Out

In Out
J J

K i k i

K i k i

K i k i− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

del_t          - the time interval between consecutive dynamic images. 
and the outputs are:  

eKtrans  - estimated compartmental wash-in constants, i.e. 

1 2 1( ), ( ),..., ( )In In In
JK i K i K i−⎡ ⎤⎣ ⎦  

eKep        - estimated compartmental wash-out constants, i.e. 
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1 2 1( ), ( ),..., ( )Out Out Out
Jk i k i k i−⎡ ⎤⎣ ⎦  

pixelwise_Ktran - pixel-wise wash-in constants. 
 

S4.2 MATLAB library for convex optimization, clustering and dimension reduction 
The MATLAB library is under the folder “\functions\”. The library has 10 

functions, among which 3 self-written functions are the key components of CAM-CM 
framework, and can be readily used for other purposes. 
(1) measure_conv: to identify vertices of a convex hull that best confines a set of points, 

based on the minimum-error-margin criterion (see equation (18)). It takes two inputs: 
i) the data matrix “X” with each column corresponding to a data point and each row 
corresponding to a variable; ii) the number of corner points of this convex hull “N”. 
The outputs are i) “eA” – the estimated corner points, where each column is a corner 
point; ii) “cornerind” – the index of these corner points in the data matrix “X”. 

(2) SL_EM: EM algorithm to solve the SFNM (see equation (7)). It takes 6 inputs and 7 
outputs. Details for the parameters can be found in the .m file. Here we briefly 
describe the 4 important inputs and some important outputs. The 4 inputs include i) 
“y”, the input data, where each column is a sample; ii) “estmu”, the initialization of 
cluster center, where each column is a center; iii) “estcov”, the initialization of 
covariance matrix; iv) “estpp”, the initialization of prior probability of each cluster. 
Among the outputs, there are also “estmu”, “estcov”, “estpp”, but they are estimates 
instead of initializations. Also, “normindic” records the estimated posterior 
probability that a data point belongs to a cluster, with each column corresponding to a 
data point. 

(3) nnls: nonnegative least-squares fitting to estimate the wash-in and wash-out constants 
from the measured TCs and the compartment TCs (see equations (21) and (22)). The 
input “X” is the data matrix (mixture), with each column being a data point, the input 
“A” is the mixing matrix, and the output “S” is the estimated source signal. 

 
S4.3 Simulation Study and Validation 
The “Simulator and data\demo_for_simulation.m” gives an example of the CAM-CM 
analysis on a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) 
simulation dataset based on three-tissue compartments (J=3), including plasma input, 
tissue with slow tracer kinetics (fast-flow compartment), and tissue with slow tracer 
kinetics (slow-flow compartment). The dataset can be found under directory “\Simulation 
data\”. 

We provide twelve simulated datasets corresponding to four different ground truth 
kinetic parameter settings (scenarios) and three different signal-to-noise ratios (SNRs) in 
“.mat” files under directory “Simulation data\”. For example, "simdataS1SNR10.mat" 
denotes the case under scenario 1 and SNR=10. The ground truth kinetic parameter 
values in every scenario can be found in the .mat files. Users can select scenarios and 
SNRs, and simulate as many datasets as needed via “Simulation data\simulator.m”. 

Each simulated dataset is stored together with the associated ground truths defined 
below: 
gtTCf gtTCs gtTCp - ground truth tracer concentration of plasma input, fast-flow and 

slow-flow compartments. 
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Ktrans_f  - ground truth compartmental wash-in constant for fast-flow 
compartment. 

Kep_f  - ground truth wash-out constant for fast-flow compartment. 
Ktrans_s  - ground truth compartmental wash-in constant for slow-flow 

compartment. 
Kep_s  - ground truth wash-out constant for slow-flow compartment. 
del_t  - temporal sampling interval (min). 
gtSp, gtSf, gtSs       - ground truth partial volume weights for plasma input, fast-flow and 

slow-flow compartments. 
     Now we demonstrate the results of CAM-CM on the dataset, “\Simulation 

data\simdataS1SNR10.mat”: please open “\Simulation data\demo_for_simulation.m” and 
click “Run” button in MATLAB editor window. CAM-CM will be run on the simulated 
dynamic imaging data “simdataS1SNR10” and return the estimated quantities described 
in section 2. “demo_for_simulation.m” saves the estimated kinetic parameters along with 
their ground truth counterparts under “\Simulation data\ ”; it also saves the estimated TCs 
and their ground truth counterparts in the figure files “estimated TCs.jpg” and “ground 
truth TCs.jpg”, respectively, under “\Simulation data\”.  

For example, for the dataset generated with SNR=10 under scenario 1, 
“simdata_S1SNR10”, the estimates of kinetic parameters are stored in the file 
“simresult.mat”. Here we compare the ground truth kinetic parameters and their 
estimated values by CAM-CM in Table S1. The results show a good performance of 
CAM-CM for the noisy case. 

 
Table S1. The ground truth kinetic parameters and CAM-CM estimates for SNR=10dB. 

 In
fK (/min) Out

fk (/min) In
sK (/min) Out

sk (/min) 
Ground truth 0.0300 0.5000 0.0300 0.1000 
CAM-CM estimates 0.0296 0.4875 0.0296 0.0963 

 
The results can be further demonstrated by comparing the estimated TCs with the 

ground truth TCs. Fig.S4 shows the estimated compartment TCs when testing CAM-CM 
on “simdata_S1SNR10”. 
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Figure S4 The ground truth TCs and their estimates by CAM-CM software. We 
used two Y -axes in each figure, to visualize the TCs with different scales. Note that the 
TCs for slow flow and fast flow follow the “red Y-axis” on the right while the TC for 
plasma input follows the “blue Y-axis” on the left. 
 

S5 CASE STUDIES 
As aforementioned, classic compartment modeling methods are oblivious to tissue 

heterogeneity. They can neither distinguish between variations in kinetic patterns 
resulting from actual physiological changes versus differences in tissue-type composition, 
nor identify the contributions of different compartments to the total measured tracer 
concentration. Therefore, their power to detect mechanistic change of kinetic patterns 
could be significantly confounded by variations under different tissue-type compositions 
(McDonald, et al., 2003; Padhani, et al., 2001).    

CAM-CM can dissect complex tissues into regions with differential tracer kinetics 
on a pixel-wise resolution, and thus provide a systems biology tool for defining imaging 
signatures predictive of phenotypes. In this section, we introduce the tissue-specific 
kinetic pattern dissection, performed by CAM-CM, on realistic dynamic imaging cases. 
 
S5.1 A case study on DCE-MRI 

We first considered a T1-weighted gadolinium-enhanced (Gd-DTPA) DCE-MRI 
dataset (collected by Dr. Choyke, NIH Clinical Center) of an advanced breast cancer case 
(Choyke, et al., 2003; Turkbey, et al., 2010) (Fig. S5).  The three-dimensional DCE-MRI 
scans were performed every 30 seconds for a total of 11 minutes after the injection, on a 
1.5 Tesla magnet using  three-dimensional spoiled gradient-echo sequences (TR < 7 msec, 
TE < 1.5 msec, flip angle = 30°, matrix = 192 × 256, 0.5 averages). Typically, 12-15 
slices are obtained and 15-18 time frames are acquired for each case.  

The application of compartment model in this case study uses a three-tissue model 
with J=3 accounting for fast, slow, and plasma input compartments (Wang, et al., 2006). 
Our CAM-CM analysis reveals two biologically interpretable compartments with distinct 
physiological kinetic patterns (Fig. S5c): (1) Fast-flow: fast clearance rate of the tracer; 
(2) Slow-flow: very slow tracer kinetics. They are associated with local wash-in constant 
maps with different spatial distributions (Fig. S5d): (1) Fast-flow: peripheral “rim” 
region of the tumor; (2) Slow-flow: inner “core” region of the tumor. As can be expected, 
the overlap of regions (partial volume pixels) that was noticed on these maps cannot be 
obtained in the ROI studies. Our analysis indicates that the tumor site contains a 
significant fraction (84.3%) of partial volume pixels, which can be visually observed 
from and verified by the “filled” three-corner convex hull of the projected pixel time 
series scatter plot (Fig. S5a). As shown by the dissected and overall TC dynamic patterns 
(Fig. S5c versus S5b), the values found for the kinetic parameters by CAM-CM 
demonstrate that the tumor site contains rapid and slow tracer clearance compartments 
and estimated ( )In iK  varies from pixel to pixel, which otherwise could not be seen if 
tissue heterogeneity was not taken into account (Padhani, et al., 2001).                 
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Figure S5. The experimental results of CAM-CM on a typical breast cancer DCE-MRI 
data. (a): The identified convex hull of clustered pixel TCs (Blue dots: normalized pixel 
TCs; Red circles: cluster centers; Blue lines: cluster memberships). (b): Normalized 
overall TC calculated from the entire tumor ROI. (c): Normalized compartment TCs 
estimated by CAM-CM (the discrete curves show the normalized TCs directly estimated 
via CAM; while the smooth curves show the normalized TCs which are fitted by the 
kinetic parameters estimated via CAM-CM). (d): Local wash-in constant maps estimated 
by CAM-CM. The physical meanings of ( )In

fK i and ( )In
sK i  refer to the local wash-in 

constants associated with tissue compartments of fast flow and slow flow in the 
compartment model, and Kp(i) denotes the local volume of plasma input. 
 

The outcomes of CAM-CM analysis are plausibly consistent with the previously 
reported heterogeneity within tumors (Choyke, et al., 2003; Costouros, et al., 2002; 
McDonald, et al., 2003; Padhani, et al., 2001). Since angiogenesis is essential to tumor 
development, it has been widely observed that active angiogenesis in advanced breast 
tumors often occurs in the peripheral “rim” with co-occurrence of inner-core hypoxia 
(McDonald, et al., 2003; Yankeelov, et al., 2007). Defective endothelial barrier function 
due to vascular endothelial growth factor (VEGF) expression is one of the best-
documented abnormalities of tumor vessels, resulting in spatially heterogeneous high 
microvascular permeability to macromolecules (Choyke, et al., 2003; McDonald, et al., 
2003; Padhani, et al., 2001). Specifically, tumor neovasculature is abnormal – leaky 
vessels, chaotic and tortuous structure, and dead ends, giving rise to a rapid enhancement 
and gradual washout pattern (Choyke, et al., 2003). At the same time, as a tumor grows, it 
rapidly outgrows its blood supply and requires neovessel maturation, leaving an inner 
core of the tumor with regions where the blood flow and oxygen concentration are 
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significantly lower than in normal tissues, gives rise to a much slower accumulation and 
minimum washout pattern (Brown, et al., 2004; Choyke, et al., 2003). In fact, the 
estimated ( )In iK  maps reveal regions of differential function that correlate with 
differential gene expression involved in angiogenesis (Choyke, et al., 2003; Costouros, et 
al., 2002). Furthermore, the CAM-CM estimated values of -11.14 minOut

fk =  and 
-10.37 minOut

sk =  were generally consistent with the parameter values reported by the most 
relevant studies (Knopp, et al., 1999). 
 
S5.2 A case study on dynamic fluorescence image data 

We then considered a case study on dynamic fluorescence molecular imaging of a 
small animal. Fluorescence molecular imaging has great potential for advancing basic 
research and drug discovery and development, but widespread adoption of optical 
imaging modality is being held back because of obstacles to truly quantitative imaging of 
deeper organs, tissues, and targets (Hillman, et al., 2007). Applying CAM-CM method to 
the dynamic fluorescent image data of a small mouse can automatically identify and 
locate the internal organ or structure from which a molecular signal may have originated, 
and provide the biodistribution dynamics of the major organs, which can facilitate 
versatility for studies of orthotropic disease, diagnostics and therapies. 

Two dynamic fluorescence image data sets of a small mouse in a supine and 
prone positions, provided by Dr. Hillman (Hillman, et al., 2007), were acquired after 
bolus injection of a mixture of indocyanine green (ICG) and digital tissue recognition 
(DTR) (Hillman, et al., 2007): ten image series (50 ms integration time per frame) were 
scanned every two seconds for each excitation/emission pair for up to 40 min, and each 
group of 10 successive images was averaged to create a sequence of 316 images (for 
prone position) and 256 images (for supine position) with four seconds between each. 
Since the two datasets were acquired by switching optical filters to capture signal from 
each dye separately, only the data capturing the ICG dye is included in our analysis. ICG 
dye begins by circulating through the mouse’s vascular system, and then either 
accumulates in different tissues, or clears from them. ICG quickly binds to albumin and is 
cleared through the liver. The dyes used are not ‘stains’ per se, but interact in 
characteristic ways with each organ, and therefore result in each organ having a 
distinctive temporal pattern of dye wash-in and wash-out. These dynamics are what our 
CAM-CM algorithm exploits to extract both the organ-specific dynamics, as well as a 
map that clearly delineates each organ. Some preprocessing, such as image registration 
(due to the camera moved slightly), and image sides amplification also have been applied 
to the two datasets to improve the results of the subsequent CAM-CM analysis.  

Due to the image-average strategy that eliminates the noise contaminations and 
the high similarity of biodistribution dynamics associated with the major organs, the first 
component of CAM-CM method, namely multivariate clustering, was not employed for 
these datasets. In addition, the third component of CAM-CM method, namely tissue 
specific compartment modeling, relies on a plasma input function to estimate the 
representative wash-in constants for different organs. Since the plasma input function is 
not available throughout the optical image data, we constructed an estimated plasma 
input function using a well-adopted population average method (Yang, et al., 2007). 
Unlike DCE-MRI dataset that generally involve less than 25 image time series, the 
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optical image data contain 316 images for prone position mouse and 256 images for 
supine position mouse can be a huge computational burden in our CAM-CM analysis. 
We have chosen to adopt the well-known “feature extraction” scheme using principal 
component analysis (PCA) (Bishop, et al., 1998; Haykin, 1999; Hillman, et al., 2007). 
Although there is no theoretically agreed optimum number of retained principal 
components across various applications, a popular approach is to evaluate the retained 
percentage of variability (Hastie, et al., 2009). In this case study, we have found that the 
top 20 principal components can preserve more than 95% of the total variability in the 
original data, and hence we set the number of preserved dimensions 20 for the two 
datasets. Our experience has shown that PCA-based dimension reduction can lead to 
more accurate and efficient performance of the CAM-CM analysis.  

Results of applying CAM-CM to the prone position data set (with setting the 
number of major organs to J=10) were physiologically interpretable (Fig. S6a-c). Ten 
fluorescent time courses (Fig. S6a) show distinct patterns of circulating, accumulating or 
metabolizing of the dye in different organs, and plausibly coincide with the expected 
physiological trends, such as late uptake by adipose tissue and fast disappearance from 
the brain region. The estimated kinetic parameters for different organs (Table S2) also 
reflect the expected physiological accumulating and metabolizing rates of the dye. The 
merged and color-coded spatial maps (Fig. S6b) also constitute an anatomical structure 
of the mouse that exhibits a high agreement with the results in (Hillman, et al., 2007) and 
their comparison to true anatomy, allowing the longitudinal identification of the internal 
organs. The individual spatial maps (Fig. S6c) also achieve correct localization of the 
major organs in most cases. Additional structure indicates that these regions also have 
similar dynamic behavior to the organ. On the supine position data set, CAM-CM 
analysis (with setting the number of major organs equal to J=5) is also able to capture the 
physiologically meaningful behavior of each organ (Fig. S7a-c). For instance, a sustained 
uptake by the liver can be easily observed (Fig. S7a).  Once again, the merged and color-
coded spatial maps are consistent with the results in (Hillman, et al., 2007) (Fig. S7b-c), 
and the estimated kinetic parameters follow physiological accumulating and metabolizing 
rates of the dye in different organs (Table S3). Note that the notable differences in the 
estimated kinetic parameters between the supine (Table S2) and the prone position 
(Table S3) are not mainly attributable to the CAM-CM software, but rather to the 
different origins of the data ― these data were acquired (and/or) at different times, on 
different mice, under different conditions, and with different positions.  

It is also important to emphasize the benefits of optical imaging over, for example 
computed tomography: Firstly, optical imaging of small animals is a powerful tool for 
basic research and pharmaceutical development in which targeted dyes or more recently 
fluorescent proteins or luminescence are used to label tumors or other cells or organs for 
longitudinal measurement of the effects of therapies or interventions. Such imaging 
systems typically produce ‘zero-background’ images where labeled cells are seen against 
a dark background of unlabeled organs, making it very difficult to determine the 
anatomical location of the labeled tissues. While X-ray CT could provide a 3D map of the 
internal organs of the mouse, it is an expensive system that requires shielding and is 
almost impossible to combine with optical imaging, which otherwise requires a fairly 
inexpensive bench-top box for image acquisition. Our approach for dynamic imaging to 
map the organs of the mouse requires no modifications to conventional optical imaging 
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hardware apart from acquisition of a time-series of images instead of a static image, and a 
small bolus injection of a dye. Anatomical maps produced are exactly co-registered with 
the position of the animal, and are in the same imaging geometry and with the same 
image distortions as imaging of a targeted dye or labeled region. Currently, this approach 
has been implemented, but requires the user to interact with the unmixing step of 
generating anatomical maps (Hillman, et al., 2007). Our CAM-CM approach makes this 
into a completely automated step. Beyond development of anatomical maps, dynamic 
optical imaging is now being explored to look at differences in perfusion or dye uptake 
dynamics in diseased tissues, as an alternative to using specifically targeted dyes. A 
further use is to label substances of interest such as drugs and nutrients and to use 
dynamic optical imaging to explore the biodistribution and pharmacokinetic dynamics of 
these substances in real time. No equivalent techniques are available for this kind of 
analysis in-vivo. Again, CAM-CM would be able to find both the location of different 
organs, and the characteristic dynamics of the labeled substances in each of those organs, 
providing objective analysis for high through-put longitudinal studies.  

 
Table S2. Estimated kinetic parameters for the prone position data.  

 Kid 
-ney Spine Adi 

-pose 
Large 

intestine Nodes Blood
vessels Liver Brain Spl 

-een Lung
In
jK  1.000 1.027 0.733 0.781 0.672 0.989 0.784 0.755 0.896 0.666

Out
jk  0.013 0.024 0.010 0.020 0.005 0.022 0.013 0.026 0.014 0.017

 
Table S3. Estimated kinetic parameters for the supine position data.  

 Bladder Adipose Large 
intestine 

Small 
intestine Liver 

In
jK  0.9265 0.8187 0.7447 0.9665 1.0670 

Out
jk  0.0431 0.0482 0.0560 0.0263 0.0068 
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Figure S6. The results of CAM-CM on dynamic fluorescence images of a prone position 
small mouse. (a) Ten normalized fluorescence time courses estimated by CAM-CM. (b) 
Merged and color-coded spatial maps of the major organs. (c) Individual spatial maps of 
the ten major organs. 
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Figure S7. The results of CAM-CM on dynamic fluorescence images of a supine position 
small mouse. (a) Five normalized fluorescence time courses estimated by CAM-CM. (b) 
Merged and color-coded spatial maps of the major organs. (c) Individual spatial maps of 
the five major organs. 
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S5.3 A longitudinal case study on DCE-MRI data 
 As an example of more complex problems, we considered the datasets arising 
from a longitudinal study of tumor response to anti-angiogenic therapy using similar 
imaging protocols (Figs. S8-S10) (Choyke, et al., 2003; Costouros, et al., 2002; 
McDonald, et al., 2003). Three sets of DCE-MRI data were acquired before, during, and 
after the treatment period, each three months apart, serving as the potential endpoints in 
assessing the response to therapy.  

On dataset 1 (baseline), our CAM-CM analysis reveals two biologically 
interpretable compartments with distinct physiological kinetic patterns (Fig. S8c). They 
are associated with local wash-in constants maps with a significant fraction (72.4%) of 
partial volume pixels (Fig. S8d), which can be visually observed from the “filled” three-
corner equal-lateral convex hull of the projected pixel time series scatter plot (Fig. S8a). 
This represents a relatively less aggressive and early stage breast tumor with relatively 
higher permeability -11.787 minOut

fk =  in its fast-flow pool and relatively lower 
permeability -11.031 minOut

sk =  in its slow-flow pool. As expected, local wash-in constants 
maps do not show any visible rim-shape region of aggressive angiogenesis or inner-core 
region of hypoxia but rather more uniform distributions of the two compartments.  

On dataset 2 (the same tumor, acquired during the treatment), our CAM-CM 
analysis reveals two biologically interpretable compartments with distinct, yet with much 
closer physiological kinetic patterns (Fig. S9c). They are associated with local wash-in 
constants maps with a significant fraction (61.8%) of partial volume pixels (Fig. S9d), 
which can be visually observed from the “filled” three-corner convex hull of the 
projected pixel time series scatter plot (Fig. S9a). The CAM-CM estimated local wash-in 
constant maps reveal disconnected and reduced regions of localized angiogenesis and 
connected and enlarged regions of normalized tissue (Fig. S9d).  

On the dataset 3 of the same tumor acquired after the treatment period, our CAM-
CM analysis reveals two similar compartments with largely converged physiological 
kinetic patterns (Fig. S10c). They are associated with local wash-in constants maps with 
a significant fraction (59.4%) of partial volume pixels (Fig. S10d), which can be visually 
observed from the blended obtuse-isosceles triangle convex hull of the projected pixel 
time series scatter plot (Fig. S10a). The CAM-CM estimated local wash-in constant maps 
reveal globally reduced yet only isolated angiogenic activities  (Fig. S10d).   

The outcomes of CAM-CM analysis here are plausibly consistent with the 
reported observations on tumor response to antiangiogenic therapy (Choyke, et al., 2003; 
Jain, 2005; McDonald, et al., 2003; Padhani, 2003; Padhani, et al., 2001; Turkbey, et al., 
2010; Yankeelov, et al., 2007). The interaction between angiogenic inhibitors and tumor 
vasculature is a complex process depending upon the doses and timing of the applied 
therapeutic agents (Jain, 2005; Padhani, et al., 2001). For example, controlled 
antiangiogenic therapies not only destroy aggressive angiogenesis but also transiently 
“normalize” the abnormal structure and function of surviving tumor vasculature to make 
it more efficient for oxygen and drug delivery. Initial results from trials of angiogenesis 
inhibitors monitored with DEC-MRI suggest that before therapy, the tumors are often 
highly and heterogeneously perfused and permeable, while soon after successful therapy 
begins, dramatically decreased perfusion and permeability can be detected (Choyke, et al., 
2003; McDonald, et al., 2003). In breast cancer, a decrease in transendothelial 
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permeability has been reported to accompany tumor response to therapy (Choyke, et al., 
2003; Padhani, et al., 2001). We note that tumor induced vascular activities were 
significantly reduced as an early response to therapy, where most noticeable is the large 
and consistent drop in the relative fraction of the ( )In

fK i  map and permeability rate Out
fk  

(slower initial enhancement, decreased amplitude, slower wash-out) (Choyke, et al., 
2003). We note that the tumor vasculature is intrinsically heterogeneous and, as a result, 
the whole tumor region may not demonstrate responses to antiangiogenic therapy that 
occur in some parts of the tumor but not in other parts (Turkbey, et al., 2010). We also 
note that tumor islands of persistent enhancement have escaped the effects of therapy, 
representing previously reported foci of resistant and more aggressive clones within a 
tumor (Choyke, et al., 2003; Padhani, 2003). Once again, the CAM-CM estimated values 
of -10.56 ~ 2.46 minOutk = were generally consistent with the parameter values of  

-10.88 ~ 1.93 minOutk =  reported by the most relevant studies (Knopp, et al., 1999). 

( )In
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Figure S8. The result of CAM-CM on DCE-MRI dataset 1 of the breast cancer 
longitudinal study. (a) Identified convex hull of clustered pixel TCs (Blue dots: 
normalized pixel TCs; Red circles: cluster centers; Blue lines: cluster memberships). (b) 
Normalized overall TC calculated from the entire tumor ROI. (c) Normalized 
compartment TCs estimated by CAM-CM. (d) Local wash-in constant maps estimated by 
CAM-CM. 
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Figure S9. The result of CAM-CM on DCE-MRI dataset 2 of the breast cancer 
longitudinal study. 
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Figure S10. The result of CAM-CM on DCE-MRI dataset 3 of the breast cancer 
longitudinal study.  
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